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§ 1. Introduction

In a recent paper [2] we studied the average order of a large class of arithmetical
functions which occur as the coefficients of Dirichlet series which satisfy a functional
equation. In this paper we obtain an estimate, in mean, for the error-term associated
with such arithmetical functions. Apart from obtaining a number of classical results
as special cases, we obtain some new results on certain arithmetical functions in alge-
braic number theory.

If € is an ideal class in an algebraic number field K of degree n, the Dedekind
zeta-function of the class & is defined by

Cele, 9)= 3, s,
aeS(N a)’
where the summation is over all non-zero integral ideals in €, and if we consider the

arithmetical function

kg::ak (8) ’

where a;(8) denotes the number of ideals in € of norm %, then it is known, after
Weber and Landau [9] that

E@x)= 3 ap(R) — Az = O™ DIty

kg

where A is the residue of [g(s, Q) at s=1. In this paper we shall show, for example,
that if »=2, then

;[ 1B ay - o,
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In view of the fact [2, p. 128] that

E()

hm + oo

H

this result seems to be the best possible.
Our main theorem implies this as well as several other results. If r,(n) denotes

the number of representations of the integer » as a sum of two squares, and

P(x)= 3 ry(n)—mx

=

then P(x) is the error-term in the lattice-point problem for the circle. Although the

conjecture that
P(x)=0(xt"),

for every positive g, is yet to be proved, it was shown by Hardy [5] that
1 ‘ 1 +e
~ | |P@)|dy=0@t),
X J1
for every £>0. This was sharpened by Cramér [4] into
I P
2 |, [P@)dy =0, )

which he obtained as a consequence of an asymptotic formula for the error-term, in

mean-square, namely

1 z
z f |P@)[ dy = e\t + 0 *), (2)

for every ¢>0. Here ¢, is a constant given by
1 2 [ry(n
=g 3 (2( )) .
n=1

Cramér also obtained a formula similar to (1) in the case of the error-term in Dirichlet’s

divisor problem. If d(n) denotes the number of divisors of n, and

A@x)= 2 dn)—zlogx— (2y— 1)z,

n<z

where y is Euler’s constant, then Cramér’s result is that

F4 ] 2
:%f |A(y)|2dy=02xi+0(x*+e), c2=_1§ > ((%(%)) ’ (3)

6n n=1
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1 z
which implies that - f |A(y)| dy = O(x?).
T J1

Landau [8, Satz 548], and later Walfisz [12] improved the error-term in (2) by
showing that

1 xr
- fl | P(y)[? dy = ¢, 2* + O(log? ).

There is a reference in the literature [11] to a similar improvement of (3), although
we have not had access to that paper. Both these results, however, will emerge as
corollaries to our main theorem. So will the following result, due to Walfisz [13], on

Ramannjan’s z-function:
1 T
- f |T(y) [? dy = ¢, ™'t + O(2™ log® z),
1

where T(x)= > 7(n), and 63=L § 121(:;).

n<r 507t2n=1 n

§ 2. Preliminaries

The functional equation we are concerned with is set up as follows.
Let {a,}, {b,} be two sequences of complex numbers, not all zero, and {,}, {u.}

be two sequences of real numbers such that
O<dy <A< ..< Ay—>o00,
0< fiy <y < ... <fn—>00.
Let 6 be a real number, s a complex number with s=g¢+ 4. Let

AG) = [P @+ ),

where N>1, f, is a complex number, and «,>0. Let 4=>",a,. We say that the

tunctional equation

A(s) p(s)=A(d — 8) p(d — 5) 4)

holds, if @ and y can be represented by the Dirichlet series

P6)= S anki’s )= 3 bapi’
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each of which converges absolutely in some right half-plane, and if there exists in
the s-plane a domain D, which is the exterior of a bounded, closed set S, in which
there exists a holomorphic function X with the property lim;; . X(c + it) =0, uniformly

in every interval — o0 <¢,<0<g,< + o, and
x(s)=A(@s) p(s), for o>¢,
Xs)=A@—s)pd—s), for o<c,

where ¢, ¢, are some constants.()

For 90>0 we define

2 an(x— An),

¢ =
A= 1) .

the dash indicating that the last term has to be multiplied by }, if p=0 and z=4,,
It is known [3, formula (4)] that functional equation (4) implies the identity

bt anQ n
ﬂm—&m=z—7%ﬂ, (5)

n=1

for >0, and 0>248— A8}, where B is such that >3;|b,| uz? < co. We assume o

to be an integer, in which case

1 [ TEeB) .
5@ =g ) . Teto+” @

where C is a curve enclosing all the singularities of the integrand, and

1 I'6 —s) A(s)

L(z)=— te=s gs,
(@) 27 Jo I‘(Q+1+6—8)A(6—s)x
Here C’ consists of the lines
o=c,+it with [¢t|>R,
where
_Ad+p 1 ,_ B, _
o= 54 e, 0<e<4A, c9>c_max( Rea,)’ y=1,2,...,N,

together with three sides of the rectangle whose vertices are ¢,—iR, ¢, +r—tR, co+
r+4R, and ¢,+4R. We choose r and R such that all the poles of the integrand are
to the left of C'.

(*) ¢, ¢y, €y -.., €, ¢”’, ... are constants which do not necessarily have the same value at all
occurrences.
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If ¢ is an integer, 1>0, and 0< A<=, the @™ finite difference of the function

F(zx) is defined as
A F@) =S (—1p (5) F(z +vA).
»=0

If F has g derivatives, then

2+4 ty+4 t9_1+l
A} F(x)= f _ dtlﬁ dt, ... f F@(t,) dt,,

tg—l

where F@ is the o™ derivative of F. Since

MA@y = S 0 AR S ] (—1)'-’-”(9) S an(g+ri—An),

m<y - Tletl) S T(e+1)

Y/ y<in<y+vi
and since {Le+ 1)} Aj(y — A,)2 =142,
we have MA@y =28H+00 3 al.
y<inSy+eold
y+i tya to- 1+
Again A3S,(y) = f dtlf di, ... J; 8y (t) dt,,
v ty e-1

and if the only singularities of ¢ are assumed to be poles, then
So(y) = Z estf (logy)'s™,
where 7; is the order of the pole at s=§£, so that

ASS,(5) = Sy(y) 22+ 0145 log' ),

(6)

M

where ¢ is the maximum of the real parts of the poles of ¢, and r is the maximum

order of a pole with real part q.
From (6) and (7) we have

A(y) — So(y) = A7 AG[A5(y) — So ()] + O(Ay* log ' y) +O( 2 |aa).

y<dn<yteld

@®)

On the left-hand side of (8) is the “‘error-term” which we wish to estimate in “‘mean

square”. If we write

E(y) = 4°(y) — 8, (y),
W (y)=A4[A45(y) — S ()],
V(y) =0y log 'y) +O( 3 llanl),

y<in<y+te

9)
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then we have

[1Bara- [ivgrags [ reworas [emv+wna. a0

Our problem now reduces to estimating the integrals on the right-hand side of (10).
The form of V is such that in addition to the assumptions already made on the
nature and location of the singularities of ¢, we need assume only an order condi-
tion on the a, in order to estimate the first integral. To estimate the second integral,
we assume functional equation (4), apply the difference-operator A} to identity (5)
which results from it [3, (4)], and take the square of the absolute value on both

sides. This would involve estimating the integral

J‘z‘(§ §: bmsn AEIQ(,“my) . Agl-g(/‘n?/)) 1—29 dy, (11)

1 \n=-1m=1 (,um,un)dﬂ)

where the bars denote complex conjugates. An essential element of the method is to

1-1/24-7

choose 4 not as a constant but as a function of y, namely A=y , 1 >0, where

the 4 comes from the gamma-factors in the functional equation, and to choose 7
suitably in the resulting estimate. Since ¢ may be chosen as large as we require, the

estimation of (11) depends on an estimate of the integral

f A Y ) A () d (12)

for different ranges of u, and u,.
Now the asymptotic expansion of I, is known in a convenient form {3]. If m.is
any positive integer, we have
m
I(x)= 2 e, () x*~*** cos (ha"** + k,7) + O(x® " +1724),
y=0

as x—>oo, where e,(p) and k, are constants,

(13)

v
kv= o2
k+2

N
e(0)=€""%(Ant)!, B= -6 Zloc., log &, + (A3 +p+1)log A4.
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If this asymptotic formula is used in (12), the estimate of (12) is reduced to that
of the integral

1724 yl/ZA 1/24 1/24

Um.n(m)zfl Ay %Ay ™ ) A yme ™M ) dy, (14)

and this, in turn, depends on estimates for

1/24

Af(y* e*n

1/24

), (15)

z',u},f“ J124 i N i,u},i“ 41124

dy

1/24 ,1/24

and for | (16)
These we proceed to obtain in the sequel, so that the second integral on the right-
hand side of (10) is also taken care of. It is this integral which gives rise, in some

cases, to an asymptotic formula for
z
L | B[ dy

with a “main” term and an O-term, and in other cases to an O-term only. Our
choice of 7, and therefore of 4, will be different in these different cases.

An estimate for the third integral on the right-hand side of (10) results from the
estimates for the first and second integrals by Schwarz’s inequality. But in some
cases it would be advantageous directly to use the known estimates for W (see [2],
p. 110, (4.20)) and for V.

§ 3. Estimates for the finite differences

We shall now obtain estimates for (15) and (16), and use them to estimate the
integral in (14).

Let o be a fixed integer, 2>0, and 0<pil<y. Let w and x be real numbers.
Then ‘

2 @w
Ad(y” eiuylﬂA) —y S (—1)2 (9) (1 1 1’_2) Gcurvi/Te
»=0 Y

Y

- y“’A%I ei,uyllu n yw i Qil (— l)g—v (9) ((u) (ﬁ)keiﬂ(”*"’z)lr“ 4 O(Zgyw_q). (17)

v=0 k=1 v/ \k/\y

Set v Ey=v(v—-1)...(0—k+1),
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for k integral, and 0<k<w, with (»,0)=1. Then

o0 (%)@ n(4}):

We can find constants «f, such that
O, k) + ...+ (v, 1),

'VE

for v>1, with «f”=1. We have

< k
zo( I)Q—v( )”k ei#(y+wl)1/2.4 lzl d()ck3£+1 . (Q, l) Ag—t w(“lbl/u’ (18)
9 9.
for 2 (- 1)9_7( )[“(k)( 1, k) + ...+ o2 (v, 1)] elhw
v=0
k-1
= i 2 ac("i’l(v, —r)- (9)(__ 1)e- gy oA
v=l 1 =0 "
K
é > o (e, )~ (9 l) o-v ei,,(w,,;)uu
»=0 i=1 y—

i

e-1
k l+l 9 l — I o—l-r1 i‘u[y+(1+r 112;1
( ’ ) ( ) ) VAT

0

il

M=

1 r

From (17) and (18) we get
-1 & 13 124
() Ae 1 ‘u(v+l/1> +0(ley“"‘7), (19)

Ag(ym emyllu) =y"’A§ ef;w’/ z Z d l+1 (Q» l)

uniformly in 4, u, y
From the definition of A we have
(20)

A3 (y® &™) = 0(y").

On the other hand, we can prove that, for |u|>c

A"( w i#y"“) 0(1eyw—e+e/2A|'u|9)'
and f@ denotes the o™ derivative

(21)

¥ iuy’
2

This follows from the fact that if f(y)=

of f, then we have
W 1sa —1)9 PHTA | Qil cky“’_é’*k(‘uyl’z‘_l)k ef#yuu, (22)
k=0

P =y (EZ y
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2@

(23)

and i(y)=0Q° sup
y<t<y+gd
We shall use (20) or (21) according to convenience.
The next step is to estimate (16). We shall now make a further assumption on 4,
(24)

namely
A=My)=c 9 ¢, >0,

so that the derivative 4'(y) =O(1/y). Set
(25)

D(y)Eeiwllu @ [e«i;uyl/g‘4 AS(y® eiuy”“)].

If we use the rule
d
a4 {ASF(y)} = ASF (y) + ok’ (y) - AT F' (y + 2),

which is easily deduced from the definition of Af, we obtain

— _i‘q’_ 1/24-1 Aef, o iuyl/?4 of,w-1 jiuyli24 _w_ of, w-1+1/24 iuyl/?4

D(y) YT AL ) + 0By )+o 5 Aily )
24 24

+ol (y)- AF [w(y +A)° 7+ 21% (y+ A)‘"““’“] s DI

1/24

On using (19) together with the facts that (1/y)*=0(4/y), and 1’ (y) = O(/y), we have

- ___‘ﬁ 124-11, w AQ ipyt/?4 @—1 ﬂ‘_ o-1+1/24 AQ ,ipy
D)= —57v " [P ATe™ 0T A+ 57y Afe

1/24
+ ...,

+ O(yw—2+1/2A )» . Ilul) + wyw~lAg ei,uy

in which the ‘later” terms are of lower order than the ones retained. Thus, if

Ai-|p|y"* 1 >c,, then
L O@yPTRA L )| u]) = Oy RV 1 ). (26)

D(y) = wy* " A e
If, on the other hand, 1:|u|-y"** '<c, then on using (19), together with (21) with

w =0, we obtain
) + O(ZQyw—Q+ll2A——1 |#l)

e-1 % 2’ k
([uylmA‘l) {yw kz ) (_) o‘(kkEH1 . (@’ l) . Agvl ei,u(vﬂl)l/u}

=11=

D(y)=0(
=0 . (1)+1/2A—19_1 : ?‘_ k_ Z‘ et . 41124 01 + 02 w—o+1/24~1

R 2.20G) ) Quly™e) oy lul)

(27)

— 0[('#' . }. . y1/2A~1)q y‘"'l]-
4 — 642906 Acta mathematica 112, Imprimé le 11 septembre 1964,
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In the range |u|<c, y'""**17*, however, we have
124-1 -1 1/24-1 -1
(pl-2- 47y <callp] - 4- ™47 g7,

so that (26) is also valid in this range. Similarly in the range |u|>c,y' "*417%,
we have
yo A ] <y (ul- Ay

so that both (26) and (27) are, in fact, valid in both ranges, though (26) gives us a
better estimate for |u|>c,-y' #4217, as (27) does for |u|<c,y' "?4A7L

Estimates (26) and (27) are enough for dealing with (16). We shall now use them
to estimate the integral in (14).

Lemma 1. Let {u,} be the sequence given in functional equation (4). Let 8, w, w,,
and h be the real numbers given in (13), h>0, 6 >0. For y>0, let A=A(y) =y V24",
A=1,59>0. Let z>1, and

Un.nte) = [ 2001 23 ™) g™y
Then we have for m>n,
| V()] <2 ”‘Hﬂ‘”’” for s pn,
< 1/2 LA "W) for 2 < tim (28)
Proof. If we write
Gn(p)=e ™ T A o ), and Flp)={A)} 2y Galy) - Galy)

it is easy to see that

lhyI/‘ZA (“1/24 :./244)

Un.n= f {2} 2 Guly) - Gruly) - e dy

24

= T fl {Ay)} 2y 4 G- Gy

l z
~0( ) | F@l s 1r1+ [ 17 w4 @)
pn® = 1

1/24 1 1/24 _ l/2A
d (em” (

o ,,. )
dy )dy
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If pn<pm<z, then because of (21), we have
| F(y)| = Oly' 24 272 {12y 7y (mpr)?** 1] = Oly* 1724 (i pa)™), (30)
and because of (27) and (21) we have
|7 ()| = Oly ™" | F(y)| + A2 124 {y° 071 22 ()™ 229”2 (ua)”**}1. (31)

Now (29), (30), and (31) lead to the proof of the first part of (28), if we note that
0>0, A>1. As to the second part, we have u,<z<p, so that from (20), (21), (26)
and (27) we obtain

F(y) — 0[l~2gy1~1/2.4 {yw . yur ng (luny)Q/‘ZA}] — O[Zﬂg . M%{2A . ymo+w+l—l/2A],

and [F" ()| = Oly | F(y) | + A7y 424 {2 e 28 ()™
+ '(IuyFA . }. . ym—2+1/2A) (‘uny)Q/ZA yw—qzﬂ}]
— 0[149‘“%/2;1 ywo+w4112A {1 + /'l‘u},{“ y1/2A—1}]’

and these inequalities lead to the proof of the second part of (28). If z< u,< pm,

we have again from (20),
lF(y)l = O(}fzg y1~1/2.4 +2a,)’

and IF’ (y)l - 0(y~1 IF(?/)I +2‘2gy1—1/2,4 ywv2+1/2A . yw . A[ﬂ}rFA _}_‘u}lﬂA])
— O(y—l IF(?/)I + y2w~1 }'~2g+1 [M%ZA + /‘22/1]),

because of (26), and these inequalities lead to a proof of the third part of (28). Thus

Lemma 1 is proved.

§ 4. Estimate of the error-term

We have already seen in (10) that the error-term in mean square is given by
f IE(y)Izdy=f IV(?/)lzderJ‘ lW(y)lzlwzgd?/*—J‘ AWV + W) dy, (32)
1 i 1 1

where BE(y)=A%y) — So(y), W(y)=A3[A4%(y) — Se ),

V) =0y log ) +0( 3 laul).

Y<ln<y+old

If we assume that functional equation (4) holds, then we have [2, (4.6)] identity (5),
from which it is immediate that
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e bmbn AgIe(/‘my) : Agje(,uny)_

Wy |?= 33
Ll 21 rer (Hmta)> " (33)
Let o, and B, be such that
2 ol B < oo, 3 [on] - gl < o (34)
Let us assume, in addition, that
S |6 P=0(*"logP ), B =0. (35)

<

Since not all the b, are zero, it follows that #>}. We shall sometimes use a similar

assumption on the a,, namely

S |an P =0(* 'log¥x), o =0. (36)

An<z
TFor simplicity we further assume that
Pn=C "My In=0Cpm, (37)

.even though our final result would require only an assumption on the density of
{n}s {An} like pns1— pn=0,>0, Any1— A, 2¢;>0. As before, we choose

1= =, e=1-5 - 70, (38)

:and 2= 22, (39)

‘To estimate [{1 % |W(y)|*dy, we write

TR L - AV [ S A VAT I AT
n=1

‘uﬁ(zHe) ,Z'*’;, ( . ﬂn)6+g
=W,(y) + Wy(y), say,
:and estimate [fA %W, dy and (i1 %W,dy separately. In the former integral, we split
the series for W, into two parts, according as u,<z or u,>z. In the first part, we
“use the estimate
]Aglg (ﬂny) l2 - (,unl)ze llo(luny) I2 + O(Mig+2m,+1/214 129+1 y2m,—(1—1/2A))
+ 0(”3!9+2 129+2 (#"y)2wa_2(l—1/244))’ (40)

-which follows from the observation that
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t1+l tg_1+4
AS I (pny) = f dtf f e - Ig(uat) dt

and therefore
A5 L (pny) = (n A)° 1o (pny) + O{pS T A0 (p y) ™=@ 7124}, (41y

since I_;(y)=O(y® " 14), and I,(y)=0(y"), [cf. (13)]. We also use the simpler
estimate

A3 To(uny) = 0[(/1'711)9 (;tny)""’l

z B bnz' AQI n 2 T i
Thus jﬂez' [*-184 T (uny)| w-[re( 5 4 5 Ja (42)
1 Un 1 ”n<334’l 24Ny <z

a2

say, where

. a2 (™" 50 po 2
f A%e. 2 dy= 2 2(3+e)f 2 QIAAIQ(”"?/)‘ dy
2"7</.¢,l<z

1 ¥ wn<z Un 1
bn 2 ”:/24?7 ]
= OLZ:Z ﬂlzulu J; Y dy} .
Now
O™ log @ - P A7E#-0-171RD) - if 28—~ 1~ EIZ >0,
1o O logh*'x), if 28—-6-1 —-2—12—0
2 e ) .

n% 2 N . of _ 8 _1_ 1

O(x ), if 28-6-1 2A<0’ and 7 24’

0Q), if 28-6-1~ 512< 0, and 7 is sufficiently large.

We shall choose =1/24 if 28—-6—1/4>0, and y sufficiently large if 26— —
1/A<0. According to this choice of 7, we have

oQ), if 26— a~—<0,
. 0™, it 26-8->0, and 2p—d-1-5<0,
fl‘z" 2 dy=; 1 (43)
1 24 < sz Oz ~14 10g” ), if 2ﬂ—6~2>0, and 25—5—1—2—Z>0
2we+1 +1 : . __1 — 8= __L_
O(x**  logh*'w), if 26— 6 >0 and 26 —6—-1—5—=0.
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On the other hand,

z b |2 z
A2, iy- 5 b f A7, )% | Iy (a2 &
fl ,‘..3“" y ,,;ézui“’*“’ i (n2)% - [ Iy (i) * dy

'b |2 wp+124 | 2o —(1—1/24)
+0( z 2(Z+g)'”g‘e+ Y ”1/247;1'?/%( " dy

un<z Un

'bnfz 20+ 2ap+ 174 | 2 .-21—1/2.4)
+0("éz ‘ui(dw)':“" e ”,1.I2A'12' .wa ‘ dy

=M, +M,+ M, say.

To estimate M,, we observe that

z lbnlzfz .yzw.—qdy= PR z Ibn |2 (x2w.+1—1]__‘u(36h+1—q)124?1)
pun<2 F«z plizdn #n<2 ,u(ZI

since 2wy +1—#%+0, by assumption, and

O(F*4n#-1-0 1ggh g . g2oet1-n)  if 28—1-6>0,
2
zl_bnai_xzw..ﬂ-n: 0@ logf *1z), if 28—1—6=0,
Hn<s2 Mﬂ
O™ n, if 28—1-8<0.

This, together with the estimate immediately preceding (43), implies that
'O(l) if 2ﬂ—6—l<0
2 A\ 3

1
O™, if 2ﬂ~6—§>0, and 26-0-1-5-<0,

24
. 2A8-114 ’ if 4 1 >0 d 28-6 L >0
O(x log#z), if 28-6- ; >0, an f—0—-1— 51”0
1 1
2w, +1 +1 : _ — A =] — ==
‘ O log# '), if 28-6 >0, and 26-6-1 3 0,

according to our choice of 7.

{(#)

The estimate of M; is the same as that of M,, provided that 2w,+1 250,

as can be seen from the fact that

Ib" '2. 1/24 “ 2we—2n . 1/24 |bnlz' 2my+1-29 + 0 Ibﬂ,z
2 12an Y dy=0\2*" 2 —5--x ”Z
by

Un<R ,un w2 ‘un ns2 Mn

If, however, 2wy, +1—2n=0, then we have

‘ua+1/2.4 —(2wo+1)/2A'I) ‘
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M,= 0(logx ED) | "P)

<2 |un

[l

2ap+1— lb |2
Ollog x- 2?0t 3

pas2 ,un
O(P41E-1-0  Jogf +1 . g20utlomy - if 281 §>0,
O(log? "2z - 2®™*177) if 28-1-6=0,
0@ "log ), if 26—~-1-48<0.

!

Thus, in any case, we have

o), if 2ﬁ—a—:41-<0,
O(z®>*Y), if 2‘8—6—-1>0 and ‘),3—5—1—~}—<0

’ a4~ - 24
O 14 10gP  a), if 28-6-— 3>0 and 28-6-1-5->0,
0@ logh 'x), it 28— ~>0, and 28-6—1— -t =0.
‘ ’ a” % 54

We now estimate M,. We have from (13),

m D
Iy = Eoev YA GOV R g VR L e DRA) g, =6, (0),
-

so that the first term in the asymptotic expansion for |I,(u,y)]* leads us to consider

lez lbn|2 * ( )2w°d =c z lb ‘ ( 2w.,+1_ (2w.,+1)/2Arl) c ___%62. 1___
z€0 % ) anan MY Yy=e ,u‘”l’“ Hn » O o 20y +1°

<z #n P2

An estimate of the second term here was already given immediately ahead of (43).

The first term gives

01 Z Ib |2 2wp+1

e #175:—1/ o4 T
Bt 4+ 0@t logl x - gPANR-10-12y i 28 —5—1— é% <0,
= O+t log¥ z - g?An@6-0-1-124) © jf 9§51 — 512 >0, (46)
O+ log? 1x), if 28-6—-1- 1 0,

24
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where, in the first case,

o0
co=1¢2. . b, |2 yo0-124
e=teo 2wy + 1 ,ZJ ol pn

Hence

b2 (2
te§ > l J f (ny)*™ dy

uwn<z Ha Jplitan

1

{czxz“"“—FO(l), if 28-6--<o0.

N

2my+1 3 i ~ 8 - —_ 1
0@, it 28-3-->0, and 28-8-1-3 <0,
s 1 1 (47)
-1 ’ ; Y N Y S D
O(x log? x), if 2848 I >0, and 28—-6~-1 24 >0,

1 1
2emy-+1 B +1 H S T ) —_—y =] - =
L O(x log"ta), it 28-8 I >0, and 28-40-1 24 0.

The other terms in the asymptotic expansion for |I,(u.y)[? lead to

'bnlz z Zw.,—I/ZAd . 'bﬂlz ’ 2w¢—1/2ﬂd __0 2w,+l——ll2A1 g{i’+1
2 =55 | g Pn¥) y= 3 s y y =0 og”*ty),

wm<z Un u pn<z ”" ”’1'/24'1
which is of smaller order than (47). Thus relations (42) to (47) give us

T 2, 14 2
f A2 z lbnl lAlIe(‘uny)I dy

2d+0)
1 Ha<? 1223 e

@20l Qa2 1124 Jogf 1 y),  if 2ﬂ~6—2}<0,

1 1
2w +1 . N S Y
O(x ), if 28-4 >0, and 28--9-1 54 < o,
28-1/A P+1 : N T Sy
0@ V4 log? ' x), if 28—0—-->0, and 28-6-1 510

1 1
2, 1 ' +1 s 8 =] - —— =
O™ logf "' z), if 28-6—-->0, and 28-0-1 5= 0

On the other hand, the second part of the series for W, leads us to consider
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2, [ 2
f z lb | |A 1 (.un:‘/)l 2edy
1 pn>2

2(0+0)
M

b,
=2 I2(6-|+9)f A% | A3 L (uny) P dy, for o large enough,

an

b, . ®
2 Z(Lw)l 20 J; A% ?/2 d!/)

n> 2

— Ib‘"fl2 2me+1+20n
=0( 2 - 2@+o-w ¥
Mn

B>z

— 0(22[3—1—2(5+Q—w\ logﬂ z- x2Q)g+1+2QV])

— O(xz"’““ . logﬂ'x . szn(zﬂ—l—a—l/ZA)).

From (48) and (49) we obtain

f l_zewl(?!) dy
1

[
@7 4 QP R ogf ) i 286 ——i <0,

—: 0@, i 2ﬁ-6—i>0, and 28— 61—

2A<0’

Let us now estimate |71 %W,(y)dy, We have

bnb, A3 mY) - Ao (pn
Wa(y) = )3 ’ (:‘”My))awz (o ?/)

m,n
maEn

O+ logh ™t g - £®-0-1-124) 1 if 2ﬂ—6—i>0, and 2/3-—6—%—1?0.

57

(49)

(50)

It will be sufficient to estimate the part W, of this sum for which Un > Uy, since

W,y(y)=2Re Wa(y). We shall write

Ws(y) = Wa,1(y) + Wa2(y) + Was(y),

where Woi= 2, Woo= 2, W= 2
’ HaS? ) #r<2 ) pm> pn>2
tn<pmS2 pm=2

Now fl PEWe @ dy= 3 w—,;mf 272 A8 Ly () - A8 T () dy

RS2 m

Hn<ll#M<
P ( 2 |bmbn| .x2m.,+1—1/2A ('um ‘un)g/24)
pn < pm <22 (”mﬂn)6+9_w [l:}rlle - ‘u}l/2.4
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because of (13) and (28). Note that the first term in the asymptotic expansion for
1, leads to this estimate, the later terms being of smaller order. By assumption (37),
cun=n, and for 0<&<1, we have 1 —&<c'(1—&"*4). Thus

z 1-1,24
f A2 Wz.l(?/) dy= 0 (xz‘”"“’”“ Z Ibmbnl .m )
1

S+o-w-0/24
n<m<gez {MN) e-w-ef m-—-n

=0(x2°"+1’1’“ S Ibmbnl (l + n ))
n<i ges MVEA ()P e o024 e

— 0[x2mg+l—-1/2A logﬁ'+1x(x2.47](2ﬂ-6-l/l1) + log x)], (51)

for
|60 ] 1

n<meoce (mn)6+e—m—9/2A n—lmlle (m _ n)

=3 1 lbnbn+k| (u= é l)

- 7 Zu- ~u+1/24° o
k<dcz K n<dor—k nf~* l(n-Hc)ﬁ utlz

2 44

1 Ibnbn+k|

nﬁ- u-}+1/44 (n+ k)ﬂ—u—}+1/«ld ’

< -
k<2cz k n<g2cz—k

1 [6,]?

< — —_
= 28-2u-1+1/24
k<gez K nSde M 8 !

O(log? *%z), if 2ﬁ~6—;11=0,
= O@PAmE-0- U [ogf 41 4y jif 2ﬁ—6—i>0,

O(log z), if 2ﬁ—6—%< 0,

and similarly
|6mbn|

To-w-0RA _dto-w-gi2A+124
n<m<2cz ndteT o4 yte-ae f

Sol(s ol Y
nShes n6+g—w—9/24 +1/44

b, J? 1
=0(2 —irlrlxm > —)

n<2cz W n<gcz N

OQogf*2x), if 2B—9— ;11 =0,
=1 Q@01 oot 1), if 28—6 —;-11 >0,

O(logz), if 28-6 —:}i <0.
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Next let us, in view of (28), consider

f l—zng.z () dy
1

01247 | yantwi1-124 .0( [Bmbn| 3™ (V24 27124 .um)).
un<z (tm o preme MPm ™ Hn

pm =22

=X

The O-term gives

lb I lbml ﬂl 1/2A +z~l/2Alum 6 1
0[ 2 f-uto24 L — fhn y U= 2714

pn<2 ,un pm=2 Wm

Since g,z %4 >y V%4, this is

Ib | [ba] 27" p {64 bml -
2 m‘a—m -0 uéz #fr}t-u urg ‘uﬁ—we/u 2 P

n<2 ,u'n * um>22 Hm Mm — Un

SINCe fin = o — tn + tn < fm — ,u,,i-l- 2< 2(fty — ). Now hypothesis (35) implies that

2 |ba| = 0(z"log¥ 2),
Has<T
hence the O-term gives

O(z* log?? 2 - 247924 1ogf 12 5 . 71124y,
since % >0, as a consequence of the functional equation [2, (5.1)], and this is

0(z2u—g/2A—1/2A logﬂ' z) — 0(x2Arl(2u—g/2A—1/2A) logal x)

Hence f z 29W2 2(?/) dy O( 2wy +1~1/24 log{i z- An(ZB 8- l/A)) (52)
Finally we have, from (28),
z b.b ‘ pL-124 o xl‘1/2.4—r)‘u1/2.4
};-ZQW d — p—200-124-+2w O [ ' mYn X ( m )] .
fl 2,3(:’/) y x z<”nz<“m (Mm[ln)5+9_w 1/2.4 ‘u

Since pX%4 =212 =" the O-factor is
u

[z 5 bl x“"“"'(n+k)]-

Parl e (n+kpree
By hypothesis (35) we have

Bk, t)= Z; |babasi|=O[F (¢t + k)P~ log® (¢ + F)).

59
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lbnbn+kl

Honee Lo g o0Tew=p
-0 * logf(t+k)dt _o log? (z+ k)
O 5 g+ k)] T\ k)]
so that
Capdn 21 [, 1oag 2 logf(z+ k) )
1-1/24-9 1 7 On+ _ 1-1/24-9
x kgl k n>cz n‘”"'“’(n-f— k)6+9—m_l 0(33 ;gl ]C(Z+ Ic)""*z‘”*

= O(x! 1241520 |ogh 1y,

since ¢ is as large as we require. Thus

z
Jl A W, (y) dy
— 0(x—29(1—1/2-4—ﬂ)+2w x1—1/2A~qz24q(2ﬂ+2m-2g«2d) lOgﬂ"Hx)

— 0(x2w0+2g11 x1—1/2A—qz2An(2ﬂ~6~l/2A ~g/A) logﬂ’+1x)
— 0(x2wn+l>ll2A logﬂ'+l z- xZAﬂ(Zﬂ-ﬁ—l/A)). (53)

From (51), (52), and (53), and the definition of W2(y), we obtain

z
f A—ZQW2(y) dy__: 0[x2w.+1—1/2A logﬂ'+lx (x2Ai](2ﬁ-—6—l/A)+ l()g SC)]. (54)
1

We now consider (50) and (54), and, as before, choose 7 large and positive if 26—
6—1/4<0 (which implies that 28—38—1-1/24<0, since A>1), and n=1/24 if
28—0—-1/A>0. We then obtain

[[aemray

cp 7*™t 4+ QP11 A Joghf R y), if 2ﬂ—-6-—;11<0,

=1 O@*™*") + 0@+ -2 logf 1 z), if 2,3-6—l >0, and 25——6—1———21 <0, (55)
, 1 1
28+1-2/4 B5+1 : . R S >0.
Oz log”*'a), if 286—-6-->0, and 28—-6-1 54 0

We next estimate [{|V(y)]*dy in (32). We note that V(y)=7V,(y)+ V,(y), Where
Vi9)=00y"log"'y), Vy(y)=0(Zy<in<vres|@s|), according to (9). Here ¢ is the
maximum of the real parts of the poles of ¢, and r is the maximum order of a pole

with maximum real part. It is obvious that
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f |V1 (y) |2 dy — 0(x2q—1+2c logzr—z x),
1

where ¢ is defined as in (38), while

2
(L3 Jal) =0l 3 laP) a=1-%
Y<in<Y+od Y<lasytold

because of assumption (37) so that

f:le WFdy=0 (r?f 2 el dy) = 0( ) Ian|2f:” y" dy)

1 y<An<y+eod 1<An<Z+0x¢ n—el;

:0( 2 lan|2.1;+c,)=0( > |an|2-lﬁ—3/“—'l)_

1<An<T+02¢ l<ip<T+oxe

If 26—6—1/A<0, we have chosen 7 large and positive, so that

J; V2 )" dy = O(1).
If 26—6—-1/4>0, we have chosen 4 =1/24, in which case

z O * og¥ x), if 2a+2c—10,
f Vo) dy = L
1 O(og¥*'z), if 2x+2¢—1=0,

provided that we assume not only (35) but also (36). Thus we have, in any case,
fj V(@) dy = O(@®% 1% log® ~2 x) + Of(2** 1 *** + log x) log™ x]. (56)
Finally we have to consider
fﬂ(WTMWV)dy=0(f:/1-e|W|-|V|dy).

We first assume that 28—8—1/4<0. Then 2u=28—-6—1/2A<1/24, or 24u<}.

From a previous paper [2, (4.20)] we have the estimate
W(y) — 0(19_2‘4“ y6/2—1/4.4+(2.4—1)u),
8o that l—QW(y) — O(yd/2~l/44 +2Anu) _ O(ymo+2.4nu)’

since A=A(y) =y 1?47 =y°. Hence
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z .
[ A‘QIWI- Z Ianl-dy= z |an|' ywo+2Ar;udy
1

y<Ain<y+oAd 1<An<2+ 02t An— oAy

L%

— Z Ianl Z(:;,+2A’r)u 1};1/2;4—11 —_ 0(1)’
l<Ap<T+g2e

since 24u—1<0, and 7 is large and positive (irrespective of the precise order of

Sin<z |@n]). Similarly
fl AW |- Vi(y)dy = 0),

in case % is sufficiently large. Thus the order of magnitude of [fA ¢|W|-|V|dy is
smaller than that of [ 7% |W(y)|*dy.

We next consider the case 28 —8—1/4 >0. In this case we have chosen =1/24.
We have

r z 3 T 3
[T may<{ [ remwaral {[ivora)

—_ 0(x2a).+1 + $2ﬂ+1_2/A logﬂ'+lx)§ . 0(x20z+1-2lA loga’+1x)}’

on using (55) and (56), if &' >2(r—1), since a>q. If «=pf, a'=f’, then this term is

z 420

of the same or smaller order than [f [W(y)? dy.

Hence we have the following

THEOREM 1. If functional equation (4) is satisfied with 6 >0, A>1, and u,=c'n,

An=c""n, and the only singularities of ¢ are poles, and

S |ba|?= 0% log” x),

un<I

then for 28—-8—1/A4<0, we have
z
f | E(y) 2 dy = c,2®** ! + O 124 logP 2 z), (57)
1

where wy=0/2—1/44, and the error-term E(y) is defined by (9).
If 28-6—1/A>0, then on the basis of the further assumptions that

S |aa]?= 0" log” x),

An<T

and that B'=2(r—1), where r is the maximum order of a pole with maximum real part,

we have

I
.f |B(y)]* dy = O@@®**!) + O™ 1% 1og" " 2). - (88)
1
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Thus, if 0<28~8—1/A<1/24, we have
f :IE(y) [* dy = O(z**),
and if 28—06—1/A>1/24, then
f:IE(y) [ dy = (™' log”** x).

The above theorem yields a number of results on the mean value of the error-
term associated with several arithmetical functions. When applied to the Dedekind
zeta-function, it gives new results on the number of ideals with a given norm.

Let K be an algebraic number field of degree n, and £ an ideal class in K.
The Dedekind zeta-function of the class € is defined by

Ce(s, @)= 2 (Na)™,

aegd
where the summation is over all non-zero integral ideals in €. We may write

tes, @)= 5 %W

Pl

(59)

where @, (%) is the number of ideals in € of norm k. It is known that (x(s, &) is a
meromorphic function with a simple pole at s=1, with residue, say, A, which is in-

dependent of ¥, and satisfies the functional equation

(s, Q)=8(1—s, ), (60)
where E(s, ) =T"(35) " (s) B Lx(5, Q),
with B=2"7"2(|A])"

Here r, is the number of real conjugates of K, 2r, the number of imaginary con-
jugates, A is the diseriminant, and € is the class conjugate to L.

The Dedekind zeta-function of K is defined by Cx(s)= >.q(Na) °, where the sum-
mation is over all non-zero integral ideals in K. Clearly (g (s) =Yg {x(s, &), and satisfies

the functional equation

E(s)=&(1—y),

where &(s)=I"(38)T":(s) B"°{x(s). It has again a simple pole at s=1, with residue
Ah, where h is the class number of K. We may write
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Le(e)= > %

Ts?
k=1 k

where @ is the number of integral ideals of norm k.

From a previous paper [3] we have, for n>2,

> a%=0(zxlog" 'z),

k<z
and, if the field K is Galois, then

Sai~c-xlog" a.
k<z
If we apply Theorem 1 to the function (g(s, &), which satisfies equation (60),
and note that =1, A=1}n, =1, f’=n—1, r=1, we obtain the following

THEOREM 2. Let K be an algebraic number field of degree n, & an ideal class
i K, and (x(s, L) the Dedekind zeta-function of the class ¥, given by
=] a SZ
Lele, = 3 D,

=1 K

Let B(x)= s a,(8)— Az, where A is the residue of (x(s, Q) at s=1. Then, if n=2,
we have

f |E(y)]? dy = c,a®* + O(z log® z), (61)
1
and, if n>2, then
f |E(y)|? dy = O(=*~*" log™ x). (62)
1

Remarks. 1. Let us consider the case »=2. Relation (61) implies that

: [1B@ay- 0@ ©3)

From a previous paper [2, p. 128] we know that

fim 20 4 o, (64)
e

so that (63) seems to be “‘best possible”.
If n>2, then we have

x
:% f | E(y)| dy = O(z'~*" log™* z), (65)
1
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as against the Q-result [2, (8.18)]

i e, = oo, (66)
We notice that for n=3, the two results (65) and (66) seem to fit in, whereas for
n>4 it is difficult to maintain that either of them is “best possible”.

II. It is obvious that Theorem 1 applies also to L-series, and to Hecke’s zeta-
function with Grossencharacters, cf. [2, §8]. We get mean-value theorems for the
character-sums. We do not write down the actual results, since they are very similar
to (61) and (62). |

§ 5. Applications to classical arithmetical functions

If r,(n) denotes the number of representations of'n as a sum of two squares,
the properties of the generating function {,(s) = 2521 7,(n)/n* are well known [1]. We
have, further, the property [12, p. 84]
> 75(n)=O(zlog ).

x

n<

Hence, by Theorem 1,

z
f | Py ()| dy = ¢, 2% + O(z log® x),
1

where P,(x)=Dn<sry(n) — 7, a result which is due to Cramér, Landau, and Walfisz,
as stated in §1.

We can similarly consider 74(n), the number of representations of n as a sum of
three squares. It is known [1, p. 502] that ry(4n)=r,(n), and that if n=g%q, where ¢
is square-free, and 44 n, then '

rg(n) <c,- g”“q(q), O<e<]l.

It can also be proved from the explicit formula for r,(n) that rs(q)=0(l/§10g 9).
Further we have [2, Th. 4.1], D acs73(n) = 0(z*?). Hence

> rim)= 2 r§(92q)=0( > 92*23r§(q))

n<z gig<z <z

2+2s
-0| 37 3 ni)]-owtoga)

o<z J a<zier
2¢

=O(ztlog 2)- 0 (x* > g;z) = 0(=®log ).
<

5~ 642906 Acta mathematica 112. Imprimé le 22 septembroe 1964.
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Theorem 1 will then yield the result

fl | P3(y) P dy = O(2® log® ),

where P,(z)=Dnc 73(n) —atx?/I'(5/2). Jamnik [7] has, however, shown that
f | Ps ()| dy = ¢, 2% log z + O(2® log? ).
1

Similar results can be obtained for r,(n) for k>4.
If d(n) denotes the number of divisors of n, then >%.; d(n) n~°=(2(s), the square
of Riemann’s zeta-function; and we have [10, p. 133]

2 d*(n) = O(xlog’ a),

ngT

so that Theorem 1 gives
x
f |A@)I*dy = 0, - 2 + O(x log’ z),
1

where A(x) =2n<.d(n)~2zlogz— (2y — 1)z, which is an improvement on Cramér’s re-
sult (3). We have found a reference to a similar improvement in [11], though we
have not seen that paper.

If 7(n) denotes Ramanujan’s function, then it is well known that >3, z(n)n*
satisfies the functional equation (4) with A,=pu,=2an, =12, a,=b,=t(n), and that
(6, p. 172]

2 T8 (n)=O0(=").

n<r

Hence, by Theorem 1,

fl | T(y) |? dy = ¢y 12} + O(2"*log® z),
where T(x)= D n<;T(n), & result which is due to Walfisz [13].
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