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If a Banach space has a Schauder basis 8, then By = sup, , |27, aell/liz] exists,
where z = Zfila;e". Inf S, taken over all g is called the basis constant of the
Banach space. It is obvious that if the Banach space B has the basis constant p,
then every finite-dimensional subspace ¢ of B can be approximated by subspaces
D, of B — by approximating a set of basis vectors of C with vectors of finite
expansions in some basis ~ such that each D, can be embedded into a finite-
dimensional subspace E. of B, onto which there is a projection from B of norm
arbitrarily close to p.

In this paper we construct a separable infinite-dimensional Banach space B
with a two-dimensional subspace C; with the following properties: There is a
» > 1 such that, if D is a two-dimensional subspace of B sufficiently close to
C; and F is a finite-dimensional subspace of B containing D, then there is no
projection from B onto £ of norm < p. Thus the basis constant of this Banach
space is > p. This seems to be by now the strongest result in negative direction
on the well-known basis problem. The previously strongest result seems to be
Gurarii’s example of a Banach space where fx > 1 for every f. (See Singer [1]
Pp. 218—42))

We now start by giving a general and somewhat. unprecise description of the
ideas behind the coustruction and of the problems we meet. We consider a two-
dimensional subspace C; of [_(I"), where I" is the set of pairs of positive integers.
We assume that the projection constant of €] is > 1. Now our first ambition will
be to embed O, in a larger space K, such that there is no projection of norm
close to 1 from JE; onto spaces close to € and such that no subspace C, of £,
containing a subspace of E, sufficiently close to €] has a projection constant
near to 1. However, if we try to do this we have to get control of quite many linear
spaces. In order to describe how we obtain the necessary simplifications, we give
now a description of the way we estimate norms of projections.
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Let us assume that O is a two-dimensional subspace of a Banach space B and
that 0,ay,ay,...,a, are n - 1 pointsin C, such that gl =1; j =1,2,..., %,
floe — eill <1; 4,5 =1,2,...,n. We say that b € B is a central point for the
n - 1 points, if [p] =4 and b —all=12 j=1,2,...,n Itis obvious that
if b is the only central point in B for the » + 1 points 0,a,,a,, ..., a, and
points far away from b are far from being central points, then a subspace of B
which contains a subspace close to C; and onto which there is a projection from
B of norm close to 1 must contain a vector near to b. For otherwise by such a
projection b would be mapped onto a point whose distance to some of the points
0, ay, Gg, . . ., & would be essentially larger than 1.

This description suggests how we can get control of the projection constants of
subspaces of B containing a subspace close to C;. It namely gives that we can
restrict our attention to subspaces of B containing a subspace close to ¢; and con-
taining a vector close to b. In our example we havein C; twosets 0, a;, a5y, . . ., @y,
and 0, @y, Gy, - - -, @s,, With unique central points b; and b, and so we can restrict
our attention to subspaces of B containing vectors close to &, and b,.

The way in which we will build up our Banach space is as follows. We start
with a sobspace C; of 1.(I"), generated by two vectors ¢! and 2 In U, we
have two point sets with unique central points %e® and Je* in B. The construction
is made so that for every two-dimensional subspace D of I,(I") sufficiently close
to (', there are point sets of D such that 1e® and %e* are the unique central
points in B for these point sets and points far from fe3 and 4et are far from being
central points for these point sets. This is important since it gives that there will
be no accumulation of approximations in our construction. Now in every subspace
of B sufficiently close to that generated by e® and e* there are point sets with
the unique central points 1e®> and }ef. The facts just described are part of Lemma 2
below and give an idea of how the discussion goes on. We will finally conclude that
if a subspace H of B contains a subspace close to O and there is a projection
from B onto E of norm close to 1, then £ can not be finite-dimensional.

We now define the vectors e/, e/ € [ (I'), which generate B. We let ¢/, denote
the component of e/ which corresponds to the pair (r, k).

We choose e] ;= 0611 — (b — 1)-0.001, £=1,2,...,12. We then choose

e, = — 0600 and choose e}, k= 2,3,...,12 inductively by the equations
0.611 — (b — 1)+ 0.001 — (0.9995 + 0.01(k — 1))e} , = 0.611 — (k — 2) - 0.001 — (0.9995
0.01 - (k — 1))el ,_;. By this choice we obtain that €], k=1,2,...,12 lies
between — 0.600 and - 0.612 and that the component (1, k) is the largest of the
12 components (1, 1), (1,2),...,(1,12) of the vector e! — (1 4 0.01 - (k — 1))e?,
E=1,2,...,12. We also see that if +' and »? are sufficiently close to e! and e?
in I (') then the component (1,%k) will be the largest of the 12 components
(L,1), (1,2),...,(1,12) of 2! — (1 + 01+ (k — )% k=1,2,..., 12, Weput

er, = ¢ei, =0 if k> 12. Components (r, k) with » > 1 will be defined later.
We will have need for such components to save the uniqueness of central points.
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We will now define ¢* and e* so that 1e® is the unique central point in B for
the 7 points 0, (e — (1 4 0.01(k — 1))e?)ljer — (1 + 0.01(k — 1)), k= 1,2,...,6
and so that 4e* is the unique central point in B for the 7 points O,
(et — (1 - O.01(k — 1))e?)/ller — (1 4 0.01(k — )], k= 17,8,...,12 and so that
this holds even if ¢! and e? are replaced by approximating vectors o' and v?

in B. To this end we put e ,=¢,=...=¢el ;=1 and we choose
€ 1, €8 ...,6 1 in such a way that:

(a) the distance in I -norm between the 6-vector % - (e}, el ..., € 1,) and
each of the seven 6-vectors which consist of the components (1, 7), (1, 8}, ..., (1,12)

of the vectors 0, (¢! — (1 + 0.o1(k — 1))e?)/ljet — (1 + 0.01(k — 1))e¥, kb = 1,2,..., 6,
is strictly less than .

(b) the four 6-vectors (e1,7, €15 « - - €1.12)> (€175 €185 - - o5 €1.12) (64,75 €1 gs - - o €1 13)
and (1,1,1,1,1,1) are linearly independent.

We need (a) since 4e® shall be a central point even if we approximate e! and
¢ by »' and 9% and (b) since 1e* defined below shall be a unique central point.

Weput ef ; =€} 3= ... =€, and choose ef, el,,...,e in such a way that:
(a;) the distance in 7, -norm between the 6-vector % - (el €}, ...,e€1q) and
each of the seven 6-vectors which consist of the components (1, 1), (1, 2), ..., (1, 6)

of the vectors 0, (e — (1 - 0.01(k — 1))e?)/lle* — (1 + 0.00(k — 1))e?||, k= 7,8,...,12,
is strictly less than 3.

(by) the four 6-vectors (efq,el,, ..., el¢), §=1,2,4 and (1,1,1,1,1,1) are
linearly independent.

As above we need (a,) since }e* shall be a central point even if we approximate
¢t and e* by ¢! and ¢? and (b,) since %¢® shall be a unique central point.

For k> 1 we now choose e}, = ei; and e 15, = €], We see that this
does not destroy that %e® and 3e* are central points for the sets described

above. We also obtain that the components (1,1),(1,2),...,(1,12) of
e — (1+001(k—1)-et, E=1,2,...,12 are all < 0.25 and that the com-
ponent (1,12 - k) is the largest of the components (1, 13), (1, 14),..., (1, 24)

of e — (1 4+ 0o1(k — 1)) ¢t k=1,2,...,12, andis > 1. The last sentence is
obviously true even if ¢® and ¢* are replaced by approximating vectors »® and o*

in 1 (I).

We now choose ¢, eik k=1,2...,12, to be all in the interval (0.05, 0.10)
and choose them in such a way that the six 6-vectors (ef,, e, ..., el¢),
J=1,2,...,6, are linearly independent and such that the six 6-vectors
(el 1, €l4, ...,¢el1,) are linearly independent. This is done in order to make }e3

and 4e* unique central points. For all & >1 we put e 5., =e, and
9?,12% = eiw .

Now for all k£ <12j, j=>1, we put ¥ Y =0 and for all £>1 and
Jj=1 we put ft#5Y =€, For all k¥ <12j, j=>1, we put §¥ =0 and
for all k>1 and j=>1 we put e/l , =ef,.

Now we have to introduce components (r, k) where r» > 1. For if we did not
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do that, we would only have obtained the following: 1e¥*' and Ze¥** are both
central points for sets consisting of 0 and linear combinations of ¢¥~' and ¢%. This
holds even if ¢¥~' and ¥ are approximated by vectors »¥ ' and »¥ in B.
But 1e¥*' and 1e¥"* will not be unique central points. For certain linear com-
binations of ets, ¢ <2j— 2 or ¢>2j+ 5 could be added to Y™ and
1e*? without destroying their property of being central points.

For all j>1 and kE>1, e[(+3)/2]kw 1, e’2k_01 and e+2k— — 0.1
The definition of €73} and €7, is made so that }e¥*' and 4eY** are central
points even if eV~ and ¥ are approximated by vectors v»”~' and v¥ in B. For
those triplets (j, 7, k) where ¢/, is not yet defined, we put e/, = 0.1+ (— 1)1
This last definition will save the uniqueness of 1¢¥*' and 1e¥"® with respect to
linear combinations of e:e, 1 <2j — 2 or ¢ >2j+ 5. For if we add such a
linear combination to 1e¥™' or 1e¥'* the distance to 0 will be > %

We now resume in three lemmas the immediate consequences of our definitions
of the vectors e, j > 1.

LEMMA 1. There exists an &> 0 such that if [P ' — eV ' <e and
[v¥ — Y| <& holds for two wectors v7"' and ¥ in B, j>1, then
v — (1 + 0.01(k — )Y has its largest component on the same place as
T (1 4001k — 1)e¥, k=1,2,..., 12, namely some component (r,m)
with r =1, and the distance between e and each of the elements 0,
@ — (1 4 0.01(k — D)WY /¥t — (1 4+ 0ok — D)WY, k=1,2,...,6, is 1.
Obviously a similar result kolds for Le¥** for k=1,8,..., 12.

LemMA 2. Let o¥ ' and ¥ be as in Lemma 1. Then L8V is the

only vector of B such that the distance between the vector and each of the vectors 0,
(W — (1 4 001k — 1))t — (1 + 0ok — D)WY, k=1,2,...,6, is }
and there are positive constants K and &, such that if g € B and |lg — ¥ = 6
then the distance between Lg and some of the

b

0, (' — 1+ 001k — DY) /| — (1 + 0.01(k — DY), k=1,2,...,86,

is at least § + LK min (6, ;). A similar result holds for Le¥** for k= 1,8, ..., 12.
Proof. The lemma holds since the six 6-vectors (e} 515, eVnils, . . ., el ;zjig)
t=1,2,...,6, are linearly independent and since (j + 2, k), k& > 1, are pairs

where eﬁqlk = 1. The last property gives that [le¥™" - Al > |¥*"| 4+ 0, 1 - ||A||
if % is a linear combination of vectors ¢, 7+ <2j—2 or 7 >2j+ 5

We can assume that e, ¢ and K in Lemma I and 2 are the same for %!
and €Y7
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Lemma 3. Let v~ and v” be as in Lemma 1. If C is a subspaceof B, vi~' € C
and v¥ € C, and infyeclly — €97 = 6, then there is no projection from the space D
generated by C and €' onto C of norm <1 -+ K -min (9, &) where K and &
are defined as in Lemma 2. A similar result holds for e*+.

Proof. The lemma holds since by any projection from D onto C the
vector e is mapped onto a vector whose distance to some of the elements
0, (@' — (1 + 0.01(k — 1)) /|p¥" — (1 + 0.1k — )%, k=1,2,...,6, is
> 1+ 1K min {8, &).

We now prove that B has the basis constant > p > 1. We choose p =
1+ 1K - min (e, ) where & is that of Lemma 1 and K and & are the same
as in Lemma 2. Let D be a two-dimensional subspace of B generated by »' and
v?, o' and v* as in Lemma 1. If E is a subspace of B, D c E, such that there
exists a projection from B onto E of norm <p, then by Lemma 3 ¥ must
contain vectors whose distances to ¢* and e¢* are <Ce. Thus by Lemma 1 and
Lemma 3 E must contain vectors whose distances to ¢® and 8 are <& By
induction we see that B must contain vectors whose distances to ¢¥~' and e¥
are < ¢ for every j > 1. Thus B has the basis constant > p.

Remark. It has been shown by J. Lindenstrauss that the construction above can
be modified so that we get a uniformly convex Banach space isomorphic to Hilbert
space with basis constant > 1.
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