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0. Introduection

It has been known since a long time that the function in R?
me(&) = (L — [EF)% €] < Lymy(8) = 0, |§] = 1,
where « is a real number, is not a multiplier on FLP(R?) unless
a=0,0>dlljp — 12| — 1/2. (0.1)

In fact, this follows from the asymptotic expansion of the Fourier transtorm 'n/z\a
When d =1 the sufficiency of (0.1) follows from the estimates of M. Riesz for
conjugate functions so we assume d > 1 in what follows. Stein [7] showed that

o> (d—1)|1/p — 1/2] (0.2)

is always a sufficient condition but it is evidently stronger than (0.1) except when
p =1 or p = co. More recently Fefferman has proved in [2] that (0.1) is a sufficient
condifion when |1/p — 1/2} > (d + 1)/4d, and in [3] he proved that

o > max (0,d|1/p — 1/2| — 1/2) (0.3)

is a necessary condition if p £ 2. When d = 2 Carleson and Sjslin [1] have
proved completely that (0.3) is a sufficient condition for m, to be a multiplier on
FL?(R?. The main point in their proof is an LP estimate for oscillatory integrals
which is very interesting in its own right. In a special case they developed an idea
of Stein and Fefferman (see [2]) to show that it follows from the Hausdorff-Young
inequality but in the general case they used a much more complicated argument.
In this note we shall simplify their proof by applying an extension of the Hausdorff-
Young inequality also in the general case. This gives somewhat more precise estimates
also.
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The function m, in R? can be replaced by any function of compact support
which is smooth except near a curve with non-zero curvature where it is the distance
to the curve raised to the power «. In a recent manuscript Sjolin [6] has extended
the result to curves with tangents of higher but always finite order. We simplify
his proof here.

In a final section we indicate some of the open problems on LP estimates for
oscillatory integrals in any number of variables. These seem to be of interest not
only in the study of multiplier problems but in other contexts as well.

1. L? estimates for oscillatory integrals
We begin with an extension of the Hausdorff-Young inequality.

THEOREM 1.1. Let « € CP(R*), let ¢ € C°(R*) be real valued and set with

N>1
Tufie) = [ é™date, y)f)y, 1€ 7R, (L1)
If det ®p/dxdy £ 0 in suppa and 1 <p <2, 1p+ 1jp’ =1 then
T fly < ON-4f,, f€O0P(RY). (1.2)

That this is an extension of the Hausdorff-Young inequality is seen by taking

p(z,y) = <z, y> and & with a(0,0) =1. If f(y) is replaced by f(y VN) the
Hausdorff-Young inequality is the limit of (1.2) when N — co.

Proof of Theorem 1.1. The statement is obvious when p = 1 so in view of M.
Riesz’ convexity theorem it suffices to prove it when p = 2. In the proof we
may assume that f has small support. We have to estimate

2xfe = [ [ antv, D) F@gz
where
an(y, 2) = / Nt ) = ot g, )l 2)dr.
When y and z are close to a given point and (z,y) € supp ¢ we have

[0/0x(¢(x, y) — ¢, 2))| = lgayly — 2)| + Oly — 2I*) Z cly — 2|
so k partial integrations give if % is any positive integer

lan(y, 2)] < Cy(1 + Ny — z})7~



OSCILLATORY INTEGRALS AND MULTIPLIERS ON FLP 3

If k=d+1 it follows that [ lay(y, 2)ldy < CN~% [ lan(y,2)ldz < CN~".
Hence [Txflli < ON~Yfl3 and the theorem is proved.

Remark. Using arguments close to those in Hormander [4, sections 2.2 and 4.3]
it is easy to show that

NPITylly — sup |a(, y)| |det (9°p|0xdy/2m)| =

provided that y —> 0p(x, y)/0x is injective for fixed = and (z, y) € supp a.

If the matrix 9%p/oxdy in Theorem 1.1 is allowed to be singular it is much
harder to analyse the possible L? estimates for 7'y. The simplest situation occurs
when ¢ is independent of y,; thus a function of 2d — 1 variables only. When
d = 2 we shall prove a slightly improved version of the key estimate of Carleson
and Sjolin [1]:

TaEOREM 1.2. Let o € CF(RE), let ¢ € C*(R3) be real valued, and assume that
the Jacobian D(0p|dy, 0*p/dy*)/Dx has no zero in supp a. (Here the variables in
R® have been denoted by (x, y); x = (%, ,).) Set

Tyf() = f eV Na(s, y)f(y)dy, fE€CP(R), =€ R (1.3)

Then it follows that
ITnfll, = ON~*4(q/(q — )™ ifl. i ¢>4 and 3jg+ 1r=1. (14)

Proof. To be able to apply Theorem 1.1 we introduce

Fy(z) = (Pnf@)) = f f N ol Vg (2, D)a(, 5)f (8)f (s)dsdt.
However the hypotheses of Theorem 1.1 are not fulfilled since

q’::a,(x: t)‘Pan(x’ t)
P (@, 8)pm (@, 8) |

which vanishes when ¢=s5. For ¢ close to s the determinant is equal to
(s — ) D(,, @u)[D(xy, 25) + O((¢ — 8)?) so it is bounded from below by clt — s|
in the support of a(z,t)a(x,s) if @ has sufficiently small support. Since
o, t) + @z, s) is a symmetrie function of ¢, ¢ it is a C® function @ of x and
y = (¢t + s, ts). Similarly 2a(z, t)a(x, s) is the restriction to Q2 = {y; 4y, < y3} of
a Cf function b(z,y). Since D(y)/D(t,s) =1t — s, it follows that @ satisfies
the hypotheses of Theorem 1.1, and

det 0%(p(x, £) + @(x, 5))/9x3(t, 5)) =

Falz) = f N (z, ) f(E)f(6) It — |- dy.

2
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If 1 <p =<2 it follows from Theorem 1.1 that

, 1p
T wf o = IF el < CN 2 ( f If@)fs) Pl — SI‘Pd@/)

Q

1 lp
= ON—* (‘2‘ /f If(t)lplf(S)lPIt—Sll"’dsdt) .

To estimave the right hand side we use the classical inequality for fractionary
integrals

[ [ 19t — t1-aste < €57ty 1 <2je =412,

Taking 6 —1=1—p, that is, 6 =2 — p we obtain

1p
( [ [ oo - tl“”dsdt) < 0@ —p) S, 1<2fe=3—p.
Hence
1T xSl = ONT(2 — D))\ fllgprs—pyr 1 =0 < 2.
Here we write 2p"'=4¢q and 2p/(3 —p)=1r. Since 1/r=3/2p —1/2 and

3/qg = 3/2p" we obtain 3/¢ 4 1/r =1 and ¢ > 4 which are the only restrictions
on ¢ and on r. The estimate (1.4) now follows immediately.

CoROLLARY 1.3. Let I be an open interval on R, let I3y — D(y) be a C®
immersion of I as a curve with curvature * 0, and set with o € CF(I)

Sf) = f &< 20>a(y)f(y)dy, f€CPR), =€ R (1.5)
Then it follows that
ISfll, < Clgltg — DMIfl, if FECPMR), ¢>4 3fg+1fr=1  (L6)

Moreover, if § is the Fourier transform of g
N ~1/4 . (2 4 3 1
la(g o Pl = C(4 —3¢9)"gll, of g€CP(R), 1=9¢< 73, 7 + 7 =3 (L7

Proof. Since @’ and ®” are assumed to be linearly independent the function
o, y) = {x, P(y)> satisfies the hypothesis of Theorem 1.2 in R2xI. Choose
b € CY(R?) with b(0) =1 and apply Theorem 1.2 with @ replaced by b(x)a(y).
This gives the desired bound for
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l/q 1/q
N ( f |b(x)Sf(Nx)]"dx) = ( f lb(x/N)Sf(x)l“dx) .

When N — o the estimate (1.6) follows. By duality we obtain (1.7).
The following is a simple combination of Theorems 1.1 and 1.2:

THEOREM 1.4. Let a € OP(R*), ¢ € C°(R*) and assume that in supp a we have
Pployox = 0 and

t € R?% 0/0y{t, 9p/ox)y = 0%[oy*(t, dp[ox) = 0 =t = 0. (1.8)
(Here the variables in R* have been denoted by (z,y); =,y € R2.) If

Tof@) = f N a(z, ) f()dy, | € OF(RE), = € RY,
it follows that (1.4) is valid.

Proof. The statement is weaker than Theorem 1.1 if the support of @ is close
to a point where det 9%p/dydx # 0. Let us therefore assume that the support of
a is close to a point say & = y = 0 where det %p/dydx = 0. After a linear change
of the variables  and y we may assume that at (0, 0)

Po/oy;0m, =0, j=1,2; 0p/dy,0x, # 0, p[oyiow, + 0.

It follows that the function (z, ¥,) — @(x, ¥, ¥,) satisfies the hypothesis of Theorem
1.2 in a neighbourhood of 0. Writing

Sufte,y) = [ & uta, ) )y,
we have Tyf(x) = f Snf(x, y;)dy, and Theorem 1.2 gives
ifr
ITxflly = ON~*(gj(q — 4)** f d?/z( (@1, ?/z)!'d%) .

We can assume that the support of f is in a fixed compact set and the double
integral can then be estimated by [|f|l, in view of Holder’s inequality. The proof is
complete.

Example 1.5. Let ¢(x,y) = @@ — y) where @ € C°(R*\{0}) is positively
homogeneous of degree 1, and let a € C{(R2X R?) vanish near the diagonal. Then
the hypotheses of Theorem 1.4 are fulfilled if @"(z) = 0 when z = 0. In fact, the
equation @“(z)t = 0 is fulfilled by ¢ =z since @’ is homogeneous of degree 0,
and @"'(z)z = — D"(z) # 0.
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2. Some convolution operators and multipliers
The preceding example leads to the following theorem of Carleson and Sj6lin [1].

TarorEM 2.1. Let & € O°(R2\{0}) be real valued, positively homogeneous of
degree 1, and assume that D"(x) # 0 for every = +# 0. If

Kf(x) = /e"‘p("")a(x — y)f(y)dy, f€CF(R?), (2.1)

where a € C*(R?) and a(tz) = t *a(z) when |z|>1 and t > 1, it follows that K
is continuous from LP to LP if

A > max (3/2,2|1/p — 1/2] 4+ 1). (2.2)

Proof. By passage to the adjoint we can reduce the proof to the case p = 2.
Choose yx € CP(R*) so that z # y if (z,y) €Esupp y, and set for £t =1

Sf@) = [ e ylo ft)dy, 1€ OF (R
Then 'we have
8./l = C, (NS, (2.3)
‘where
C,(t) = Cr*(pl(p — )™, p > 4 Cpft) = O (log P, 2 <p < 4. (2.4)
In fact, we may assume that supp f belongs to a fixed compact set, and for p > 4
the assertion is then a consequence of Theorem 1.4 as seen in Example 1.5. When
p = 2 it follows from Theorem 1.1 applied to a suitable variable as in the proof
of Theorem 1.4. Interpolation by the M. Riesz convexity theorem between p = 2
and p =4 - 1/logt gives the estimate for p =4 and another application of

Riesz’ theorem proves it for p between 2 and 4.
If v is a function such that x(z,y) # 0 implies p(y) = 1, then

18, :f b = CpO)llw(- — 2)fllp, f € O3 (R®), 2 € R, (2.3)

where
Suefl@) = [ eyt — 2y — @)y
It is obvious that
fx(x—-z,y~—z)dz=F(x—y)

where F € Oy vanishes near 0 and is = 0 if x is. By suitable choice of y we
can obtain any such F, for multiplication of y by a function g(x — y) leads
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to the function gF instead of F. Since 8, ,f(x) can only be different from 0 for
lx — 2| << C, we have by Holder’s inequality

f 8, . f(@)dz

Integration with respect to « gives in view of (2.3)

1B.fll, = CC,@)lIf1,, f € O3 (R?), (2.4)

"= [ e

where we have written
Rf@) = [ Sufeiz= [ é-F@— oy
After a change of variables (2.4) takes the form

[ er (.~ gynswr| < oeo,mif, £ €CF.

p

We multiply by t~17* and integrate from 1 to oo with respect to ¢ noting that
lftl""' ()dt < o because 1 —A—2p<—1 and 1—7i-—-1/2<—1 by
(2.2). (Recall that p = 2.) If

a(x) == f F(z/t)t " ds (2.5)

it follows that K is continuous in L?. Now @ is homogeneous of degree — A for
x| > R if F(x) =0 for |x| > R, and every such function can be written as the
sum of one of the form (2.5) and one of compact support. This completes the proof.

We shall now consider some multipliers on FLP. For the relevant facts on
multipliers we refer to Hormander [5, Chapter 1]. We shall denote by M, the space
of multipliers on FLP,

THEOREM 2.2. Let I be an interval on R, let yp € C*(I) be real valued and
assume that " %= 0 on I. If a € CP(IXR) it follows that

my(€) = a(§)(&; — p(&))%
s in M, iof
& > max (0, 2[1/p — 1/2| — 1/2). (2.6)

Here we have used the notation r_ = max (r, 0); r € R.

Proof. Since M, is a C§ module we may assume that

a(§) = ay(&1)as(E: — (&), o; € Ce.
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m, is then the Fourier transform of A(x,)I(x,, ;) where AA(E2) = a,(&,)&5, and

I(xy, x,) = f eiEmt vlhaly (£)dE,.

It is a well known consequence of the stationary phase method that the function
I(z) is rapidly decreasing except in directions such that x, + v'(&)z, = 0 for some
& €supp @, which defines & as a homogeneous function of x of degree 0. If
D(xy, ;) = 2n(Ey2y + w(&)x,) for this value of &, we can extend @ to a
homogeneous function of degree 1 satisfying the hypotheses of Theorem 2.1, and
A(w) (g, 25)e™ " has an asymptotic expansion in C® homogeneous terms of
degree — &« — 3/2, — & — 5/2,... Hence the theorem follows from Theorem 2.1
and the fact that convolution by any integrable function is bounded in L?.

The following improvement is due to Sjolin {6] who gave a different proof:

TurorEM 2.2". Theorem 2.2 remains valid if " has zeros in I provided thot they
are of finite order.

Proof. Since " can only have a finite number of zeros in supp a; we may
assume that there is only one, say at & = 0. Since composition of any multiplier
with a linear transformation in R? is another multiplier with the same norm we
may assume that

(&) = c&F + OETHY), e # 0.

To examine what happeuns at & =0 we introduce w,(&) = ¢ "p(s&;). When
e—> 0 we have y,(&) —cf in C®. If y € CP(IxR) vanishes in a neighborhood
of 0 it follows from Theorem 2.2 that

2(E)(& — w.(6))%

isin M, for 0 <& <1, and the proof shows that the norm in #, is independeat
of &. In view of the invariance of multipliers under composition with linear maps
(Hormaader [5, Theorem 1.13]) it follows that

x(Eye, Ea1e™)e™™ (&, — (&)

is a multiplier with uniformly bounded norm when 0 <& =1. If we choose
2(&) = (&) — (2, 27&,) where p € CP(I X R) is equal to 1 near 0 and note that

P (E)(E — p(E)): = ? 1@ BN E — pENL, & % O,

it follows that the left hand side is in Mp since Z 27mk% o5, The theorem is
proved.
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It was convenient in the proof of Theorem 2.2" to have the singularity of m,
on a curve of the form & = (&) but a partition of unity immediately extends
the conclusion to arbitrary curves with no tangent of infinite order.

3. Open problems

We shall now discuss the analogue of Theorem 1.2 for several variables. At the
same time we will show that Theorem 1.2 is optimal.
With o € CP(R*") and a real valued ¢ € C*(R*') we write

Tfe) = f N, y) fy)dy, f € OF (RS, = € RY.

We shall assume
rank 0%p/oxdy = d — 1 when (z,y) € supp a; (3.1)
9/0y{op|dx, ty = 0, 0 # t € R* = det 3%/0y2(dp[dx, t)> # 0, (x, y) Esuppa;  (3.2)

which reduces to the hypotheses of Theorem 1.2 when d = 2. Assume for example
that @ =1 near 0. The norm of 7'y as an operator between LF spaces is not
changed if we replace ¢(z,y) by @@, ¥) — @, 0) — ¢(0, y) + @(0, 0) so we may
assume that ¢z, 0) =0 and ¢@(9,y) = 0 identically. After a linear change of
variables x and y we have by (3.1)

P, y) = Exy, + Z x)y; + be @) + O(lxlly|(l=* + |y[*).

Here a@; and b; are quadratic forms. If the support of a is sufficiently small
we can take x; + o; and y; + b; as new variables, j < d, and reduce ¢ to
the form

p@, y) = <& y> + Ay, y>[2 + O(lz]lyl(|=]* + 1y ) (3.3)

where A is a symmetric matrix and x = (2, z;). Writing 2’ = z,z we have

(@, y) = xa((2, ) + LAy, ¥ [2 + p(za 2, ¥)),

where (2, 24, y) = O(ly|(@] + |y|*)). For sufficiently small x; and z it follows
that ¢ has a unique critical point near 0 as a function of y. If f is 1 in a neighbor-
hood of 0 and has sufficiently small support it follows from the stationary phase
method that

[Tnf(xa, 25)| ~ (27|N xd)(d_l)/2 |det 4 1_1/2

when Nz;— oo and 2z 2, 0. It follows that there are positive constants
C1s - - -, ¢4 such that for |z{ <c¢;, ¢;/N < 23 < ¢; we have

T xf(@g2, 25)| = c5(Nag) =D,
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Hence

€

/N

Depending on the convergence or divergence of the integral at 0 we obtain the
following conclusions

lim inf [T fIl, N2 = C(1)qg — 1/2 + 1j2d)"Y9, 1/2 — 1)2d < 1jg =< 1/2; (3.4)
Noow
lim inf || Ty fll,N—Y2(log N)™ Y1 = C, 1/g = 1/2 — 1/2d; (3.5)
Nww
lim inf |7y f[ N9 = C|1/g — 1/2 4 1/2d|7"%, 1) < 1/2 — 1/2d. (3.6)
N>

Here C is a positive constant depending on f. Clearly (3.6) is equivalent to
lim inf |7y fIl, N = C|1/g — 1/2 + 1/24|"*7'2, 1)g < 1/2 — 1/2d,  (3.6)
N—>o0
so we conclude that the constant in (1.4) cannot be improved even for a fixed f.

Comparison of (3.6)' and Theorem 1.2 suggests that for 1/g < 1/2 — 1/2d we
should have an estimate of the form

ITnflly = ON-%(1/2 — 1/2d — 1)) f],. (3.7)
If ¢ satisfies (3.3) we have

T f @/N) — [ £<=20>a(0, y)f(y)dy, N — oo,

where ®D(y) = 9¢p(x, y)/0x, © = 0. Note that our assumptions on ¢ mean that
y — D(y) is an immersion of R*! as a surface of total curvature % 0; conversely
for every such @ the function <z, ®(y)> satisfies (3.1), (3.2). If we set

Tfe) = [ ¢< " ay) oy, (339)
where ay(y) = a(0,y) is in CF(R*™?), it follows from (3.7) that
ITflly < C(1/2 — 1/2d — 1/g)™~'7| f]]., f € CF(R*). (3.9)

(Compare this with Corollary 1.3.)

By (3.3) we have ®(y) = (y, {4y, y>/2) + O(lyP). Now set f(y) = fyle)
where f€ 0P and ¢> 0. Then we have |f[, = ¢“ " f|, and

(Tf)(@'[e, 2,]e%)e' =" — Sf(x)

where we have used the notation

Sfiw) = [ ety (3.10)
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Hence, if 1/r 4+ 1/7' =1,
lim inf 8 =Eyrr ) e, = ISFI AL

>0

We conclude that neither (3.7) nor (3.9) can be valid unless
/g <1/2 —1/2d,(d + 1)/(d — L)g + 1/r < 1. (3.11)

If there is equality in the second inequality it follows that
1871, < C(1jg — 124 — 1jg)™ "2 ],, f € O (R*Y). (3.12)

When d = 2 the second condition in (3.11) becomes 3/q - 1/r <1 which
shows that Theorem 1.2 is optimal also with respect to the L? classes involved.

Question 3.1. Does (3.7) follow from (3.1), (3.2) and (3.11)?

Question 3.2. Does (3.9) follow from (3.11) when ¥ — @(y) is an immersion
defining a surface with total curvature =% 0%

Question 3.3. Is (3.12) valid for any real symmetric non-singular matrix 4
when (3.11) is valid with equality in the second inequality?

Note that we have proved that a positive answer to one of these implies a positive
answer to the following ones. The arguments giveu in sections 1 and 2 still apply
to show that a positive answer to Question 3.1 implies that m, is a multiplier
on FL?(R* when (0.3) is fulfilled.

References

1. CariesoN, L., & Ss6rin, P., Oscillatory integrals and a multiplier problem for the disc.
Studia Math. 44 (1972), 287 —299.

2. FErrFERMAN, C., Inequalities for strongly singular convolution operators. Acta Math. 124
(1970), 9—36.

3. —»— The multiplier problem for the ball. Ann. of Math. 94 (1971), 330—336.

4. HORMANDER, L., Fourier integral operators I. Acta Math. 127 (1971), 79—183.

5. —»— Estimates for translation invariant operators in LP spaces. Acta Math. 104 (1960),
93 —140.

6. SsoriN, P., Multipliers and restrictions of Fourier transforms in the plane. Mimeographed
manuseript 1972.

7. STEIN, E. M., Interpolation of linear operators. Trans. Amer. Math. Soc. 83 (1956), 482 —492.

Received October 26, 1972



