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1. Introduction

An examination of tables [3; 5; 8; 12; 15] of the positive(2) zeros of familiar special
functions, such as Bessel functions(3) and various orthogonal polynomials, suggests that
sequences of differences constructed from those zeros behave in a regular manner. Indeed,
certain heuristically observed regularities are exploited systematically by table-makers as
checks on their computations [1; 5, p. 404; 12, esp. pp. liii-liv].(%)

Rigorous study of this useful phenomenon, however, does not appear to have pro-
gressed beyond consideration of the second differences of zeros of Sturm-Liouville functions
(solutions of the Sturm-Liouville differential equation y" +f(z)y =0). Here Sturm’s com-
parison theorem [13; 14, pp. 19-21] has been the principal tool.

For instance, denoting by {c,,,,}, n=1,2,..., the ascending sequence of positive zeros of
an arbitrary Bessel function C,(z) of order », Ch. Sturm [13, pp. 173—-175] used his comparison
theorem to show that the second (forward) differences A2c,,, n=1,2,..., are all positive if
[v| <% and are all negative if [v|>}. In the same manner, similar results have been

established for Hermite, Laguerre and Legendre polynomials and other Sturm-Liouville
unctions.

(1) Some of this work was done a few years ago when the first-named author received partial
support from the (U.S.) National Science Foundation through Research Grant NSF G-3663 to Phi-
lander Smith College, Little Rock, Arkansas. Its completion was facilitated by a grant from the
University of Alberta General Research Fund. Both authors thank Professor Gabor Szego for his
interest and encouragement.

(2) All quantities discussed throughout this paper are assumed to be real.

(®) By a Bessel function we mean any real solution of the Bessel differential equation, not
merely J, or Y,.

(4) The regularities now used to check tables are not the ones discussed in this paper. How-
ever, the ones established here can also be used conveniently for this purpose.
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Analogous problems can be formulated for the sequence of the areas bounded by the
successive arches or waves (having consecutive zeros as end-points) of the graphs of such
special functions. The corresponding results, including the information about the second
differences of the zeros, were established in a unified and simple manner by E. Makai [11].
His work was subsequently generalized in several directions by I. Bihari [2].

Our main purpose here is to go beyond the second differences and to show that all
higher differences of certain sequences connected with the zeros and areas of C,(x) have
constant sign, alternating from one difference to the next, when |v|>1. Airy functions
and certain generalizations of C,(x) are shown to share these properties. The precise for-
mulations are found in §§ 24.

In § 5, these results are extended, in part, to the study of the higher differences of
sequences whose elements are the (first) differences of the respective zeros of the solutions
of distinct Sturm-Liouville equations. This generalization is applied in § 6 to obtain in-
formation concerning the higher differences of sequences composed of the (first) differences
of the respective zeros of arbitrary Bessel functions of different orders.

The general method of proof we employ may perhaps be extensible to yield analogous
(although not identical) results for C,(x) with |»| <} and for other special functions, such
as Hermite, Laguerre and Legendre polynomials, the Bateman k-function and, in general,
for the confluent hypergeometric function for certain values of the parameter.() We
list some of our conjectures in § 7.

All the results bearing on Bessel functions which are presented here deal with the
behavior of differences of quantities connected with functions of constant order. Elsewhere
[10] we consider some analogous problems involving instead the differences of zeros of

fixed rank, but of functions of varying order.

2. Definitions, notations and general results (one equation)

If y(x) has zeros when z is in an open interval I and is a non-trivial solution of the

Sturm-Liouville differential equation
Y +fx)y =0, 2.1)

(1) More generally, one may seek a generalization of the Sturm comparison theorem. This
theorem shows that the second differences of the sequence of successive zeros of an oscillatory
Sturm-Liouville function are all positive if f'(z)<0, and are all negative if f'(z}>0. Perhaps the
signs of the first N differences of these zeros can be inferred from the signs of f‘")(m), n=1,...,N.
In particular, it would be interesting to determine if the complete monotonicity of flx), 0<a<oo,
implies the complete monotonicity of the sequence composed of the differences of successive zeros of
an arbitrary solution of y” + f(x)y =0, 0<x<oo. This is the case for Bessel functions (Theorem 3.1),
and for Airy functions (Theorem 4.1).
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where f(z) is a given function, we designate any increasing sequence of consecutive zeros in
I by 2,,%,,..., and define for any fixed 1> —1

T+l
Mk=f ly(@)|'de  (k=1,2,...). (2.2)
T

When A=1, the M, are simply the areas, say A4,, of the successive arches of y(x).
When 1=0, the M, become the differences, Az, of successive zeros of y(z). Moreover, M,
exists for any 4> —1, since the zeros of y(x) are all of order 1 (the existence of a muitiple
zero of a solution of (2.1) would imply that y(z) is identically zero).

Where it is convenient to distinguish any two (non-trivial) solutions of (2.1), linearly
independent or not, we denote them by y(x) and #(z), with the corresponding zeros and
arch-areas, for example, written as x, %, 4, 4y, k=1,2, ..., respectively. When we designate
two such solutions by y,(z), y,(x) we mean that they are linearly independent.

The symbol A"u, means, as usual, the n-th (forward) difference of the sequence
{pe}, ie.,

A=, Ape=psy—p A=A — A", n=12,.., k=12,.).

For typographical convenience, we frequently use the symbol D; (&) to denote the
n-th derivative p™(£).

We prove a general theorem concerning solutions of (2.1) and then specialize in
§§ 3-4 to general solutions of the Bessel and Airy differential equations, respectively.
Certain preliminary facts are needed in this connection (and again in § 5). Some may be
known, but, inasmuch as they occupy a central position in this work, we formulate them

as lemmas and supply proofs.

LeEmMmA 2.1. Let p(x) be o positive funciion such that p™™)(x) exists in an open interval
(a,b). Map (a,b) onto an interval of a variable t through the relation x'(t) =p(x). Then, for any
6>0 and any n=0,1,...N, the derivative D} {[«'(t)]°} is a homogeneous form in p©®(x),
pV(x),...,p"N(x) for x€(a,b). It has (i) order (c+n), (ii) weight n, (iii) non-negative coef-
ficients and exponents (both dependent only on n and o), and (iv) integral exponents with the
possible exception of the exponent of p®(x).

Proof. The mapping is possible since p(z) >0. The proof proceeds by induction.

When #=0, we have DI {[2'(t)]’}=[p®(x)]; when n=1, we have Dy {[x'({)]"}=
a[p@ ()]’ [p®(x)]. In both cases, the assertions of the lemma are fulfilled.

A general term of D} {[x'()]°} would appear as

S=Clp @ [PV @) ... [P @),
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with O, a,...,a, all non-negative and «,,...,a, all integers. The order would be o, + o, +
... T o, and the weight a, +2a, +... +na,.
The induction is carried through by differentiating S with respect to ¢. We have

das das .

7 " P@) o= Co[pP (@) [pV (@] ' [p® (@) ... [p™ (2)]*
+ Oy [p (@) [p (@) [pP (@) .. [p (@)
+..

+ O [p @ (@) [p V(@)™ ... [P (@) [p" V()]

Thus, 8°(t) is a polynomial in p©)(z), pV(x),...,p "+ (x) with non-negative coefficients.
None of the exponents that appear become negative; the exponent of p(x) never decreases
while the others decrease by steps of one unit, if at all. They may reach zero, but this
occurrence would only presage the vanishing of the derivative of the corresponding factor.

The order, w, and weight, w, of a term in 8'(f) other than the first and last, are, re-
spectively,

w={egtl)ta,+. .o, D+ {a; + D)+ Foa, =1+ (g +a,+...+ea)
and
w=oy+20+...+i(o; — 1)+ (3 +1){ee;  + 1)+ ... Fna, =1+ (o + 205+ +0axy,).

Thus, the order and weight increase by one unit under the process of differentiation of
these terms with respect to £. The same is clearly true of the first and last terms as well.
Finally, we observe that the coefficients and exponents do not depend on p(z) but only
on n and a.

Thus, 8’(t) satisfies the assertion of the lemma and the induction (which can be con-
tinued to » =N) is complete.

LEMMA 2.2. Let p(x) satisfy the conditions of Lemma 2.1 and, in addition, the inequalities
(—1)y"p"™(z) >0 (n=0,1,...,N; z€(a,b)). (2.3)
Let the mapping described in Lemma 2.1 be carried out. Then, for any ¢ >0,
(—1)"D{[z'#)]°} >0 (n=0,1,...,N). (2.4)
The lemma remains true if the factor (—1)" is deleted from both (2.3) and (2.4).

Proof. From Lemma 2.1, we see that a general term of D7 {[#'(¢)]°} has the form

§=Clp @ PV @] ... [P @]
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By assumption (2.3) the sign of S is

( —1 )azl+2ocz+...+mzn.

But the exponent is simply the weight which, according to Lemma 2.1, has the value =.
Thus, S has sign (—1)" and (2.4) is established. The final sentence of the lemma is trivial.

LEMMA 2.3. Let y,, y, be solutions of (2.1), normalized so that their Wronskian y,ys—
y19:=1. Let p(x)=y}(x)+v3(x) and define the transformation y(x)=[p(x)tu(t); ='(t) =p(z).
This transforms (2.1) into the differential equation w”(t) +u(t) =0.

Proof. The function p(x) is an admissible mapping function since it is always positive.
The transformation takes (2.1) into »” () +q(f)u(t) =0, where

q(t) = 3 p(x) p"(x) — [P’ ()2 + [p(®) 1 f(2) (2.5)
so that (with p(x) =yi(x) + y3(x) and y” = — f(x)y),
q(t) = (@) [(11)* + (92)* + a9t + y292) — [YR(YD)® + 2191 vays + 93(y2)*1 + [T f()
= (g1 +93) () + (921 — [3w1)* + 2ya91 a9z + 43(92)°"1 = (192 — y19)” = 1.
The main result of this section can be proved now:

THEOREM 2.1. Suppose that in some closed interval I* there exist two linearly inde-

pendent solutions y,(x), ya(x) of (2.1) such that
(=" D{[1@P+ [P} >0 (n=0,1,...,N), (2.6)
where the N-th derivative exists in the open interval I, and the lower order derivatives are
continuous in its closure I*. Then()
(—-1)"A"M.>0 (r=0,1,.,N; k=1,2,..), (2.7)
so that, in particular,
(—1)" A", >0 (n=1,2,...N+1; k=1,2,...). (2.8)
Moreover, if x,>Z,, then
(— 1) A™x,— &) >0 (n=0,1,..,N; k=1,2,.). (2.9)

If the factor (—1)" is deleted from assumption (2.8), then the conclusions (2.7), (2.8) and
(2.9) remain valid provided they are amended by eliminating the factors (—1)", (—1)" ' and
(—1)", respectively.

() The quantities My, a, 5 are defined in the first paragraph of this section, e.g., by (2.2).
It should be remembered that they refer to any nontrivial solution of (2.1), not merely to y,(z)
and y,(x).
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Proof. Without loss of generality, we normalize the solutions y,(x), y,(x) so that their
Wronskian is 1. Then we can apply Lemma 2.3 and transform the differential equation
(2.1) into the form w”(t) +u(t) =90. Since p(z)=2'(t)>0 in I, there is a one-to-one corre-
spondence between the zeros of y(x) and those of u(t). But u(t) =4 cos (£ —b), 4, b constants,
so that its zeros are equidistant from one another with Af, =z, k=1,2,..., where {, is the
zero of u(t) corresponding to z;.

Thus, (2.2) becomes

L1 4
M= f [/ (@)1 ¥ | u(t) | dt.
L
Recalling that At,=7 (k=1,2, ...), and noting that |u(t+ )| = |u(¢)|, we have
tiet2

tk+1 te+1
AMk= _f :f {[x/(t+n)]1+}llu(t+n) |)._ [x'(t)]”“lu(t)]l}dt
ty th

tk+1
- ft A OF Y} utt) P,

where A.{F(t)}=F(t+x)— F(t).
It follows, in the same way, that the higher differences are given by

trs1
A™M,= f {A{[2' O ¥ wie) e, (2.10)
ty

where AL{F(t)} = A, {Ar 'F(t)}.
Now, according to a mean-value theorem for higher derivatives and differences [7,
p- 73] there exists a 0 such that

AL F(t) =n"F™(t+0nm) (0<0<1), (2.11)

provided F{*)(t) exists in the open interval (¢, t +ns) and the lower derivatives are continu-
ous in the corresponding closed interval.

Applying the extended mean-value theorem (2.11) to the expression (2.10) for A"M,,
we obtain

A"M, =" ﬁ e {DP{['(t+ Onm) " ¥4} u(t) 't (0<O(t)<1). (2.12)
K

It should be noted that the argument of z' can fall anywhere in [t +(n+1)x].
However, this causes no difficulty since the range of ¢-values occurring in A" M, encompas-
ses the same interval.

Lemma 2.2 can now be applied, with ¢ =1+ 34, since condition {2.3) of the lemma is
fulfilled by virtue of assumption (2.6) in the theorem. Employing the conclusion of the
lemma, (2.4), the result (2.7) of the theorem follows from (2.12).
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Taking A=0 in (2.7), in turn, yields (2.8), since
M, = Az, A"M,=A"*'x, for 1=0.

The proof of (2.9) is slightly different. Let t,, ¢, +a, ¢, +2x,..., be the sequence of
t-values corresponding to the zeros wx,x,, %s,..., and #,,f, +7,f, +2m,..., be the sequence

of #-values corresponding to &,,Z,, &3, .... Then, with z, =x(8), &, ==(%),
Az, — &) = AM(te) —2()] = A"=(t) — 2k —)],

where n=1f,—1I, and is independent of k.

Applying the same mean-value theorem (2.11) as before, we have
A, — &) = 7" [x ™) (& +Onm) — 2™ (, +Onm —n)],

with 0 <@ <1. This can be rewritten as
tp+6nn
A, — &) =n"f x Tt dt.
ty+Onm—y
Thus, the sign of A"(x; — &) is determined by the sign of x**1)(¢). However, Lemma 2.2
(with ¢=1), applicable in view of hypothesis (2.6), shows this sign to be (—1)" for n=
0,1,...,N. Hence, the quantity (—1)"A™x,—&,) is positive or negative according as >0
or 77 <0. But N
xp — &= x(b) — (k) =f z'(¢) dt,
te-n
which has the same sign as # since x'(t) >0. Inasmuch as z, >&,, it is clear that >0, so
that (2.9) is established. The final sentence of the theorem follows at once on making the
obvious changes in the above proof.
Remark. It should be kept in mind that the definition of z,,%,,...,%;, %, ..., provides
a considerable amount of flexibility. Neither x, nor &, need be the first zero of its respective
function, nor is there even any requirement that x; should occupy the same relative position
among the totality of zeros of y(x) in I as & does relative to ¢(x). This is useful to know

in connection with applications of Theorem 2.1.

3. Application of § 2 to certain Bessel functions

One opportunity to apply Theorem 2.1 to Bessel functions of appropriate order is
facilitated by Nicholson’s integral [15, p. 444(1)].
Theorem 2.1 applies for all non-negative integers N to the Bessel differential equation

in the form
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2_1
1

>}y=0 (x>0), (3.1)

y' (@) + {1 Y

x2
provided |»|> 3.
The fundamental solutions y,,y, of (3.1) can be taken to be (mx)t J,(z), (nx)?
Y, (x) so that
p(x) = $az{[J, ()] + [ ¥, (@)%}

For |»| >}, p(x) is analytic, 0 <a < co, and so p'¥(x) exists for all non-negative integers N.

To satisfy the conditions of Theorem 2.1, we need only choose an interval I encompas-
sing all zeros under consideration and with its lower end-point a positive number. This
can obviously be done, since each Bessel function has a least positive zero. Condition (2.6)
on the sign of p™)(x) can be verified by using G. N. Watson’s manipulation of Nicholson’s
integral representation for our p(x) [15, p. 446]:

Watson’s calculation gives

p'(x)= ;—tf {Ky(2x sinh T)} (tanh 7T') (cosh 2¢T) - [tanh T — 2» tanh 2»T]dT, (3.2)
0

where Ky(£) is the Bessel function of second kind, imaginary argument and zero order.
As Watson points out, the bracketed factor in the above integrand is negative for

|#]| >%; everything else is positive. Hence, p’(x) <0. Further differentiation yields

oo
p ™ (x) = 3 f {K{"~P(2x sinh T')} (2 sinh 7')" ! (tanh T') (cosh 2»7)
0
- [tanh 7’ — 2y tanh 2»T'] dT. (3.3)

Now, it is clear from the representation [15, p. 446 footnote]

Kq(§) = f: eéoosntgy,
that (—1)"K{™(£)>0 for £>0,n=0,1,2,..., so that p(x) satisfies the hypotheses of Theorem
2.1, and (2.7), (2.8) and (2.9) are therefore valid for Bessel functions of order », |v| >1, for
all N=1,2,....

There is an alternative argument, based on work of P. Hartman [6], available to
establish the validity of (2.7), (2.8), (2.9) for these Bessel functions.

Applied directly to equation (3.1), Hartman’s Theorem 18.1, [6, p. 182], with n= oo,
asserts that p(x) is completely monotonic in (0, o), i.e., it gives (2.6) in the slightly weakened
form in which “>" is replaced by ““>"’. However, as shown in § 8 below, a function com-

pletely monotonic in (0,00) must be a constant if any one of its derivatives (including the
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zeroth, the function itself) vanishes for any single positive value. Thus, if equality ever
prevailed in (2.6), p(x) would have to be a constant. However, this, in turn, is impossible
for |v| >1, since, according to a lemma established in § 9 below, this would require the
coefficient of y in (3.1) also to be constant, which it is not.

Thus, Hartman’s Theorem 18.1,, with n = oo, implies (2.6) and so also (2.7), (2.8) and
(2.9) for Bessel functions of order », |»| >1. Therefore, by either argument, we obtain

the following results for Bessel functions.

TuEOREM 3.1. Let c,y, G5 denote, respectively, the k-th positive zeros, arranged in ascend-
ing order, of any pair of non-trivial solutions (linearly independent or not) of the Bessel equa-
tion (3.1) with |v| >}. Let 2 be a constant, 1> —1, and

Cpk+1

M= f 24| C, (z) [ da. (3.4)
Cok
Then, for k=1,2. ...,
(—1)"A"M,>0 (n=0,1,...), (3.5)
(—1)" A%, >0 (m=1,2,...), (3.6)
(—1)"A™Cpmix— ) >0 (=0,1,2,...), (3.7)
for any fixed m=0,1, ..., provided ¢, 1> é&,.

In particular (still with |v|> 1),
(=DA%, >0, (—1)" A", >0 (n=1,2,...), (3.8)
(=)Ao — ) >0 (n=0,1,2,...), (3.9)
where j,i, Y, denote the respective k-th positive zeros of J,(x) and ¥,(x).
Remark. (3.7) implies (3.9), since §,; > ¥,1 {15, p. 487 (10)].

4. Application of § 2 to Airy functions
The Airy functions satisfy the differential equation [14, p. 18]
y'(x)+ zy =0. (4.1)

A broader class of functions, including the Airy functions, satisfy the differential equa-
tion [15, p. 97 (9)]
y'' (@) + B2y =0. (4.2)

These functions are closely related to Bessel functions. Indeed, y = 2% Cy (yxﬁ) satisfies
(4.2).
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When 1< <}, equation (4.2) meets Hartman’s conditions [6, p. 183 (Theorem
20.1,)] with == oo, so that the special case (4.1), where =4, is covered as well. Accord-
ingly, we have an analogue of Theorem 3.1 for Airy functions and their zeros. In partic-

ular, the following result holds:

THEOREM 4.1. If 1 <f <3, then
(— 1" A {[cy26.6) "} >0 (0, k=1,2,...).

If {a,}, {d,} are the sequences of positive zeros, arranged in ascending order, of any pair of

Airy functions (solutions of (4.1)), and a,>d,, then
(—1)*1A%, >0, (—1)"A%a,—a)>0 (n,k=1,2,..). 4.3)

This theorem follows from Hartman’s Theorem 20.1,, with n=co, in precisely the
same way as Theorem 3.1 was shown to follow from his Theorem 18.1,, with n=co, and
the subordinate results in §§ 8-9 below.

For this theorem, unlike Theorem 3.1, we have no alternative proof to offer.

5. Higher monotonicity of sequences arising from zeros of two
Sturm~Liouville functions

Previous sections discussed higher monotonicity of various sequences connected with,
tnter alia, the areas under successive arches of the graphs of certain Sturm-Liouville func-
tions and, more particularly, with their zeros. Here we supply a partial generalization
(restricted to zeros) of some of the previous results by relating the zeros of an arbitrary
solution of one Sturm-Liouville equation to those of an arbitrary solution of a different
Sturm-Liouville equation, under certain circumstances. This will imply, for example, the
complete monotonicity of certain sequences, such as {jﬂ_,w—yv,mw},?:l, for appropriate
4, v, r and m (cf. Theorem 6.1 for details).

To this end, we need the following extension of our first two lemmas:

LeEMMA 5.1. Let an open interval I, of the variable t be mapped onto corresponding open
wntervals I, and Iy of the variables x and X by the mappings «'(t) =p(x). X'(t) =P(X), respec-
tively, where p(x), P(X) are prescribed positive functions such that p™¥)(x), P®(X) exist in
the open interval I, N Iy (say I,y). Suppose, furthermore, that p(x), P(X) satisfy the inequalities

(—1)"DX{P(X)}= (- 1)"Di{p(x)}>0 (n=0,1,...,N), 6.1)

for v, X € Ix, where x and X in (5.1) correspond to the same .
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Then, for any o> 0,
(= V)"DE{[X" ()1} = (- 1)"DE{["(£)]"} > 0, (5.2)
n=0,1,...,N, fort €1,

Again, if both factors (—1)" are eliminated from assumption (5.1), then conclusion (5.2)
remains valid once the same deletions are made.

Proof. The second inequality of (5.2) is identical with the conclusion of Lemma 2.2.
The first inequality follows from a term by term comparison of the homogeneous forms for
DE{[X'())°} and D7 {[«'(¢)]°}: According to Lemma 2.1, a typical term of (—1)*Df {[«'(t)]°}
is

8z = (= 1)"Olp@)1°[p"(@)]* ... [p™(@)]** = Clp()]*[(— D p'@)]* ... [(— 1)"p™(@)]"",
since oy + 205 + ... +ne, =n (this being the weight), with C positive, and with each remaining
factor positive by (5.1).
The corresponding typical term of ( — 1)*Df {[X'(t)]°} is
8x=C[P(X)I[(— 1) P'(X)]* ... [(— 1)"P™(X)]*»,
with the same values for C, «, ..., &, as for (— 1)*D¢ {[2'(1)]°}, by Lemma 2.1.

Thus, the proof of (5.2) will be complete once it is established that S;>.8,. This

follows from (5.1), since each factor in brackets in S, is positive and not more than the

corresponding factor of Sy, while C >0. The proof of the final assertion follows on making

the obvious changes in the foregoing.

Remark. If the symbol “ 2 in (5.1) is replaced by “>”, then (5.2) can be strengthened
correspondingly.

From this lemma we obtain the principal result of the section.

TaroreM 5.1. Suppose that in some closed interval I* there exist two pairs of linearly
independent solutions {y,(x), ys(x)}, {¥1(x), Y,(x)} (each pair normalized so that the Wronskian
1s 1) of the respective differential equations

~Yx)+fx)y=0; Y'(x)+Flx) Y =0, (5.3)
(where f, F are given functions) such that
(—)rP™(z)=(—1)p"Nz)>0 (n=0,1,...,N), (5.4)

where the N-th derivatives exist in the open interval I, and the lower derivatives are continuous
i its closure I*, and where

2(@) = [4:(2)]P +[y5() P P(a) = [Y ()P +[Y,(x)]>
5—632917. Acta mathematica 109. Imprimé le 29 mars 1963
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Then, of 2, > X, we have
(—1)"AMz,—X,) >0, (»n=0,1,..,N; k=1,2,.), (6.5)

for the zeros z,, X, of y and Y, respectively, in the intersection I* N J, where J is an interval

defined to be either (X, &,) or (X,,00) according as there does or does not exist a solution & for

the equation
& &
f “di = f _di’ (5.6)
«P(8)  Jx P(s)
&, being the least such solution.

If the symbol “ =" in (5.4) is replaced by “>" for n=0, then the solution of (5.6), if

any, 18 unique.

Proof. As in § 2, Lemma 2.3, the transformations

y(@) = [ O)Fu(®); () =[5 (@)] + [ya(x)]* (5.7)
Y(X)=[X'0FUE); X'(6)=[Y(X)P+ [T(X)P

take equations (5.3) into, respectively,

W) +ult) =0; U”(t)+UE)=0. (5.8)

The mapping functions (5.7) are not unique; an integration constant is left unspecified.

In order to particularize (5.7) completely, we take

T ds X ds
_ I 5.9
! Lp(s) LP(s) (65.9)

The transformations (5.7) now establish a one-to-one correspondence between the zeros of
y(x) and u(t) and between those of Y(X) and U(t), respectively, 2’(f) and X'({) being
positive.

Let us designate by &,,f,,..., the zeros of u(t) corresponding, respectively, to z;, z,,...
and by T,,T,,..., the zeros of U(t) corresponding to X,, X,,.... Since all solutions of (5.8)
are of the form A cos (t —b), it follows that Aty =AT, =x for all k.

Now, t;=T,=0, from (5.9), so that t, =T, =(k— 1)z, k=1,2,.... Hence

(= 1)"AMa, — Xy) = (— 1)"AZ [#(8) — X(8)], (5.10)

where the subscript 7z on the right-hand difference operator signifies that these differences
are to be taken with increment 7.

According to a mean-value theorem for higher differences [7, p. 73], (cf. (2.11)) there
exists 6 such that
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ALFQ@)y=a"F™(t+nnf) (0<6<1), (5.11)

under conditions on F(f) which are satisfied here by z(f) — X(#). Applying this to (5.10),

we have, for such a 0,

(—1)"AMw, — X,) = (—7)" [ (t, +naf) — X Pt +nnb)] (0<60<1;7=0,1,..,N; k=1,2,...).
(6.12)

The argument in (5.12) may fall anywhere in the interval [f,,¢, +n»z]; this is precisely the
range implied in ALF(t,). Now, (5.5) will follow from (5.12) once it is established that

(=1 z™(@) > (= 1" X™(@#) (n=0,1,...,N), (5.13)
for ¢ in the appropriate interval. The case n =0 requires that we show

x(t) > X(¢), (5.14)
while the other cases require

(—1)"DHX'(t)} > (= 1)"Di {z’'(t)} (n=0,1,2,...,N—1). (5.15)

In view of assumption (5.4), it is clear that Lemma 5.1 is applicable, so that (5.15) wounld
follow from

(—1)*P"(X) > (—1)"p™(z) (n=0,1,...,N—1). (5.16)
But this is equivalent to
(—1)"[P"™X)—P™(x)] > (—I)”ip("’(x) —P™x)] (n=0,1,..,N—-1). (5.17)

The right side of (5.17) is non-positive (from (5.4)). Showing that the left side is positive
will prove the inequality (5.17). That is, it will suffice to show that
X

(= DP™(X)— P™(a)]=(— 1)”] P D(g)ds>0 (n=0,1,..., N—1).

T

However, hypothesis (5.4) states that (—1)"P+)(s) <0, so that to prove (5.17), it is suf-
ficient to establish that x(f) > X(f), i.e., inequality (5.14). In other words, the validity of
(5.5) is coextensive with that of (5.14).

Now, we have assumed that
2(0) — X(0) =2, — X, > 0.
Hence, if (5.14) is ever violated, then there must exist at least one value of ¢, say 7, for
which (1) =X(7)=£>X,.

If no such £ exists, then the proof is complete, and the interval J of the theorem is
simply (X,,e0).
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Otherwise, employing the restriction on £, (5.9), the condition on § becomes (5.6).
Accordingly, we define the differentiable function g(v) by

v ds v ds
g(?))=fx1%—fr‘p—(8‘j, ’U}Xl. (5.18)

Obviously, g(X,) > 0, since 2, > X;, and

, 1 1
g'v)= Pe) p) <0,
from (5.4).

Thus, g(v) is a continuous, non-increasing function which is positive at X, so that the
set of its zeros, i.e., of the values of £ violating (5.14), would, if non-empty, be a closed inter-
val. If there be such &, then there is a least such, say &,, and (5.14) is satisfied throughout
the open interval J=(Xj, &,).

This completes the proof of the theorem, except for its final sentence. This, in turn,
follows immediately on observing that assumption (5.4) becomes, in this case, the in-
equality P(z)>p(x), so that the function g(v) is now strictly decreasing and hence cannot

vanish more than once, if at all.

Remark 1. If the functions p(s), P(s) are analytic (or even merely members of the
same quasi-analytic class), then also the solution of (5.6), if any, is unique. For, otherwise,
there would exist an interval of solutions £, so that, differentiating both sides of (5.6)
with respect to &, we would have p(&) =P(&) for all £ in the solution interval. Then, from
(quasi) analyticity, it follows that p(s) = P(s) everywhere. Since z, > X, (5.6) clearly could

not be satisfied, a contradiction.

Remark 2. The inequality (2.8) and its consequences, but not the whole of Theorem
2.1, follow from Theorem 5.1, on taking the two differential equations (5.3) to be identical,

so that (5.4) is satisfied with “>"’ reducing to ““=".

Remark 3. As in § 2, if assumption (5.4) is altered by deleting both factors (—1)",
then conclusion (5.5) will remain valid provided the factor (—1)" is deleted.
Finally, we note the additional corollary below which, in essence, assures us that

Theorem 5.1 has non-vacuous content in certain specific circumstances.

COROLLARY 5.1. Let all the conditions of Theorem 5.1 be satisfied and suppose, further,
that (i) I* =[X,,001, (ii) there are infinitely many z,, X, in I*, and (iii)

® 1 1
L . (5.19
f x {p<s> P<s>}d8< )
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Then, for any fized choice of X, there always exists an x, sufficiently large so that (5.5) holds
tn (X;,00). 4

Proof. Tt suffices to show that there exists no £ satisfying (5.6), and for this we need
establish only that g(v) >0 for all » where the function ¢(v) is defined by (5.18). This func-
tion can be put in the form

Tt ds 11 1
g(v):J‘le—fIl{p—(s‘j—Fs)}d'S (U>X1)‘ (520)

Now, ¢'(v) <0, so that the positivity of g(v), v > X, can be shown by proving that g(cc) >0,

1 ds o 1 1 .
P(s) e Pls) 5.21
fxlp(s) >le {p(s) (s)}ds’ (5.21)

for all sufficiently large z,. Both sides of (5.21) are non-negative, since P(s) =p(s) >0 and

i.e., by demonstrating that

x, > X,. However, the left side is an increasing function of x,, while the right side, which is

non-increasing, approaches zero as x,—>co. This proves the corollary.
4 1 P

6. An application of § 5 to Bessel functions

The conditions of Corollary 5.1 will be verified for certain Bessel functions of orders
U, v, respectively.

THEOREM 6.1. Given three numbers pu, v, m, with }<u<v, m a positive integer, let
Cum; Vym denote the m-th positive zero of any solutions of the Bessel equations of order u and v,
respectively. Then there exists a positive integer r such that c,. >y, and

(= 1)"A™{cprin— Prmru} >0 (0, k=0,1,...). (6.1)
In particular, ¢ and y can be chosen to be § and y in either order.

Proof. With P(z)= inz[J}(z)+ Y} (2)] and p(z)=tnz[JZ(x)+ Y>(2)], we have to
show that (5.4) and (5.19) are satisfied.
To verify (5.4) we obtain from [16, p. 446]

o= 1\'p ™) 4 f T~ 1)"[K," V(2 sinh )] (2 sinh £)*~ tanh £}
ov T Jo

x{(cosh 2vt) (— 2 tanh 2vt — 4t sech? 2yt) + (2¢ sinh 2y¢) (tanh ¢ — 2» tanh 2vt)} dt
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Regarding this integral, we note that the expression in the first set of braces is ne-
gative, since (—1)"K,"(T)> 0 for all positive T, and that the expression in the second

set of braces is also negative, since » > % and tanh T 1 1 as T—oo. Hence

A= 1)p™ (@)

. >0 for »>=1}. (6.2)

and so, since § <u <v, we see that (—1)"P™(x) > (— 1)"p'™(z) >0, which is (5.4).
To establish (5.19), we note that both p(x) and P(x) equal 1+ O(z?) as z—>oo [15,
p. 449 (1)], so that
1
1 ————=0(s"% as s§—>oo,

p(s)  P(s)

Thus, (5.19) is satisfied, since

f” {17(5_1%}%:0(” ) as v—>oo.

This being the case, Corollary 5.1 applies and the theorem is proved.

7. Remarks. Open Problems

We comment here on some variants of our results and call attention to some further
problems.

(i) The results stated in § 2 and § 5 assert strict positivity of certain quantities. Tt
may be useful for other applications to record parallel results in which, instead, non-
negativity is assumed and inferred. This involves replacing “>” by “>" in the lemmas
and theorems of these sections. It is essential to observe, however, that for the case n=0
of (2.3) and (5.4), i.e., for the mapping function p(x) itself, we must retain strict positivity,
s0 that the mapping exists, even though for n=1,2,..., N, only non-negativity is assumed.
(Suppose p(x,) =0. Then y,(x,) =ya(x,) =0 and the Wronskian of y,, y, would vanish for
x=1,, contrary to the assumption that y,, y, are linearly independent.)

(ii) We have dealt explicitly only with those zeros of solutions of (2.1) and (5.3) which
lie inside the interval of definition. This was primarily for ease of statement.

Excluding end-point zeros, if any, assured us that the correspondence between the
zeros of y(x) and u(t) (as given by Lemma 2.3) is one-to-one. A variety of other restrictions
would do the same. For instance, if 2'(¢) is bounded away from 0 as ¢ approaches an end-
point, then the requisite one-to-one correspondence would persist even if we include pos-

sible end-point zeros. This particular condition is satisfied for J,(z), » >}, so that our resuits
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for this function can be extended to cover its non-negative zeros rather than, as in Theorem
3.1, only its positive zeros.

(iii) We have been unable to establish an analogue for the case |v| <% of Theorem 3.1.
The Sturm comparison theorem shows that the theorem must be modified for this instance

and numerical calculations suggest the following (which is known for n=2 [11; 13; 14]):
CoNsECTURE. If |v| <}, then (—1)"A%c,x>0, k=1,2,..., n=2,3, ....

(iv) Many similar conjectures can be advanced; an examination of various tables of
zeros will produce them. Appropriate analogues or extensions of Nicholson’s integral or
Hartman’s theorems, used in conjunction with an analogue or extension of Theorem 2.1
or Theorem 5.1 may settle some of them.

In some instances, such as the 0-zeros of the Legendre polynomials P, (cos 0), and the
Hermite and Laguerre polynomials, the positive zeros appear to form absolutely (rather
than completely) monotonic sequences; that is, we conjecture for these cases that all dif-
ferences of the zeros are non-negative.

In this connection, we are happy to thank a number of persons who have aided us
by making numerical checks of these conjectures (and of our theorems while they were
still conjectures): (1) Messrs. Samuel C. Arthur, Lovell Moore and Robert Robinson for
hand calculations involving the differences of zeros of Bessel and Airy functions, done in
1957 while they were students at Philander Smith College; (2) Professor D. H. Lehmer for
recomputing certain zeros of Bessel functions which turned out to have been recorded
erroneously in [15] (Corrections noted also in [5, vol. 2, p. 925]); (3) Drs. P. J. Davis and
P. Rabinowitz [4(a), p. 435; (b), p. 619] for verifying, at our request, that all the differences
of the 0-zeros of the Legendre polynomials Pgg(cos ) and Pg,(cos ) are non-negative, and
for noting that the higher differences of the zeros of Pg(x) do not follow this pattern;
(4) the University of Alberta Computing Centre for verifying that all the differences of
the positive zeros of the Laguerre polynomials of degrees 6 through 15, inclusive, and of
the Hermite polynomials of degrees 6 through 20, inclusive, are non-negative.

The problem of generalizing the Sturm comparison theorem has been mentioned
in footnote (1), p. 56.

8. Appendix I: A remark on completely monotonic functions
A function p(z) is said to be completely monotonic in (a,b) [16, p. 145] if
(—1)"p™(z) >0, a<z<b (rn=0,1,2,..). (8.1)

In connection with the application of Hartman’s work to the proofs of Theorems 3.1

and 4.1, we used the following result, which we prove now:
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If p(x) is completely monotonic in (0,00), then (—1)"p™(x)>0, 0<zx<oco, n=0,1,2,...,
unless p(x) is a constant.

Proof. Suppose there exists a non-negative integer N and a positive number & such
that p™(£) =0. Then p™(x) =0 for all x>£, since the function ( —1)"p")(z) is non-negative
and non-increasing.

Now, p(z) and, with it, p*¥)(z) are analytic in (0, co) [16, p. 146], so that p®)(x) =0 for
0 <z <co. Hence, p(x) is a polynomial for 0 <z < co. But p(x) =0, so that the highest degree
term in this polynomial has a positive coefficient (unless p(z) is identically zero, in which
case the theorem is obvious).

If p(z) be not constant, then the highest degree term in p’(z) also would have a positive
coefficient, and p’(x) would assume positive values for all large z, contradicting the defini-
tion (8.1) when n=1. This proves the result.

Remark. The above result can be shown to be equivalent to the following: If {u,}s° is
a completely monotonic sequence (i.e., if (—1)"A"u, >0, n,k=0,1,2,...), then ( —1)"A"u, >0
for n,k=0,1,2,..., unless y, =p,=...=pu, =

A direet, elementary proof of this latter statement is provided in [9].

9. Appendix II: A remark on Sturm-Liouville equations

In applying Hartman’s work to the proofs of Theorems 3.1 and 4.1, we made use
also of the following lemma whose proof we supply now:

Let y,(x), yao(x) be two linearly independent solutions of the Sturm—Liouville differential
equation y” +f(x)y=0. If p(x)=[y,(x)]? +(ys(x)]? is identically a constant, say y, then f(z)
1s tdentically a constant also, namely y—2.

Proof. Clearly y >0. Without loss of generality, we suppose the solutions ,, ¥, such
that their Wronskian is 1. Then, from Lemma 2.3, we transform the given differential
equation into the differential equation w”(f)+u(t)=0, with a'(f)=p(x)=y, by writing
y(x) =[z'(t)]}u(t). The solution of this latter equation is u(f) = A4 cos(¢—b), 4, b constants.

Now, a(t) = xt+ 6, and so

ylx)=xtut)=x d cos (X e~ b—Sx7Y).

Substituting this in the given differential equation then yields the desired result.
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