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§ 0. Introduction

(0.1) This paper had its origin in an effort to obtain pointwise inversion formulae for
Fourier transforms on a locally compact Abelian group. Does there exist a process for
recapturing almost everywhere a function from its Fourier transform? Mean convergence
of summability processes for Fourier transforms is of course well known and almost obvious
(see for example [12], (20.15)). The whole point of the present paper is to replace mean
convergence by pointwise convergence almost everywhere.

In § 1 we present a general theorem on pointwise limits of sublinear operators. Sec-
tion 2 is concerned with differentiation of indefinite integrals and measures on a class of
locally compact groups. In § 3, we obtain single convergence theorems and inversion for-
mulae on the same class of groups. In § 4 we give an analogue of the martingale conver-
gence theorem for singular convolution operators. We combine the foregoing results in
§ 5 to give iterated limit processes for inverting Fourier and Fourier-Stieltjes transforms on
an arbitrary locally compact Abelian group or compact group.

(0.2) We follow the notation and terminology of [12] with the following additions.
The term ‘“neighbourhood of a point” means ““a set whose interior contains that point”.
Let X be a locally compact Hausdorff space. A positive Radon measure on X is a set func-
tion ¢ on all subsets of X as defined in [12], § 11. Measurability of a subset of X for ¢ is as
defined in [12], (11.28). For a measure p that is in M(X) or is a positive Radon measure
on X, and a locally g-integrable function f on X, the symbol fo denotes the measure
A, fdo. For a positive real number p and X and ¢ as just described, £, 10.(X,¢) is
the set of all functions f on X such that f&, € &,(X,) for all compact sets F< X.

(*) The research of the second-named author was supported by the National Science Foundation,
U.S.A., and by a travel grant from The United States Educational Foundation in Australia.
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All topological groups considered in this paper are assumed to satisfy Hausdorff's
separation axiom. For a locally compact Abelian group @ with character group X, and
f€2,(@), the Fourier transform { onX is defined by

f(X)=f Ha) 2(z)dA(z) for 2EX.

Haar measure on X will always be denoted by the symbol §, and the factor of proportionality

for 6 will be adjusted to 4 in such a way that the Fourier inversion formula

h(z) = fxﬁ(m(z)dom

holds for every h€Q,(G) whose Fourier transform £ is in £,(X). In (5.5) we construct a
particular pair of such measures 2 and 8.

For a locally compact group G, the expressions a.e. and l.a.e. mean almost everyQ
where for a left Haar measure on @ and locally almost everywhere for a left Haar measure
on @, respectively. Where measures other than Haar measures are meant, they will be
specified.

We are greatly indebted to Dr. Alec Robertson for conversations about § 1 and to
Prof. Lennart Carleson and the referee for many improvements throughout the paper.

§ 1. A theorem on pointwise limits of operators

The main result of this section is Theorem (1.6). It and its immediate consequence
(1.7) are essential for the results of §§ 2, 3, and 5. We were led to Theorem (1.6) by examin-
ing (5.6.1) and (5.6.2) of the classical monograph [15). These theorems are in turn based
upon a theorem of S. Saks. (See [15], (1.5.8) and [19].)

The notation and terminology of (1.1)~(1.3) will be used throughout the present
section.

(1.1) Let (S, M, u) be a countably additive measure space, i.e., S is a set, M is a
o-algebra of subsets of S, and u is a function on M into or onto [0, o] such that u(@)=0
and u(Uy M,)= D% u(M,) whenever (M,)y., is a sequence of pairwise disjoint ele-
ments of M.

Since (S, M, u) need not be o-finite, we agree that a subset N of 8 is null if N€M
and w(N)=0, and that N is locally null if N€M and u(N N F)=0 for every F€ M such
that u(F)< oco. Every null set is locally null, and the converse is true if (S, M, u) is o-
finite.

As usual, a property of points of § is said to hold u-a.e. (or p-la.e.) if the set of points
of 8 not possessing the given property is null (or locally null).
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(1.2) Given (S, M, u) as in (1.1), the symbol F=F(S, M, u) will denote the set of
all M-measurable functions on S into or onto [0, co]. With the usual conventions, the
functions f+g and af are defined for f, g€ and « any nonnegative real number. Also,
with the usual order on [0, oo], suprema of subsets of ¥ are definable as elements of [0, «]°.
In case the family in question is countable, the supremum belongs to .

(1.3) The symbol E will denote a real, semimetrisable topological vector space, i.e.,
E has a countable neighbourhood base at 0. We will consider operators P from E into g%

which are sublinear in the sense that
P(ef)<|a|-Pf and P(f+g)<Pf+Pg

for f, g€ E and « any real number.
The operator P is said to be continuous in measure if the relation lim, , f,=fin E

implies that lim, , ., Pf,=Pf in measure, i.e., for every £>0,
lim ul{s € 8:| Pfy(s) — Pf(s)| > €}]=0.
Since | PP <P(f-f.),

it is evident that P is continuous in measure if and only if lim, , ., Pf, =0 in measure when-
ever lim, , f,=0in E.
Recall the well-known fact ([10], p. 93) that if a sequence (k,)%-, converges in measure

to 0 on a ¢-finite measure space, then some subsequence of (k,);-, converges to 0 y-a.e.

(1.4) LEMMA. Suppose that A is a countable set and that (P,), .4 18 a family of operators
from E into F. Suppose also that: _

(1) for each «€A4, the relation im,_, f,=f in E entails the existence of a subsequence
(fn,) of (fa) such that limy_, . Pefr, =Py f u-a.e. Now define the operator P from E into & by

Pf(s)=sup P,f(s) (f€E, s€S).
x€A
For positive real numbers p and g, write

S,(f) ={s€8:Pf(s)>p} and E, ,={f€E:u(S,(f))<q*}.

Then E, ,is a closed subset of E.

Remarks. In (i), the subsequence may depend upon o. It is clear that condition (i)

is satisfied if each P, is continuous in measure and (S, M, p) is o-finite.

Proof. Let (].‘,,):":1 be a sequence of points in E, , converging in the topology of E to
f€E. It is trivial that
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sup P,fu(s)<p for sE€S,(f.), 1)
a€d

and ulS(f)1<g™. @)

We may identify A with the set of positive integers. Then, using (i) and the diagonal
process, we extract from (f,) a subsequence (f, ), independent of «, such that for each

®€4, we have
lim P.f, (s)=P.f(s) p-a.e.
ko0

Consequently there exists a null set N such that

lim P,f, (s)=P.f(s for x€A4 and s€N' (3)
k—>co

Write S, = lim 8y(fx,); (2) shows that

k>0

p(Sp) < ];“_n_ ) <q .

k—> o0

If s€S,, then 8€S,(f,,) for infinitely many values of k, say for k, <k, <k;<..; (1)

yields
P,fnk’(s)<p for €A and j5=1,2,3, ...

So for s€(S, U N)', (3) shows that P, f(s) <p for « € 4, and therefore Pf(s) <p for s€(S, U NY'.
The relations

WS, UN)=pu(S,) <q!
show that u[S,(f)] <¢~!, which shows that f€E, ,. (]

(1.5) TurorREM. Suppose that u(S)< oo, that (Py)gea s as in (1.4), that (1.4.1) holds,
and that E s of the second category. Suppose also that

(1) Pf(s) us finite u-a.e. for every fEE.
Then for every positive integer q, there is a neighbourhood U, of 0 in E and a positive real
number O, such that

(ii) u[{s€S:Pf(s)>C}1<q! for f€U,.

In particular, P is continuous in measure.
Proof. The sets E, , of (1.4) are closed in E. We will first show that for every ¢,
E=U{E, ,r=123,..}. (1)
For f€ E, (i) asserts that Pf(s) < oo for s€ N’, where N is null. Since N’ is the union of the

sets (S,(f)), for p=1,2,3, ..., we see at once that 0=lim,_, ,u(S,(f)), and so p can be

chosen (depending on ¢) such that u(S,(f)) <g~. For any such p, f is in E, , and (1) is

D,.Q
established.
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Since E is of the second category, it follows that to each ¢ there corresponds a positive

integer p,, an element f,€ E, and a symmetric neighbourhood U, of 0 in E, such that

fe+ U By o (@)

Consider any element f of U,. We can write

f=3f+H—¥f— =3 -3

where f and f” each belong to E, , by virtue of (2). Each P, being sublinear, the same is
true of P, so that
Pi<1P{" + 3L Pf".

From this and from the definition of the sets E, ,, it follows readily that Pf(s) <p, save
on a set T',(f) €M such that u{ T,(f)]<2¢~1. This yields the relation (ii), if we replace q by
2q and take C,=p=1p,,. '

Finally, suppose that lim,., f,=0 in E. If  is a positive real number and f€C;*6U =
V.5, we can write f=C;"dg for some g€ U,. Then (ii) shows that Pf(s) <4 save on a set of
measure at most g~1. Since V, 4 is a neighbourhood of 0 in E, f, belongs to V, s for all

n>n(g, ). Thus it appears that lim,_, o Pf, =0 in measure, so that P is continuous in
measure. [ |

(1.6) TEEOREM. Let E be of the second category. Let (P,),e4 be a countable net of sublinear
operators from E into ¥ satisfying (1.4.1) and (1.5.i). Let E, be the set of f in E for which
limg ey P, f(s) =0 p-la.e. Then E is a closed vector subspace of E.

Proof. The set K, is a vector subspace of E because each P, is sublinear. To prove that
E, is closed in E, it is simple to see that we may suppose that u(8) < co. For, suppose that
the result has been established in this case. Take any F€MM such that u(F)< co. All of
our hypotheses remain satistied if (S, M, u) is replaced by (F, M*, u*), where M*<M
consists of all sets of the form M N F with M €M, and u* is the restriction of y to M*.
Hence if f€ E, (the closure in E of E,), it will follow that

lim P,f(s)=0
x€A

for each s€ F except for the points of a null set N, F. So the set N of points s € § for which
the relation lim, ¢4 P,f(s) =0 does not hold is locally null, and f is therefore in E;. In view
of this, we will suppose throughout the rest of the proof that u(S) < co.

Consider any f€ E, and choose from E, a sequence (f,) converging in E to . By (1.5),

the functions k,=P(f—f,) converge to 0 in measure as n-—>oo. Hence there exists a sub-
13 — 652923. Acta mathematica. 113. Imprimé le 10 mai 1965.
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sequence (h, ) and a null set N €M such that limy , . k, (s) =0 for all sEN". For all « and
all s, we have
P.fls) < P.(f - f) (8) +Pazfnk(8) S ha (9) + Pufn(s)

Since f,, is in Ey, there is a null set N, such that lim,cs Pafn (s) =0 for all k and all s€N7.
If s€(N U N,) and >0, first choose and fix k=k(e, s) such that k,(s) <}e. Having fixed
this £, select an a(k, &) =a(s, £) such that P,f, (s) < 3e for « > a(s, ¢). Then we have P,f(s) <¢
if s€(NUN,) and «>afs, &). Since N U N, is null, it is clear that f€E K. ]

We close this section with a special case of (1.6) needed in § 3.

(1.7) TEEOoREM. Let G be a locally compact group with a left Haar measure A and let
p be a real number >1. Suppose that (K,)x., is a sequence of functions such that A-V*'K,
is in &,(GF) and having the following two properties:

(i) lim fx K,(x)=f(x) for each x€G and each fECw(G);
(ii) sup | % Ka(x)| < oo La.e. for each f€L,(G).

Then the relation
(iii) Hm fx K,(x)=f(z) a.e. on G

obtains for each f€L,(G).
1f G is g-compact and each K, has compact support, then one may replace ¥,(G) by
L .100{G) 1n (1i) and (iii).

Proof. For the first part of the theorem, we apply (1.6) as follows: S=G, u=41, 4=
positive integers, £ =2,(@), and P, f(x)=|f* K,(x) —f(z)|. The space £,(G) is semimetri-
sable and complete, hence of the second category. Since

1Paflls < 1+ [A Ko l2)- I £ll»

it is clear that (1.4.i) is fulfilled. Property (1.5.i) is immediate from (ii). On the other hand,
(i) shows that the subspace E, defined in (1.6) contains €g(G). Since €y(G) is dense in
(@) for 1 <p< oo, the space E, must exhaust &,(G), since, by (1.6), it is closed. (We can
use a.e. rather than 1.a.e. in (iii) because the fx K, collectively vanish outside of some
o-finite subset of G.)

The second part of the theorem follows in much the same fashion, except that now
we take E to be £, ,,,(@), which is semimetrisable and complete for the topology of con-

vergence in mean with index p on each compact subset of G. [



POINTWISE LIMITS FOR SEQUENCES OF CONVOLUTION OPERATORS 187

(1.8) Note. A number of classical theorems on pointwise convergence are immediate
consequences of (1.7). For example, to show that the (C, x) means («>0) of a Fourier
series converge almost everywhere to the original function (see for example [25], Vol. I,
Ch. ITI, Th. (5.1)), it suffices to note that: the result is trivial for trigonometric polynomials;
trigonometric polynomials are dense in &,(—=, 7); and by a theorem of Hardy and Little-
wood (see [25], Vol. I, Ch. IV, Th. (7.8)), the (C, «) means have a finite supremum almost
everywhere. The same argument also proves convergence almost everywhere of Abel
sums. The case of restricted (C, 1) sums of Fourier series in several variables is dealt with
as above by using [25], Vol. II, Ch. XVII, Lemma (3.11). For the Riesz means 8% for
Fourier series in several variables, the inequalities (D) and (D*) in [21] show at once that
pointwise convergence holds almost everywhere for the functions and ¢’s under considera-
tion. N. J. Fine’s theorem on pointwise (C, «) summability of Walsh-Rademacher series
[8] is proved similarly from (1.7).

For f€Q,(R) (1<p<2), Zygmund has proved that the integrals

en 4| fio) i)

converge to the Fourier transform f(y) for almost all y€ R, as a— co. This too follows at
once from (1.6) and the fact that the integrals f,(y) have finite supremum almost every-
where. For a discussion, see [25], Vol. II, Ch. XVI, Th. (3.14). A similar result holds also
for Fourier integrals in several variables.

§ 2. Differentiation of indefinite integrals

Throughout this section, G will denote a locally compact group and A a left Haar
measure on . We seek differentiation processes on @ of the type

k_,oolU)f fAl=f(zx) a.e.,

{(Ui)i-1 being a fixed sequence of A-measurable subsets of G, and f an absolutely integrable
function on @. Sufficient but perhaps not necessary conditions on the sequence (U,)i:

in order for such a formula to hold lead to the following definition.

(2.1) DEFINITION. By a D-sequence in G we mean a sequence (U,)5-,; of A-
measurable subsets of & of finite measure such that:
(i) UoU,oU;> ...

(ii) there exists a positive real number C such that
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0<A(U,- Uy <CMU,) for n=1,2,3, ...

A D-sequence (U,):., is said to be open, closed, compact, relatively compact, or Borel if each
U, has the corresponding property. If a D-sequence (U,)i-; is Borel and also has the
property that every neighbourhood of e in G contains some Uy, then (U,);%, is called a
D’-sequence. Let (U,)i-, be a D'-sequence such that for each k, there is a A-measurable set
V. such that

(iii) V U (V. VilyceU, and AU,)<CAUV,),

where €’ is a fixed positive number. Then (U,);%; is called a D"-sequence.

(2.2) THEOREM.(1). Let (U,)i>-1 be any D-sequence in G. Denote by § the system of all
sets xU, (x€Q, k=1, 2, 3, ...), and let §' be a subsystem of §. Let E be a subset(2) of G such
that

(i) AEU,)< oo; |

(ii) for each x€EE there is at least one positive integer k (possibly depending on z) such
that U, €S". Then there exists a finite or infinite sequence of pairwise disjoint sets , U, € §'
(n=1,2,3,...) such that z,€ E and

oo

(iii) > MUks) = C'A(E),

n=1

where C is as in (2.1.i1).

Proof. We define the points x, and the positive integers k, by induction. Let £, be
the least positive integer k for which there is an 2€ E such that 2U, € §'. Then choose
any z, in E such that z, U, € §*. In general, suppose that p>1, and that points x;, ...,

x,€ E and positive integers k, ..., k, have been chosen so that:

(@) 2, U, €S (n=1, .., p)

(b) the sets x, Uy, ..., z, U, k, BTe pairwise disjoint;

(c) if p>1 and 1<r<p, then k, is the smallest positive integer k such that there is
an x € E for which zU, € §t and z2U, is disjoint from 2, U,, U ... Uz, Uy, .

4
It Ec U z,U. - Us),
n=1

then the process stops. Otherwise, we choose x,,, and k,,; as follows. Consider any point

(1) We were led to this theorem and its proof by Banach’s proof of Vitali’s covering theorem, as
in [20], Ch. IV, § 3. See also [24]. These authors use metrics, which we do not, although in some of our
applications we need the first countability axiom (equivalent to metrisability) for G.

(2) The set E need not be A-measurable.
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» ™
2€E N (U x,U, - Ul
n=1 n n

Then there is a positive integer k=%, such that zU,€S". If zU, intersects the set
UZ-12.Us, and if r is the Jeast positive integer such that xU, intersects #,Uy , there are

two possibilities.
(o} If r=1, then 2U, intersects x,U,, and hence, because k> k,, we have

x€x,U, Uil <, U, URL,
which is false.

(8) It r>1, then xU, does not intersect U, x,Uy , and the inductive hypothesis
(c) implies that k>k,. Yet zU, intersects x,Uy , and so (since k> k,) we have
x€x,U, U <, U, Uzl

which is again false. We have thus proved that zUj is disjoint from U%_,%,Ux,. Now,
amongst all of the sets xU, €S with x€ E that are disjoint from U%.;x,Ux,, there is a
smallest corresponding value of k. We take k,,, to be this smallest value of %, and we
choose ,.; as any element of E such that x,.,Uy,,, €S and x,,,U,,,, is disjoint from

U%-12,Ux,. If the process terminates at any stage, we get:
Uy, ...,x,,Uk,,ES* and x,,...,2,€E; the sets x,Up, are pairwise disjoint;
‘ »
and Ec U z.UxUyg).
n=1
If the process is defined for all positive integers, we get:

2 Upy s 2, Uy, ... €8 and ..., @, ... €E; and the sets 2, U, are pairwise disjoint.

We will prove that in the second case, the inclusion
EcU =, UUil=8 M
n=1 .

obtains. Let z be an arbitrary element of E. Then by (ii) there is a k> k, such that zU € §'.
We show first that zU, intersects the set {J -, 2, Uk,,- If xU, does not intersect U 7-1 %, U’w
our construction shows that k >k, for all n. Since the sets z, U are A-measurable and pair-

wise disjoint and are all contained in EU,, hypothesis (i) implies that
le(Ukn) = le(xnUk,,) <AEU,)< o,

and so AUy ) =0 as n— co. Now, if k, did not go to infinity with =, then an infinite number
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of the k, would be equal, and the equality lim, , AU, ) =0 could not occur. Hence we
have lim, , _ k,= oo, and the relation k>£, for all n is impossible. This proves that zU,

intersects U, z,U, -
Let N be the smallest value of # such that 2U,, intersects x, U, k,- 1f N =1, then we have
x€x, U, Uilcx, U, Uyl< 8, and (1) is established. If N >1, then xU, is disjoint from the

set Uiz, Uy, so that we have k>ky. Since zU), intersects zy Uy > it follows that
z€xy U, Ug'cayU,, Uil S,

and so (1) is established in all cases.
The proof is now completed easily. From (1) and the left invariance of 1, we get

AB) < ”Qz(Uk, Uiy < C,.g AU,
as asserted. [

It is widely known that covering theorems like (2.2) imply the existence of derivatives
in one form and another. Qur Theorem (1.6) is the abstract form of an argument used in
many such existence proofs. In the two following theorems we present consequences of
(2.2) that will enable us to apply (1.6).

(2.3) THEOREM. Let (U,)7-, be a Borel D-sequence in G, and let u be a positive Radon
measure on G. For x€Q, let

* U,
)z (x)=sup{%%—k)~): k=1,2,3, }

Let E be a subset of G such that A(EU,) < oo, and for « >0, let M,={x€G:u*(x)>a}. Then
(i) MENM,)<Caw((ENM,) Uy,

and equality holds if and only if EN M,=9. If U, is compact, then u* is finite lLa.e., and

a.e. if u has o-compact support.

Proof. The function u* is Borel measurable, as is shown in [12], (20.9). Let $ consist
of all sets 2U, (x€G, k=1, 2, ...), and let $' consist of all sets U, with x€ E and

,u(xUk)
_‘—l(Uk) > . 1)

If x€ EN M,, then (1) is true for some k, so that zU, € §*. We also have A(E N M,)-U,) <
A(EU,)< oo, Applying (2.2) to the set ENM,, we find pairwise disjoint sets z, U,€Sst
(n=1,2,3, ...) such that 3 3°, AU, )>C-'A(E n M,). For each n, we have

AU,) <alu(z,Uy).
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Adding over n and noting the inclusions », U, < (E N M,)-U,, we have
MENMY<SC le(Uk,,) < Co 21 2, Uky) < Ca ‘u((E 0N M,)-U,).

The possible equality in (i), and the last sentence of the theorem, are easily checked. []

(2.4) THEOREM. Let (U,)i1 be a D'-sequence in G, let u be a positive Radon measure
on G, and for x€G, let
=1im w(zUy)

M(x) k—>o0 A(Uk) )
For every compact subset F of G and every o.>0, we have

(1) M{x€F: fi(x) > a}) < Coalu(F).

Proof. Apply (2.3) to the D-sequence (U,)r-,, where r is an arbitrary positive integer,
with E =F. This gives us

Uy _
A ({m EF: i\;? ‘u}f(xUk)) > a}) <Co'u(F-U,). 28]
. - p(zUy)
Since flr) < 21;1: TR T’
(1) implies that
MEEF: i(x)>a})<CauW(F-U,) (r=1,2,3,..). 2)

Since the U, are ultimately very small sets, we have Nz, F-U,=F, and so
lim, , o u(F-U,)=p(F). Hence (2) implies (i). [
We now apply (1.6) and (2.3) to prove our differentiation formula.

(2.5) THEOREM. Let (U,)7-1 be @ D’-sequence. Then the equality

: .1 ~
(i) ’}lﬂm wkfdl—/(w)

holds La.e. for each f€L, 1..(G), and a.e. for each f€L,(Q).

Proof. We may clearly suppose that each U, is relatively compact. Hence the values

of all of the functions
1

— dl (k=1,2,3,...
]-(Uk) rka ( )

at the points of any preassigned compact subset of G depend only on the values of f on
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some compact subset of G. Let (4,),2; be a sequence of nonvoid open subsets of G each
having finite A measure. Denote by & the subspace of £, 1,.(G) consisting of those functions
F€R,. 10c(@) that vanish outside of 12, 4,. It obviously suffices to prove the theorem for
functions in €. With the topology defined by the seminorms f— f 4 |[fldd (v»=1,2,3, ..),
€ is a complete, semimetrisable, topological vector space. Plainly Go(@) is dense in €.
Moreover, (i) holds for all z€Q if f€C(R), since U, is ultimately very small.

We now appeal to Theorem (1.6), taking

1 1
Prf(®) = |7 d}.~x<——~—f ai+ |f(=)].
0|5 [, 1= 10| <35 [ 1aa+ i
By (2.3), we see that Pf(x)=supi,, P.f(x) is finite a.e. for each f€E. Since the
equality lim,_, ., P,f(x)=0 holds for all x€@ if f€Cy(F), Theorem (1.6) implies that
limy_, 0 Prf(x)=0 a.e. for each f€E, which is equivalent to (i). []

For the inversion theorems of §§ 3 and 5, we need a fact about singular measures and

D’-sequences, which is proved from (2.4).

(2.6) TaEOREM. Let ¢ be a measure in M(Q) that is singular with respect to 1, i.e.,
there is a A-null set N such that |o|(N')=0. Let (U,)7-, be a D'-sequence in G. Then we have

(1) lim o(zUx) _ 0 a.e. on(G.

k— o0 A(Uk)

Proof. We may suppose that ¢ >0, so that |6| =o. Let F be a compact subset of G,
and let & be a positive number. Theorem (2.4) implies that

A{x€F:5(x)>a})<Colg(F). 1

Since o is singular with respect to A, there is a o-compact A-null set N such that N’ is
o-null. Applying (1) to a compact subset F of N’, we infer that A({x€F :G(x)>a})=0.
This equality being true for every « >0, we have ¢(x)=0 a.e. on N’. Since N is A-null,
(i) follows. []

Theorems (2.5) and (2.6) are generalisations to locally compact groups of the celebrated
theorems of Lebesgue concerning differentiation of functions of finite variation on R: an
absolutely continuous function is the integral of its derivative, and a singular function of
finite variation has derivative 0 almost everywhere. Similar facts about measures on R?
and 7 are also well known. For treatments of these cases and for various applications, see
[20], Ch. IV, [25] passim, [24], and [5].
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For some of the convergence theorems of § 3, we need a generalisation of the Hardy-

Littlewood maximal theorem, which holds for D-sequences.

(2.7) TaEOREM. Let (U)iy be a relatively compact Borel D-sequence in G, let f bea

function in . 100(@), and define

f*(x) =sup {i(%;) Lkadl:k= 1,2,3, }

For >0, let B,={x€G:f(x)> oc} and E;={x€q:f*x)> oc}.‘ Let E be a A-measurable subset

of G such that EU, is A-measurable and M EU,) < co. The following inequalities hold:

@) MENED< 2Ca_1f fdA;
‘ (EUDNEy,
(i) [ a2 [ par a<p<oo
(iii) f f*dl<21(E)+20f flog™ fda;
E EU;
(iv) ff*"dlé%’(l +—0p—) MEY® (f m),, (0<p<l).
E 1-p EU,

In particular, the function f*(x) is finite La.e. and is finite a.e. if f vanishes outside of a set

that is o-finite for A.

Proof. Let g(x) =f(x) if f(x) > 4o and g(x) =0 if f(x) <la. Clearly g € L{ 1,(F) and f*(z) <

9*(x) + 1o Thus EXc {x€GQ:g*(x) > }a}. Applying (2.3) to the measure u =g4, we find

MENE)<MEN{z€G:g%x)>}a})

<O(2a)! f gdi=C(20)! f fda.
EU, (EUDNE,,
This is (i).

Since A(E)<A(EU,) < oo, we can apply Fubini’s theorem to write

) o
fEf*(x) PdA(x) = fz {fo pt? _ldt} dA(x) = L: {fo P e reen (B) dt} dA(x)
= f {J'wpt”"l Epx() dt} dMx) = prt”_l {f &ep () dl(x)} dt
E 0 0 E

= f Pt YAE N EF)dt,
(1]
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that is, f f*2da =f pt* A(E 0 EY)dt. (1)
E [1]

Here p is any positive number. The inequalities (ii)-(iv) are obtained from (i) and (1)
by using Fubini’s theorem and making reasonably obvious estimates. The details are
similar to those in the classical case, and we omit them. (See for example [25], Vol. I,
Ch. I, Theorem (13.13).) []

(2.8) CoroLLARY. Let (U, )i-1 be as in (2.7). For 1 <p< oo, we have:

(i) f €8 106(G), then f*€L, 100(F);
(ii) if f€R,(Q), then f*EL,(G);
(iil) of f ¢s La.e. equal to a function in L,(G), then the same is true of f*;
(iv) of flogtf €Ly 100(G), then f* €Ly 10o(GF)-
For 0<p<1, we have:
(v) of FELy 10e(@), then [* €L, 10o(@); for compact G, if [€R,(G), then f*€L,(G).

Proof. All of these assertions save (ii) follow at once from (2.7). To prove (ii), observe
that if f vanishes outside of a set that is o-finite for A, then the same is true of f*. In this
case, if [ f*?dJ is bounded for all compact sets F, then f* is in £,(@). [J

The class of locally compact groups admitting D’-sequences has not been adequately
identified. The referee has kindly pointed out to us that an infinite-dimensional torus
T™ admits no such sequence. This follows easily from the Brunn-Minkowski theorem
(see e.g. [9], p. 187). The possibility of differentiation theorems like (2.5) and (2.6) on
T™ remains open, however, so far as we know. For some groups, J’- and even D"-se-

quences (which are useful for the constructions of § 3) are easily found, as follows.

(2.9) THEEOREM. Let G be a locally compact, 0-dimensional group with the first count-
ability axiom. Then G admits a D’-sequence consisting of compact open subgroups, which is
also a complete family of neighbourhoods of e.

Proof. The group G has an open basis (U,)7-; at e consisting of compact open subgroups;
this is proved, for example, in [12] (7.7). We may plainly suppose that U, > U,> .... It
is trivial that U,=U, U3}, so that (U,); is a D'-sequence. In the definition of D"-sequen-
ces (2.1) we can take V,=U,. [

(2.10) TaEOREM. Every Lie group G admits a D"-sequence.

Proof. Tt is sufficient to find a descending sequence (W,)i-; of compact neighbour-
hoods of e such that N7, W, ={e}, and AW, W' W, W) <CAW,), where C>0. Then
we can take U, =W, W;' and V, = W,, making (U,)¥-, a D"-sequence with ¥V, as in (2.1.iii).
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Let m be the dimension of G. Take a local coordinate system (¢, ..., {,,) with domain a
relatively compact open neighbourhood N of e in @ such that #,{e) =0. The coordinate map

T: xé(tl(x)’ we0y tm(x))

may be taken to be a homeomorphism of N onto all of B™, For f€Eg(G) such that f(N')<
{0}, the Haar integral of f is equal to

fda=| fir=1| foT '(x)F(x)dx,
J for=fgor |,

where dx refers to m-dimensional Lebesgue measure and F is a strictly positive continuous
function on R™.

Let Q,={(z,, ..., z,)ER™, |a,| <e, ..., |@,| <e}. A routine argument using the dif-
ferentiability of the coordinate functions shows that we may take W, = T-%(@,,) for a cer-

tain sequence &, >¢&,> ... having limit 0. [7]
(2.11) TurorREM. Every finite-dimensional compact group G admits a D"-sequence.

Proof. It is known that G is locally the product of a local Lie group and a 0-dimensional
closed normal subgroup of @ ([17], Th. 69). This allows us to combine (2.9) and (2.10)
to produce a D"-sequence in G. []

§ 3. Single limits for operators fx K,

Let @ be a metrisable group that admits an open D’-sequence and is either compact
or locally compact Abelian. Then there is a pointwise summability method for Fourier
transforms on G involving only a single limiting operation. The existence of such a method
is equivalent to the convergence almost everywhere to f(z) of fx K, (x), where (K,)7-;is
a certain sequence of kernels (i.e. functions) on G. Similar results apply to Fourier-Stieltjes

transforms. The kernels K, can be constructed on a larger class of groups, as we now show.

(3.1) THEOREM. Let G be a locally compact group admilting an open D’-sequence
(U)2.,. Then there is a sequence (K,)x-; of functions on G with the following properties:

(i) K, is continuous, nonnegative, and zero outside of Uz';
(ii) K, 98 a finite linear combination of conttnuous positive-definite functions each
of which vanishes outside of (U, U; YU U, U Uz,
(iii) feK.dA=1;
(iv) limg, ., o f% Ku(x)=f(x) a.e. on @ for each { € L(G) (1 <p < o0).
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Define f*(x)=sup {|f* K,(z)|:n=1,2,3, ...} for { €8, 10.(@). Then:

(v) fof*?dA<const. fo|f|lPdA if 1<p<oo;
(vi) fzf*dA<const. (A(E)+ fey,|f| log*|f|dA) if E is compact;
(vii) fzf*?dA<const. A(E)'®(fzp,|f|dA) if E is compact and 0 <p<1.

Proof. For each positive integer n, choose a compact set H,< U, such that A(H,)>
$A(U,) and then choose a compact symmetric neighbourhood W, of e such that H, W,< U,
and W2< U, U;. Consider the function

Kn=1(Hn)_lz(Wn)_l§Wn*EV-Vn ) (1)

Properties (i) and (iii) are obvious, and (ii) follows from the polar identity
duxv-=(utv)x(@+v)" —(u—v)%(w—v)" +i(u+iw)x(u+iv) —i(u—1iv)%w—w)",

after a short computation. (Note that K, has the form u ¥ v~ where » and » are bounded
and vanish outside of compact sets.)

Properties (i) and (iii) show that lim,_,, f % K,(x) =f(x) for all z€@G and all continuous
functions f on G. Since €o(G) is dense in L,(G) for 1 <p< oo, (iv) will follow from (1.7) as
soon as we show that f#(z) is finite a.e. on @ for each fE€EL,(F) (1 <p<oo). This is an
immediate corollary of (v) and (vii), which we now prove.

Let a, =sup{A(y):y€U,}. It is clear that a,—1 as n~>co, and so a=sup{a,:n>1}

is finite. The definitions of % and ~ and a routine calculation show that

2«

x
Kn < m Eu,,.
So for f€L{ 1,.(G), we obtain
20 ¥ _ 1
/*Kn(x)<mf*§m.($)—2“ PTG Lvnfd}»- (2)

Thus 17 (x) <2af*(x), and (2.7) implies (v), (vi), and (vii). []

(3.2) CoroLLARY. Let G be a locally compact group admitting a D"-sequence as in
(2.1). Then the sequence (K,)5-1 of functions of (3.1) can be constructed with all of the prop-
erties listed in (3.1), and with (3.1.ii) replaced by the stronger condition

(i) each K, is positive-definite and vanishes outside of UL,

Proof. Let (U,)¥., be a D"-sequence in G and let {V,)7.; be as in (2.1.iii). Let K, =
(A(V,))2&v, % Ev,. Then argue as in (3.1). []

(*) For a complex function ¢ on G, 1;7 is the function x — A(z~!)p(z-!). See [12], p. 300 et seg. The
function @¥ is defined by @¥*(z) = p(z-1).
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(3.3) THEOREM. Let G, (U,)7.q, and (K,)y5-1 be as in (3.1). Let g be any measure in
M(G), with Lebesyue decomposition fA+o, where € L(G) and o is singular with respect fo A.
Then

(i) | lim g K,(2)=f(x) a.. on G.

Proof. Apply (3.1) to (fA) % K, together with (2.6) to o % K,. []

The kernels K, of Theorems (3.1)-(3.3) can be chosen to be trigonometric polynomials
if ¢ is compact and to have Fourier transforms with compact supports if G is locally
compact Abelian. This fact makes our final inversion theorems of § 5 more elegant than
they would perhaps otherwise be and completes the analogy of our theory with the clas-
sical theory of pointwise summability for Fourier series. It seems therefore worthwhile to

carry out the construction. A preliminary fact is needed.

(3.4) THEOREM. Let G be a metrisable group that is either compact or locally compact

Abelsan. There exists a sequence (u,)p-1 of functions on G with the following properties:

(i) u, is continuous, integrable, nonnegative, positive-definite, and central;
(1) fgu,di=1 for all n;
(iii) each u, has compact spectrum; (1)
(iv) if U is any neighbourhood of e in G, then lim, , o, [y u,dA=0;
(v) if © denotes any one of the spaces L,(G) (1<p<oo) or EXQ) (the space of bounded
uniformly continuous functions on G with the supremum norm), then im,_, o, f%u,~f in &
for each €S,

Proof. Assertion (v) follows readily from (i), (ii), and (iv). We treat separately the
cases (I) G is compact, and (II) @ is locally compact Abelian.

(I) Suppose that G'is compact. There exists a base (U,)7_; at e formed of sets that are
symmetric and invariant under all inner automorphisms of G. (This is immediate from
[12], (4.9).) Take any w, €€+(G), vanishing on U7, such that {; w,dA=1. Put w, =w, % w;.
Then w, is continuous, nonnegative, positive-definite, vanishes on (UZ%)’, and has the prop-
erty that f; w,di=1. For each a €@, the function 2 —w,(axa~1) is continuous, nonnegative,
positive-definite, and vanishes on (U3). The function v,(x) = f¢ w,(axa—')da is therefore
continuous, nonnegative, positive-definite, vanishes outside of UZ, has integral 1, and is
in addition central. Since the sets U% form a neighbourhood base at e, (iv) is evident for

(Un) ;l.ozl-

(*) By this we mean that u, is a trigonometric polynomial if @ is compact and that ¢, has compact
support if @ is locally compact Abelian.
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We will modify the functions v, to obtain the functions u,. Consider a set ®={D}
of continuous irreducible representations of G by unitary operators on (finite-dimensional)
Hilbert spaces that are pairwise inequivalent and also complete. Let y, be the character of
D. It is well known that v, () = D peq (D) xp(%), where c,(D) >0 and 2 peg ¢,(D) Xp(e) < oo.

For each n, we can thus choose a finite partial sum, say v, of the series for v, such that

lon —valla<(2r)1. If we set v, =}(v,+vy)+(2n)~L, then v, is clearly a continuous, non-
negative, positive-definite, central trigonometric polynomial, and ||v, ~v, ||« <n~?. This

implies that lim,_, , fg vn dA=lim,_, o, f¢ v,dA=1. It therefore suffices to take

-1
un(z) = [f v;'dl] v, (%)
G

in order to satisfy conditions (i)-(iv).

(II) Suppose now that @ is locally compact Abelian. The character group X of @
is o-compact (see [12], (24.48)), and so there is an increasing sequence (H, )", of relatively
compact open subsets of X such that

0H, n (xH,)) _

nh_?:ow_ 1 for all X € X

(see [12], (18.13)). Define the function ¢, on X as
@n=(0(H,)) g % &y, (n=1,2,8,...).

It is clear that @, is continuous, nonnegative, and positive-definite, and that ¢, vanishes
outside of the relatively compact open set H,H;*. Cauchy’s inequality shows that ||@, |, <1,
and it is obvious that ¢,(1)=1. (We write the identity character inX as 1.) Furthermore
we have

(X 'HHINH

- )
on(X)= 3(H,) for all Y€X,

so that lim,_, ,, @,(y) =1 for all y€X.

Finally, define u, on & as the inverse Fourier transform
@nlz) = fxl(x)(pn(x)dg(x) (n=1,2,3,...).

It is then clear that u, is in §f (@) N & (@) and that w, is positive-definite. Since Fourier
inversion holds everywhere for ¢, and «,, we have i, =@, everywhere onX and in particular
f¢ u,dA=gp,(1)=1. Thus (i), (ii), and (iii) hold for w,. To prove (iv), we need only show
that lim,_, , [y u,dA=1 for every neighbourhood U of e in @. Choose a positive-definite
function & €€g(G) vanishing on U’ and such that h(e) =1. Parseval’s identity implies that
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f Ghu,,dz = fxﬁﬁnde = fxﬁ"’"‘w‘ (1)

Since k€ g,(X) and ¢, converges boundedly to 1 everywhere on X, we can take limits in (1)
to write lim,,_, o f¢ hu,dA= fx hd0=h(e) =1. The desired relation (iv) now follows easily.[]
We now modify the kernels K,,.

(3.8) TuEOREM. Let G be melrisable and either compact or locally compact Abelian.
Suppose that G admits an open D"-sequence. Then there is a sequence (K,)y-1 of functions
on G having all of the properties set down in (3.1) and (3.3) except for (3.1.i) and (3.1.ii).
These are replaced by:

(i) each K, is continuous, nonnegative, positive-definite, central, and has a compact
spectrum; ‘
(ii) for every neighbourhood U of e, lim,_, o, fy K,d4=0.

Proof. First construct a sequence (K%)%., according to Theorem (3.2), so that (K%)%.,

satisfies (3.2.1), (3.1.ii)~(3.1.vii), and (3.3.i). Suppose that (u,)i-; is as in (3.4). By (3.4.v)

we can for each n choose k,>n and so large that
K,=K%x Uy,
satisfies K.~ K|, <n-2. (1)

The properties of the functions K9 and w, show that (3.5.i) and (3.1.iii) hold for these
kernels K.

To prove (3.1.iii) for our present K, take any f€ €,(@). The inequality (1) implies that
lIf % Ko —f 5 Kallo <||fllo - 1Kn — K2l <0 *|fll,,

so that S % Ky~ fx K[, < oo,
Ne=1
and hence lim |f% K,(x)—f* K%(x)|=0 a.e. on G,

and now (3.1.iv) follows from (3.1.iv) for K9.
To prove (3.3.i) for our present K,, it suffices to show that lim,_, . 0% K,(x)=0
a.e. We know that lim, _, ., 0 % K%(x)=0 a.e. On the other hand, we also have

||J%Kn——a%K‘,’,||1<f dlo]- K, ~ K2,
G

Now repeat the argument of the preceding paragraph. The proofs of (3.1.v)—(3.1.vii) for

our present K, run along similar lines, and are omitted.
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It remains only to prove (ii). We write

f Kndl=f {f K\(y) uk,.(y_lx)dy}dx
U’ U\JG
= f _ K@) {f Ui (y ' 2) dx} dy = f _ Ka(y) {f uk..(Z)dZ} dy.
: U, U’ U, y1u’

Choose the neighbourhood ¥ of e so small that U, V< U (which is possible since the U,
form a base at e). Then we have

f K,di <f " Ko%(y) {f uk,,(z)dz} dy =f Uk, (2) dz.
v v, v v

The last integral tends to zero as n— oo, since k, >n and (3.4.iv) holds. ]

(3.6) CorOLLARY. Let G be metrisable and locally compact Abelian and admit a D"-
sequence. Let o €EM(GY) have the decomposition ¢ =fA+a, where f€ER,(G) and ¢ is singular
with respect to A. Let (K )., be the sequence constructed in (3.5) or (3.2). Then pointwise in-
version of the Fourier-Stieltjes transform § oblains:

(i) lim xKn(x)@(x)x(x)d6(1)=f(x) ae. on Q.

n—>o0

Proof. Since K, is in §,(X), we have
[ Bwew @@ —ex K.
Now apply (3.5) or (3.2). [

(3.7) CorROLLARY. Let G be metrisable and compact and admit a D"-sequence. Let o
be as in (3.6) and (K,)51 as in (3.5). Let D be as in (3.4.1), and g (D) the operator [ 13(_2:_)dg(x),
where D is the representation conjugate to D; K, (D) is defined similarly. Then K, (D) is a
nonnegative multiple o, (D) I of the identity operator, different from O for only finitely many D;
and

(i) m 3 d(D)a,(D) Tr(o(D)D(x))=f(x) a.e. on G.
b)

n->w De

Proof. The sum in the left side of (i) is K, % o(z). Now apply (3.5). [J

(3.8) Examples. (a) Corollary (3.6) may have some interest even in the classical
cases =T° (a=1, 2,3, ..). Identify T with ]—=,n], take U,=[—n"1, »n1], and V,=
[—(2n)~1, (2n)-1]. Computing K, as in (3.2), we find K, (x) =max {0, 2zn?(n-1— |z|)}. The
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Fourier coefficients K, (y) are (sin (3n—1%))2(3n1y)2 (y==*1, £2,..), K,(0)=1. Thus we

have
lim g% Ky(z)=lim { 5 6(1) Gin Ga 1) (n12)2 %}
n-»co n—>00 X=—00
=the Lebesgue-Radon-Nikodym derivative of g a.e. on 7.

That is, Fourier-Stieltjes transforms can be inverted pointwise by Riemann’s method.
For @=T% we use analogous U, and V, (hypercubes), and obtain KP(x,, ..., z,)=
[11 K ,(x)). Thus restricted Riemann summability obtains.

(b) New results also appear for G = R® First, the functions of (3.4.II) can be taken
of class €®. Tt suffices to replace ¢, by @, %y where p€E®, p is nonnegatlve positive-

definite, and of integral 1. Then each 4, is in €, and so
Ry = (K5 % i)™ = KS, - 41, €€

since K has compact support, its transform K9 is actually entire-analytic.

Take now any f€&,(R*), where 1 <p< co. It has a distribution-valued Fourier trans-
form f (which belongs to £, (R*) if 1 <p<2, but which is otherwise not necessarily a func-
tion at all). Since K, € ,(R*) and K, €E®, there is no difficulty in showing that (f x K,) =
{-R,, which is a distribution with compact support. By the uniqueness theorem for Fourier

transforms,

[ Ka(x) =<2, Ko(x) f(X))

the right side here is the restriction to R® of an entire-analytic function of a complex

variable. Theorem (3.5) implies that

flx)= lim <", R,(x)f(x)> ae. on R%

Naturally, if f€ 2,(R%) with 1<p<2, then K,f is a function in &, (R%) with compact sup-
port, and

fx) =lim |R°K,(X)f(X)e***dy a.e. on R%

§ 4. Some limit theorems for singular convolution operators

For the inversion theorems of § 5, we require a result on pointwise convergence of
Lebesgue-Radon-Nikodym derivatives. Our theorems generalise the results of Jerison and
Rabson [14], and are adapted from a convergence theorem of Andersen and Jessen [1]
and [2]. As Jerison and Rabson point out, these results are also related to the martingale

convergence theorem (see [6], Chapter VII). There are a number of important differences,
14— 652923. Acta mathematica. 113. Imprimé le 10 mai 1965,
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however, since our process is not exactly a martingale, and since we also deal with singular -
measures. It is therefore necessary to give the proofs in full. The case of singular measures
has been dealt with by Boclé [3], Chapter I, but only for mean convergence and convergence
in measure, with which we are not concerned.

(4.1) Let S be a set, M a o-algebra of subsets of S, and u and 5 countably additive,

" nonnegative, extended real-valued measures on M. We will suppose that u is o-finite
and that # is actually finite (this last condition can be relaxed, but for our purposes finite-
ness of 7 is the weakest reasonable restriction). It is classical that # admits a unique de-
composition

(i) n=hu+to,

where ¢ is nonnegative and singular with respect to u, k is an M-measurable, nonnegative
function, and [skdyu is finite. The measures o and hy are carried by complementary sets,
say B and B’, respectively. The set B has y-measure 0, and we can define A(x) as + o on
B without disturbing the validity of (i). A function 2 for which (i) holds and for which
MB)< {+ oo} will be termed a Lebesgue- Radon-Nikodym derivative of n with respect to u
{(more briefly, an LRN derivative of 5 with respect to u).

(4.2) THEEOREM. Let 8, M, u, and n be as in (4.1). An M-measurable, nonnegative,
extended real-valued function b on 8 is an LRN derivative of n with respect to u if and only
if the following conditions obtain. For every positive number «, let

D={z€8:h(x)<a} and E={x€8:h(zx)>a}.
Then for all A€M, the inequalities
(i) n(DNA)<au(DNA)
and

(ii) nENA)YZau(ENA)

kold.

Proof. Suppose that & is an LRN derivative of # with respect to u. Then we have
n(DnA)=f hdy+a(DnA)<f odu+0=0ou(Dn A4).
Dn DNA
This is just (i); (ii) is proved similarly.

To prove the converse,(1) suppose that the decomposition (4.1.i) of 7 is 5y =hou +0c,,
where 0o(Bo) =0 and u(B,)=0. If k and h, are not equal y-almost everywhere, then there

(*) This proof of the converse was kindly suggested by the referee.
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are a subset F of Bj and real numbers ' and «, 0<a’'<a, such that 0 <u(F)< co and
h(z) = o> a' = ho(z) for all z€ F, or there is an F such that hy(x) > o>’ = h(x) for all 2z€F.

In the first case, condition (ii) implies that
9 F) = au(F) > o' u(F) > kaodp =n(F),
a contradiction. The second case is likewise impossible in view of (i), and so h=h, u-a.e.
on 8. For >0 and D={x€S:h(x) <a}, (i) shows that
ao(D N By)=n(D N By) <au(D N By)=0.
Hence g({x €8 :h(x) < c0}) =0, and the uniqueness of (4.1.i) shows that h(Bg)< {+o}. [J
{4.3) TarorEM. Let G be a locally compact group. Let (H,)5-1 be a descending sequence

of compact subgroups of G, with intersection H,. Let pu, be normalised Haar measure on

H, (n=1,2,3, ..., o). Let g be any measure in M+(Q). For n=1,2, 3, ..., @, write
(i) 0% pn=hy A +0y,

where h, is measurable for the g-algebra B, of all Borel sets of the form AH, and a, is defined
on B, and is singular with respect to A. Let

(ii) h=Ym h,, k=1im h,.

n—»00 n oo

Then the equalities
(iii) h(x) = h(x) =ho(2)
hold for almost all x€G.

Proof. Suppoée that r, s€{1,2,3, ..., w} and that r <s. Let 4 be a Borel set such that
A=AH,. For x€G and y€H,, it is clear that zy€ AH, if and only if x€ AH,. Therefore
we have

0% us (AH,) = f ) f  Eanley) duly) doto) = f Ean (o) dote) = o(AH)

In particular, for s>r and s’ >, we have
0% pu{AH,) =0 % u(AH,) =o(AH,). (1)
Now let o be a positive real number, and let
D={z€Q:h(z)<a}.

Let (a,)n-1 be a strictly decreasing sequence of real numbers with limit «. For every positive

integer n, let
D, ={x€G:inf{h,,y(x), hpyo(@), ..} <oty}.
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Let D, ,={zx€G:h, \(x)<a,}
and let D, ,={x€G:min{h, (), ..., by (2)} >, and h, (2)<ea,},

for p=2,3,4,.... It is clear that D=N3, D,, that D,> D, ,, that Uy D, ,= D,
and that the sets D, , are pairwise disjoint.

Now consider any Borel set of the form AH,, where s is a positive integer. Since the
functions h, are by their construction constant on each left coset of H,, the set D, ,N A4

is the union of left cosets of H,,,if n+1>s, which we now suppose. From (1) we infer that

0% pho(Dn N A) =2 0% oDy N A) =2 0% prnsp(Dn.p 0 4). 2)
Since D, ,N A€B,,,, and since h,,, is an LRN derivative of g % u,,, with respect to 4 on
B (2) and (4.2) imply that

0% Dy nA)<§la,,z(D,,,,, N A) =, A(Dy 0 A). (3)
2

Taking the limit as #—>co on both sides of (3), we obtain
0% Uu(DNA)y<ad(Dn A). 4)

Next let E={x€G:h(zx) >a}. The argument of the two preceding paragraphs can be

repeated with obvious changes to show that
9% U (ENA)=al(ENA) (5)

for Borel sets 4 =AH, (s=1, 2,3, ...).

If 4 is a Borel set, if A=AH, (s=1,2,3, ...) and h(z)>a for €4, then it is clear
that 4=EN 4 and so (5) holds. Similarly, if k(x) <« for €4, then A=DN A and (4)
holds. To apply (4.2), consider any Borel set 4 =AH,. Then we have

0% po(D N (AH,,)) =sup {o % uu(F): F is compact and F <D n(4AH,)}

=sup {9 % u(¥FH,): F is compact and FH,<D n (4H,))}. (6)
It is easy to see that
FH,=N{FH,:n=1,2,3,..} (7)

if F is compact. For an arbitrary £>0, choose a compact ¥ as in (6) such that

Q*Fw(D N (AHw))~€<Q*.uw(FHw)' (8)
‘Then (4) implies that
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0 *,uw(FHw) =0 *;uw(D N (FHw)) =nh_g:°9*.uw(D n (F-Hn))

<o lim A(D 0 (FH,)) = aA(D 0 (FH,)) <aA(D n (AH,)). (9)

Relations (8) and (9) imply that

0% polD 0 (AH,)) <od(D N (AH,)). (10)
In the same way we apply (7) and (5) to show that

0% uo(E N (AH,)) > «A(E N (AH,)). (11)

From (10) and (11), the relations (4.2.1) and (4.2.ii) follow at once, for both of the functions
b and f. Theorem (4.2) shows that » and & are LRN derivatives of g ¥ u, with respect to
A, both of these measures being restricted to the o-algebra B,,. (Note that the finite measures
p¥u, (n=1,2,3,..) are carried by a single o-compact open and closed subset S of G.
Thus for the purpose of applying (4.2) we can restrict our attention to the set S, on which
A is o-finite.)

Since the decomposition (4.1.1) is unique, we have therefore proved that

f hdd ~ f Fdi— f hodh (12)
A A A

for all sets A€B,. (We define h(z), h(x), and h,(x) as 0 on S'.) If A(x)=h(x) on a set 4
not of A-measure 0, then (12) would fail for a set 4 in B,, since k and % are B,-measurable.
Similarly we see that A(x) =h,(x) for A-almost all z€Q. ]

Some consequences of (4.3) will be used in § 5.

(4.4) TarorREM. Let G, H,,, and u, be as in (4.3). Let f be a A-integrable, Borel measurable
function on G. Then

() ’ B f5¢ pua(@) = f % raf2)
for A-almost all x€Q.

Proof. Recall ([12], (20.9.ii)) that the function fx u, is defined by
| % pn() = fH ey ™) Aly™) dpaly) = L flay™) dpaly),
and is an LRN derivative of the A-absolutely continuous measure (f1) % u,. Then (4.3)
shows that the functions
f@)=1m % p,(z) and fla)=lm f% ()

n—>co n~—>oo

are equal 1-a.e. to the function f u,(x). [J
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(4.5) CoroLLARY. Let G, H,, and u, be as in (4.3). Suppose that H,={e}. Then

Hm f% pua(z)=f{x) A-a.e. in G

Proof. This follows from (4.4) and the fact that u, in the present case is the unit
measure &, for which fx¢,=f. [J

(4.6) THEOREM. Let G, H,, and u, be as in (4.5). Let g be a measure in M+(G) such
that o has a A-absolutely continuous part equal to zero. Let h, be an LRN derivative of ¢ % uy,

with respect to 1. Then
' Iim h,(z)=0 A-a.e. in G.

Proof. As in (4.5), we have g % u, =0, and the function 0 on & is an LRN derivative of
¢ with respect to 1. Now apply (4.3). []

(4.7) Note. All of (4.3)-(4.6) remain valid if the convolutions g % u, are all replaced
by p, %o and fu, by u,* . The Borel sets AH, need only be replaced by H, A in the
proof of (4.3).

(4.8) Example. Let G be a locally compact, 0-dimensional Abelian group. Let X
denote as usual the character group of Q. Let (H,)7-; be any decreasing sequence of com-
pact open subgroups of G, and as above let H,;= 7. H,. Normalised Haar measure
4n on H, is A(H,)" ¢4, A for n<w, and 4, is the characteristic function of the annihilator
Y, of H, inX. Define Haar measure 4 on G so that A(H,)=1 and Haar measure § on X
so that §(Y,)=1.

Now let ¢ be any measure in M(@). Then it is easy to see that

) ) o 1
(i) f Yne(%) X(x)dO(x) = fo(Z)Hn(X) X(x)dO(x) = o * (m EH,,) (2),

for all x€@. The function o (ﬂ%ﬂ; EH») (2)

is an LRN derivative of the A-absolutely continuous measure g % u,. Thus Theorem (4.3)
and (i) show that

(ii) nﬁm y o(X) x(x) d6(X) = h,(z)

for A-almost all €@, where h,, is an LRN derivative of g % u, with respect to 1.
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§ 5. Pointwise summability methods for arbitrary locally compact Abelian groups and
compact groups
The main results of this section are (5.7) and (5.11), which give iferated limit processes
for recapturing f€2,(@) from f. We do not know if a single limit process exists for every
locally compact Abelian group or compact group.

We begin with some needed facts about measures on groups and quotient groups.

(8.1) THEOREM. Let G be a locally compact group and H a compact normal subgroup
of Q. Let 1 be a left Haar measure on G and v a left Haar measure on the group G[H. Let ©
be the natural mapping of G onto G/H: v(x)=xHEG[H. If p€L,(G/H), the function got

18 necessarily A-measurable. For given 1, the measure v can be chosen so that
(i) f @(xH)dy(zH) =f pot(x)dA(x) for all ¢ €L (G/H).
GIH G

If G is compact and A(G) =1, then v(G/H)=1.

Proof. Consider first a function @€Ey(G/H). The function ¢ vanishes outside of a
compact subset {xH:x€F} of G/H. By [12], (5.24.b), we may suppose that F is compact
in (. Thus gov vanishes outside of the compact subset FH of G and is in €go(GF). Since
o1 =0 only if ¢ =0, the functional

> Ls‘vﬂ(x) dA() (1)

is strictly positive on €y(G/H). For a €@, we have (,up)oT(x) =,(po7)(x), and so the func-
tional (1) is left invariant on €y(GQ/H). That is, (1) is a left Haar integral on €y(G/H),
which is to say that we can choose » so that (i) holds for ¢ €€y (G/H).

Now consider a compact subset B of G/H that is the intersection of a countable
number of open sets. It is easy to see that there is a decreasing sequence (@,)7-; of functions
in €go(G/H) such that lim, _, ., ¢, =&p. We then have

¥(B)=lim gadyv=lm | g,ovdd=A(r"'(B)). (2)
H G

n— o G/ n—> 00
Let A4 be fhe family of all Borel subsets 4 of G/H for which
wA)=A(z-1(4)). (3)

The family 4 is obviously closed under the formation of countable unions of increasing
sequences and of countable pairwise disjoint unions. Also, if 4,, 4, are in A, if 4,<4,,
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and if ¥(A4,) is finite, the set 4, N A; isin 4. Since G/H contains a o-compact open subgroup,
it follows readily from this and (2) that 4 contains all Baire sets in G/H. (Baire sets are
defined as in [12], (11.1).)

Let P be a o-bounded subset of G/H such that »(P)=0. The Kakutani-Kodaira theorem
(see [12], (19.30)) implies that there is a Baire set @ such that @>P and »(@)=0. For
this @, we have
' 0=9(Q) =A(rHQ)) =A(z"}(P)).

That is,

A(xY(P))=»(P)=0. (4)
The Kakutani-Kodaira theorem also shows that for every o-bounded »-measurable set 4
there is a Baire set B> A such that »(BN A’)=0. The relation (3) follows for the set 4.
In particular, (3) holds for all compact sets, therefore for all open sets, all sets of »-measure
0, and for all y-measurable sets of finite y-measure. From this (i) follows readily. []

(5.2) The case of (5.1) in which A(H) is positive deserves special comment. In this
case (5.1.4) implies that only the void set in G/H has »-measure zero. That is, G/H is
discrete, and so H is open. This fact also follows at once from the identity &% &y=£4
and the fact that £ % £, is continuous. In fact, if a subgroup of G contains a A-measurable
subset of finite positive measure, then the subgroup is open. Let R, be the group R with
the discrete topology. The subgroup {0} x R, in R X R, is an example of a closed, nonopen,
locally A-null, non A-null subgroup. \

(56.3) TueorEM. Let G, H, 4, v, and 7 be as in (5.1). Let f be a Borel measurable function
n ,(G) that is constant on cosets of H : f(ax) =f(ay) if a€G and z, yEH. Let f* be the function
on G[H such that f'(aH)={(a) for all a€G, so that ftor=f. Then f' is in & (G/H) and

() f - Lm.

This theorem is proved from (5.1) by routine arguments. We omit the proof. The

following result is also easy to establish and is presented without proof.

(56.4) THEOREM. Let G, H, 2, v, and 7 be as in (5.1). Let ¢ be a measure in M(G). Con-

sider the linear functional

1) @ —>J.G (po7)dg,

defined for p €Coo(G[H). This functional is a bounded linear functional on Co(G(H), and so
there is a (unique) measure ot in M(G/H) such that

(ii) f (¢°r)de=f pdo' for @ €Cy(G/H).
G G/H
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For every Borel measurable function g on G/H that is in ,(G/H, o), we have

(iii) f gdo' = f (goT)do.
G/H G

Theorems (5.1), (5.3), and (5.4) appear in a modified, and more general, form in [4],
p. 75, Théoréme 1 and pp. 81-82, Exercice 1. See also [22] and [23].

To prove our theorems on pointwise summability for Fourier and Fourier-Stieltjes
transforms, we also need some group-theoretic facts.

(5.5) Consider an arbitrary locally compact Abelian group @. According to a well-
known structure theorem (see, for example, [12], (24.30)), @ is topologically isomorphic
with R® X G(;, where a is a nonnegative integer and Gy is a locally compact Abelian group
containing a compact open subgroup J,.

Let X denote the character group of G. ThenX has the form R* xX,, where X, is the
character group of G. Let A, be the annihilator in X, of the subgroup J, of G,. It is easy
to see that A is a compact open subgroup of X,,.

For inverting Fourier transforms, it is convenient to make specific choices of Haar
measure A on G' and Haar measure § onX. There is one and only one Haar measure 1, on
G, for which 44(J,)=1, and we take this measure 1, on the factor G,. Let 4, denote the
measure on R® that is (27)-* times ordinary a-dimensional Lebesgue measure. Haar
measure 4 on @ is then defined as the product measure i; X4, On X we construct the
measure 6 as follows. Let 6y be the Haar measure on X, for which A, has measure 1. Then
6 is defined as A, X0y. It is known [11], and is easy to verify, that this choice of A and 6
produces equality in Plancherel’s theorem, and so is appropriate for pointwise summability
processes on (f and X. In the sequel, we will always take the above 4 and 0, the subgroup

Jy being chosen once and for all.

(6.6) THEOREM. The notation is as in (5.5). Suppose that there exists a compact sub-
group {0} xH of {0} xG, in G@=R*x G, such that G,/H 1is first countable. Then there is a
decreasing sequence (H,)y_, of compact subgroups of {0} X Gy such that Ny- H,={0} x H
and such that the group G[H, contains an open subgroup of the form R*x T x F,. Here
(bu) -1 ©8 @ nondecreasing sequence of nonnegative integers, and F, is a finite Abelian group,
forn=1,2,3,....

Proof. Consider first the group G/H, which obviously is topologically isomorphic with
R® X (Gy/H). The subgroup {0} x(Gy/H} of G/H contains the compact open subgroup
{0} x (Jo/H), which is first countable because G/H is first countable. Let Y be the character
group of {0} x(Jy/H). Since {0} x (Jo/H) is first countable, Y is a countable discrete group.
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Suppose first that Y is finitely generated. Then Y has the form Z° x F, where b is a
nonnegative integer and F is a finite Abelian group. The group {0} x (Jo/H) thus has the
form T°x F, and so G/H has the form R®x T® x F. In this case we take all of the groups
H, equal to {0} x H.

Suppose next that Y is not finitely generated. In this case, it is simple to verify that' Y
is the union of an increasing sequence (A,)7-; of finitely generated subgroups. Then A,
has the form Z" x F, for n=1, 2, 3, .... It is clear that (b,)3>, is a nondecreasing sequence
of nonnegative integers. Let {0} X M, be the annihilator of A, in {0} x(Jy/H). The quo-
tient group ({0} x (Jo/H))/({0} x M,) is the character group of A, and so has the form
T x F,. We have thus produced a continuous open homomorphism of G onto R x T x F,,

which is indicated schematically as follows:
G=R*XGy—(R*xG,)[/({0} x H)=R*x (Gy/ H)—> R*x ((Go/H)| M ,)).

We denote this homomorphism by ¢,, and we define H, as the kernel of the homomorphism
@,. The group R*x((Go/H)/M,) contains R*x ((Jo/H)/M,) as an open subgroup, and this
last group has the form R® x 7% x F,. Since M, is a compact subgroup of J/H, it is easy
to see from [12], (5.24.b) that H,, is a compact open subgroup of {0} x G,. Our construction
also makes it clear that (H,)7.; is a decreasing sequence of subgroups. It remains only to
prove that N5, H,={0} x H. This follows at once from the fact that N5, {0} X M, is the
group identity in {0} X (Jo/H), which in turn is a consequence of the equality U ;=:1A,=Y.[]

We can now state and prove our main theorems on pointwise summability.

(6.7) TeEEOREM. Let G be a locally compact Abelian group, with character group X.
Let Y be any o-compact open subgroup of X. There is a double sequence (K, ,)m-1. %-1 0f func-
tions on G with the following properties.

(i) Fach K, , is nonnegative, uniformly continuous, positive-definite, and in 2,(G).
(ii) Each Fourier transform K,,,‘,, s nonnegative, vanishes outside of Y, and has compact

support.
(iii) For every f€2,(G) such that { vanishes outside of Y, we have

lim { lim fxf(l) R, () 2(z) d0(x)}=f(x)

n—->00 \M—00

for almost all x€G.

Proof. We use the notation of (5.5). It is a routine matter to verify that Y is contained
in a subgroup of X of the form R®xZ, where X is a subgroup of X, that is the union of a
countable number of cosets of A,. We may thus suppose that Y =R®xX. Now consider
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the annihilator in G of the subgroup Y. This subgroup of @ has the form {0} x H, where
H is a compact subgroup of J,. The quotient group (R® X Gy)/({0} X H) is the character
group of Y; since Y is o-compact, (R® X Gy)/({0} X H) is first countable (see [12], (24.48)).

Thus we can apply (5.6) to G and its subgroup {0} x H. We now write H,, for {0} x H.
Let Y, be the annihilator inX of H, (n=1,2, 3, ..., ®). Then each Y, has the form R*xX,

where Z,, is a countable union of cosets of A,. Also we have
Y, cY,c..cY,c..,, and UY,=Y=Y,.
n=1

Note also the important fact that G/H, contains an open subgroup of the form R* X T,
Let u, be normalised Haar measure on H,, and regard u, as a measure in M(G)
(n=1,2,3, ..., w). It is clear that j,=&y,. Thus if f€L,(@) and f vanishes on Y, then

f=Fee, =fo=(f % pa)".

The uniqueness theorem for Fourier transforms implies that f=fx u, in (&), ie., f(x)=
f % po(x) for almost all x € Q.

Consider next the group G/H,, for n=1, 2,3, .... Let v, be the Haar measure on
G[H, defined in (5.1). Since G/H, contains an open subgroup of the form R* X T, we can
apply Theorem (3.5) to G/H, and assert the existence of a sequence (P, ,,)m-1 of functions
on G/H, with the following properties.

(1) Each P, , is nonnegative, uniformly continuous, positive-definite, and in &,(G/H,).

{2) Each Fourier transform Pm,n (which is defined on the subgroup Y, of X) is non-
negative and has compact support in'Y,,.

(3) For every g€&,(G/H,), we have

lim v prn. () §(X) X(=H ) db(x) = lim Py n (xy_lHn) g(yH,) dva(yH,) = g(xH,)

m—o0 m—o0 J G[Hn
for all #H, €G[H,, except perhaps those in a set 4 of »,-measure 0.

With regard to (3), to the appeal to Theorem (3.5) should be added the remark that
the equalities

J; P, o (X)§(X) 2(xH,) d0(X) =faly P nl(xy 'H,) g (yH,) dv, (yH,) (4)

for m,n=1,2, 3, ... depend upon our choice of 4 and 6 and upon the definition of v, in
(6.1). Let 7, be the natural mapping of G onto G/H,. Then
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L..P"'"‘(’” 400 2l dO(D)
_ Ln o Pron % 9CHR) LH) dv (wy) 1(2) 00 (2)
=qu L(((pm_n*g)ic)orn) (w) dA(u) X(x)dO(X)
= [ [ (@unxgrom” w0 o). ®)

The inner integral in the last expression of (5) is equal to (P, ,%g)o7,(x) (convolution
in G/H,) because (P, ,%g)ot,)” =P, ,§ is absolutely integrable on Y,, and A and 6
have been chosen so that pointwise inversion is valid for functions in &,;(&) whose Fourier

transforms are absolutely integrable. Thus the left side of (4) is equal to

f (Pm.n ¥ g)oTa(x)dA(),
G

and this integral is, in view of (5.1), equal to

f (P % g)dy,.
G[Hn

This establishes (4). We define K,, , as the function P, ,07, on G, and claim that the
funections K, , satisfy (i)-(iii). Assertion (i) follows at once from (1).

To prove (ii), consider first any character y€Y,. Both K,, , and X are constant on
the cosets of H,,, and we use (5.3) to write

f . K (%) 2(2) dA(2) = fGPm.norn(x)JTx)dl(x)
= f P o(zH,) X(xHy) dvo(xH,) = Py ().
G[Hn
Suppose next that y€XN'Y,, i.e., that y(a)=+1 for some a € H,. Then we have
f K . n() %(x)dA(2) = f K . (a2) X(az) dA(z) = X(a) j K. (2) 2(x) dA(2),
G G G
and so K, ,(x)=0. That is, K,, , is equal to P, , on Y, and vanishes elsewhere on X.

This.proves (ii), in view of (2) and the fact that Haar measure on Y, is the restriction to
Y, of Haar measure on Y.
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The last paragraph also shows that K, ,-@,=K, .. The uniqueness theorem for
Fourier transforms shows that K, , and K, ,%u, are equal almost everywhere on G.
Since K, , is uniformly continuous, K, ,% u, is continuous, and so we have K, ,=
K., »% u, everywhere on G.

Next let f be any function in 2,(@) (f need not vanish on Y’). For an arbitrary z€G,

we compute as follows:
fxf(x)K m.n(X) 2(2) dO(X) = L f00) P () () () dO(X)
= fG/H (f*,un) (an leHn)Pm,n (yHn) d'Vn(yHn) (6)

(Since the function f u, is constant on cosets of H,, the expression (fu,)(xH,y1H,)
has an obvious meaning.) Theorem (5.3) shows that f u,, regarded as a function on
G/H,, is in (G/H,). Accordingly we can combine (3) with (6) to write

lim | f(£) Koo (1) (@) d0(2) = f % pn(aH) (7)
m-—>00
for all xH,€G/H, except for a set {xH,:x€A4} of v,-measure zero.
On the other hand, Theorem (4.4) shows that

Bm fox pn(@) =% pof2) (8)

for all x€G except for a set B such that A(B)=0. Theorem (5.1) shows that A(4H,)=0.
ForallzeGNB' N N (AH,), (7) and (8) show that

lim {lim fx f(x)Km.n(x)x(x)dO(x)}=f*ua,(x). )
As already noted, if { vanishes on Y’, then fx u,(2)=f(x) almost everywhere on G, and
so (9) proves (iii). [

Theorem (5.7) can in a certain sense be extended to Fourier-Stieltjes transforms.

(5.8) THEOREM. AUl the notation is as in (5.5)—(5.7). Let o be @ measure tn M(G) such

that ¢ % p, s singular with respect to A (o % y,, need not be continuous). Then we have

W tim T [ o0t) R () 2) 800~ 0

Nn-—>0a Mm-—>0co

for almost all x€G.
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Proof. We may obviously suppose that g is nonnegative. First write
0¥ty =h,A+oy,, ()

as in (4.3.i), where ¢, is defined on the g-algebra B, of (4.3) and %, is a B,-measurable
function. Thus %, is constant on cosets of H,, and the function 4} exists, as in (5.3). Let
(h,A)t be the measure on G/H defined as in (5.4). Then for g€ %,(G/H, (h,4)), (5.4.iii) and
(5.3) yield

f gy’ = f (§07a) hndA = f (go7s) (o 7a)d2
G[Hn G G

= f ((ghf.)orn)d/1=f gh'dv,.
G G/Hy

That is,
(hn A)* = h; Vn. 2)

We now define the measure ¢?, for Borel subsets 4 of G/H, such that 7,'(4) is a Borel

set of the form BH,, i.e., for all Borel subsets of G/H,. For these sets, we write
oh(4) = 0a(17'(4)). (3)

(The measure o, is not in general in M(@), since it is defined only on B,, a g-algebra that
may be a proper subfamily of the family of all Borel sets. However, (3) is well defined
for all Borel sets in G/H, and the identity

L (gotn)don = f o gdo?, (4)

for all Borel measurable functions ¢ on G(H,, is a trivial consequence of (3).)

Let B, be a set in B, of A-measure 0 that carries the A-singular measure o,. By (5.3),
the set 7,(B,) has v,-measure 0. The measure ¢}, being obviously carried by 7,(B,), we see
that ¢}, is »,-singular, and so we use (2) and (4) to decompose (g % u,)! (which is defined
exactly as in (5.4)) into

(0% ptn)' = (hnd)' + 0% =Bl v + 07 (5)

As in the proof of (5.7), we have:
fx@(x)Km.n(x)x(x) do(x)

- fy P () B(1) fin(X) X(xH) AO(K) = (P % (0% ta)') (eH)

= J. Pm.n(xy-IHn)htL(yHn)d’”n(yHn) + f Pm.n(xy*lHn) da;(yHn) (6)
G[Hpn n

G/H,
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Since ¢, is »,-singular, the last integral in (6) has limit 0 as m—> oo (see Corollary (3.6)),
except for xH, in a set of »,-measure 0. By (3.6), the second to last integral in (6) has
limit k% (zH,) for v,-almost all xH,€G[H,. Thus we have

lim | o(X) K,» (X) X(x) d0(X) = K}, (xH,) (7)

m—oo JX
except for a set 4,<G/H, such that »,(4,)=0. Theorem (4.3) shows that

lim h,(z)=0 (8)

except for a set N @ of A-measure 0. Since klot,=Hh,, we combine (7) and (8) to find
that (i) holds for x not in N U (U%.; 7v;(4,)). Since this set has A-measure 0 (5.3), the
present theorem is proved. []

Theorems (5.7) and (5.8) can be combined as follows.

(5.9) THEOREM. The notation is as in (5.5)—(5.7). Let o-be any measure in M(G), and
let b be an LRN derivative of p % p,, with respect to A. Then we have

M—>o00 (N—>00

(i) lim {lim fx@(x)Km.n(x) (=) d0<x)}= h(x)

for almost all x€G. If p vanishes on X', then ¢ % u,=p and b is an LRN derivative of p itself
with respect to A.

Proof. All of this except for the last statement is immediate from (5.7) and (5.8).
If p vanishes on Y’, then ¢ =44, and so by the uniqueness theorem for Fourier-Stieltjes
transforms, we have g =g % u,. []

(5.10) Examples. (a) Let m be an infinite cardinal number, and consider the group
T, regarded as the group of all complex-valued functions of absolute value 1 defined on a
set X of cardinal number 1. The group operation is pointwise multiplication, and a generic
neighbourhood of 1 is the set

{eT™:|2(t) —1]| <efor j=1,2, ..., m};

here ¢ is an arbitrary positive real number and {t,, #,, ..., t,,} is an arbitrary finite subset
of X. The character group Z™ of 7™ is identified with the group of all integer-valued funec-
tions y on X such that y(t) =0 except on a (y-dependent) finite subset of X. The value of
y at 2€T™ is [[;x 2(t)?, the product actually being finite. The g-compact subgroups Y
and Y, appearing in Theorem (5.6) are constructed as follows. Let Q={t,, &5, ..., ¢,, ...} be
a countably infinite subset of X (we will take Q=X if m=R,). Let Q,={#;, #,, ..., t,} for
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n=1,2,3,.... Let Y be the set of all y€ Z™* such that y(t) =0 for t¢@, and let Y, be the
set of all y€Z™* such that y(t) =0 for t¢@Q,. The annihilator H, of Y, in ™ is the set of
all z€ 7™ such that x(t) =1 for all £€Q,, and the annihilator H of Y in 7™ is the set of all
2 €T™ such that z(¢) =1 for all £€Q. There are many choices open to us for the functions
K,, , appearing in (5.7). For example, we can imitate the restricted (C, 1) kernels on the
n-dimensional torus 7. In this case we define

Nyt }

Rnfy) = [T max{1 ~ 20
for y€Y, and K, ,(y) =0 for y¢Y,.
For this choice of K,, , (and K,, ,,), Theorems (5.7)~(5.9) hold. Other possible choices

of K, , will no doubt suggest themselves to the interested reader.

(b) M. Mahowald in [16] has described an analogue of Abel summability for 7™,
using a single limit instead of an iterated limit. His theorems are not stronger than ours,
since they provide pointwise convergence only for functions in £, at points of continuity.
Note that this can be obtained by using any approximate identity. Also Mahowald’s
computations (see for example [16], p. 355, lines 20-22) seem hard to follow, and his
Theorem II conflicts with known properties of Sidon sets (see [18], Section 5.7, or [7],
Theorem 1). An analogue of Abel summability for continuous functions on an arbitrary
(finite dimensional) unitary group has been given by Hua [13]. Hua’s treatment is not
remarkable for obtaining pointwise convergence, as this is possible for all functions in
(@) for any Lie group @ ((3.7) and (2.10)), but for the explicit construction of summability
kernels resembling the Abel factors r* for the circle group.

(56.11) Theorems (5.7)-(5.9) have complete analogues for arbitrary compact infinite
groups G. Suppose for simplicity that @ is metrisable. Then it is known that the set D of
(3.4.1) is countably infinite: let us write D ={D,, D,, ..., D,, ...} and d, for the degree of
the representation D,. Define subsets of by induction as follows. Let D, = D,. Suppose
that Dy, ..., D;, have been chosen. Let €, be the smallest subset of D that contains
{Dy,..., Dy} and is closed under the formation of conjugate representations and of irre-
ducible components of tensor products. If §,=D, the construction stops. Otherwise,
let D, . be the first element of D that is not in €,. Let

A, ={x€Q:Dy(x), ..., Dy,(x) are all equal to the identity operator}.

Then 4, is a closed normal subgroup of G, and it is simple to verify that G/ 4, is topologically
isomorphic with a closed subgroup of the product P7_, U(d,), where 1l(d) is the group of
d X d unitary matrices. If €, =D, then A,=G@, and G is a Lie group. In this case, we can
apply (3.7). Let (K,)m-1 be a sequence of functions on ¢ as in (3.5). Then
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() 0% Knf@) = K % 0(2) =j:21 tm. 3 Tt [3(D,) D, (2]
and so 4
(i) tim 3 0, T [0(D) Dy (0)] = b

exists for almost all x€G and is an LRN derivative of g with respect to 4.

If no €, is equal to D, then G is not a Lie group, and so far as we know an iterated
limit is needed. It is essential to note that 2,(D) is the identity operator for all DEE,
and is 0 for all other D, u, being normalised Haar measure on 4,. We find in this case a
double sequence (K, ;)m-1n-1 of summability kernels on @. Let h, be an LRN derivative

of g % u, with respect to 4. Our final result is:

(iii) h(z)= lim h,(z)= Hm {lim g% u, % K, »(2)}

= lim {lim 3 apn,d; Tr [3(D,) Dy)]}.

n-—>00 m—>oe j=1
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