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O. Introduction 

This work studies the continuity of pseudo-differential operators in H6rmander's 
class .~emn (cf. [11]) in several function spaces, including L p spaces, Hardy spaces, 
weak L 1 and BMO. The basic assumption throughout the paper is that 0< Q<= 1, 
0<_-6<I, in particular, all our results are valid for 6=>Q. The stress is on sharp 
conditions over the order and type of the operators. 

Our point of view is that in many spaces continuity should follow from the 
functional calculus and simple computations, once L 2 estimates and suitable esti- 
mates for the kernel are known. Thus, we prove three different types of estimates 
for kernels of pseudo-differential operators: pointwise, integral and "dyadic integ- 
ral" in w 1, w 2 and w 5 respectively; the first two types extend [14, p. 1053] and [1, p. 75], 
the last one may be new. Then we combine these estimates with the L2-continuity 
results proved in [13] to obtain (L 1, weak L~), (L ~, BMO), (L p, L q) and (H p, L p) 
continuity conditions that extend or improve results due to C. Fefferman [9], L. H6r- 
mander [11] and J. Alvarez and M. Milman [1] (most results are classic for 6< Q 
or 6_<-0). We also prove a pointwise estimate for the sharp maximal function 
(Lf) ~ in terms of the generalized Hardy--Littlewood maximal function Mpf  for 
some pseudo-differential operators L extending [2, p. 424]. It is well-known that 
these pointwise estimates give weighted L p estimates for L. 

When 0= 1, pseudo-differential operators of non-positive order are associated 
to standard kernels, i.e., they are generalized Calderdn--Zygmund operators. How- 
ever, when ~<1, in order to obtain the best continuity properties, one is led to 
consider kernels that blow up at the diagonal faster than standard kernels. It is 
then natural to ask to what extent properties valid for operators associated to stan- 
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dard kernels, remain true for more general kernels. In that direction we exhibit, 
following a construction of  H6rmander 's  [12], an operator whose distribution kernel 
grows at the diagonal slightly faster than a standard kernel, satisfies T1 = T * I  = 0  
and the weak boundedness property, but is unbounded in L 2. This shows that the so 
called T1 theorem of  G. David and J. L. Journ6 [7] cannot hold for kernels which 
are slightly worse than standard ones. 

Since we do not  aim at achieving minimal smoothness assumptions we just 
consider smooth symbols, but inspection of  most proofs would show the precise 
number of  derivatives that is being used. The functions considered, unless other- 
wise indicated, are complex functions defined on R n. The characteristic function of  
a subset A c R  n will be denoted by ZA. The letter C will denote positive constants 
that may vary at different occurrences. We use A to denote both the diagonal in 
R n •  and the Laplace operator in R~; the meaning will be clear from context. 
The Lebesgue measure of  a measurable set A c R  ~ is written as [A[. Finally, [x] 
will indicate the integral part  of  a real number x, i.e., the largest integer <=x. 

Following [11], a symbol in S~,~ will be a smooth function p(x, ~) defined on 
R n •  satisfying the estimates 

ID~Dgp(x, ~)1 ~ C~(1 +1~1) m-Ql~l+51~l. 

We will always assume that 0<Q_<-I, 0=<6<1, even though some times the con- 
dition Q>0 will suffice, like in some parts of  Theorem 1.1 below. As usual, ZanY.6 
will denote the class of operators with symbol in S~,~. A few times we will mention 
pseudo-differential operators defined by amplitudes a(x, y, ~). Most of  the results 
also hold for these operators, although sometimes appropriate changes in the order 
will be needed for 6 > Q. The organization of  the paper is as follows: 

w 1. Pointwise estimates for the distribution kernel; 
w 2. Integral estimates for the distribution kernel; 
w 3. (H 1, L1), (L 1, weak L1), (L *~, BMO), (L v, Lq)-continuity; 
w 4. Pointwise estimates for the sharp maximal function; 
w 5. Continuity on Hardy spaces; 
w 6. A counterexample to a T1 theorem. 

Acknowledgement. This work was done while the first named author was visiting 
the Universidade Federal de Pernambuco, Brazil, supported by grants from CN P q  
and FINEP.  
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1. Pointwise estimates for the distribution kernel 

Theorem 1.1. Let LE s 0 < Q -< 1, 0 <- t5 < 1, be a pseudo-differential operator 
in R n with symbol p(x, 4) and let k(x, y) be the distribution kernel o f  L defined by 
the oscillatory integral 

k(x,  y)  = (2n)-" f ei(X-Y)'ep(x, 4)d4. 

a) (Pseudo-local property.) The distribution k is smooth outside the diagonal. 
Moreover, given ct, flEZ~_ there exists NoEZ+ such that for each N>-No, 

sup Ix-yINID~D~ k(x, y)l < ~. 
x ~ y  

b) Suppose that p has compact support in 4 uniformly with respect to x. Then k 
is smooth, and given ~, flEZ~, NEZ+ there is C>O such that 

ID~D~ k(x, Y)I <-- C(1 + I x - y l )  -N. 

c) Suppose that m + M + n < O  for some MEZ+. Then k is a bounded con- 
tinuous function with bounded continuous derivatives o f  order <- M. 

d) Suppose that m+M+n=O,  for some MEZ+. Then there exists a constant 
C>O such that 

sup ID~D~k(x,y)l <= CIloglx-y]  I, x ~ y. 
I~t+fl=M 

e) Suppose that m + M + n > O  for some MEZ+. Then there exists a positive 
constant C such that 

sup ID~D~k(x,Y)l <= C I x - y l  -~'+~t+n~/Q, x ~ y. 
l~+#l =M 

Proof. The first three statements are part of  the classical theory and their proof  
relies on repeated integration by parts. Statements d) and e) will be now proved 
simultaneously. We will first consider the case O<Q<I .  Observe that if  k(x, y) 
is the kernel of  a pseudo-differential operator in La~m.~, it follows that D~D~ k(x, y) 
is the kernel of  a pseudo-differential operator of  order <_-m+ I~1 + Ifll. Hence, it is 
enough to prove d) and e) when ~ = fl = O. 

Let ~oEC~(R), q~_->O supported in the interval [1/2, 1], f r and set 
q~(~, t)=q~(141~-e-t), for 4ER ~. According to a) and b), it is enough to estimate 
k(x, y) for I x - y ] < l  assuming that p(x, 4) vanishes identically for 14[<=1. Thus, 

(1.1) k(x, y) = (2~)- ' f~  f eitX-Y~'epfx, 4)q~(4, t) d~ dt. 

Let 

(1.2) k(x, y, t) = (2n)-'fR" e'(~-Y)'~p(x, 4)q~(4, t)d~. 
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Given flEZ~_ we have 

(1.3) ( x - y ) # k ( x ,  y, t) = ~ _ #  c,#fRo eif~-r)'eD~p(x, ~)D~-~tp(r t) d~. 

Since q~(r t)ES~ as a function of ~ uniformly on t, Iffl is comparable with /1/(1-0) 
on the support of ~o and the volume of the support can be estimated by C t  n/(1-~ 
we obtain from (1.3) 

I (x -y )ak(x ,  y, t)] <= Ct t('+n-~lal)/(t-Q)a-1. 

Set N=[(m+n)/e] + 1 (the smallest integer > (m+  n)/9). 
Adding those estimates for f l=0 and I/~1 = N  we get 

t[(rn+n)/(1-o)]- i 
(1.4) Ik(x, y, t)l <= C 1 + t er~/~-~ I x - y l  N " 

Hence, (1.4) shows that k(x,  y, t) is integrable as a function of t for x ~ y .  More- 
over, according to (1.1) and (1.2), 

.~ j c i x - y l  -(m+.),'~ if m + n  > 0 
(1.5) [k(x, Y)I = / C l l o g  Ix-yll if  m + n  = o.  

This completes the proof of d) and e) when 0< 1. The proof for 0=  1 is analogous, 
using the decomposition 

(1.6) k(x, y) = (2r0-" f ~  f a, e'(X-r)'r O~({ / t )  d{ dt/t, 

where 0<-~EC~(R) is supported in [1/2, 2] and has integral equal to 1 with respect 
to the measure dt/t. 

Remarks. a) Very precise representations of  k(x,  y) can be found in [4, p. 54], 
[16, p. 59] when the symbol is an asymptotic sum of homogeneous terms of de- 
creasing order. 

b) When m=O, [~-t-fl[~l, 0 = I ,  the estimates in e) reflect the well-known 
fact that that operators in s ~,~ are associated to standard kernels in the sense of  
Coifman and Meyer [6, p. 78]. 

c) Estimates (1.5) for ~= 1 appear in [14, p. 40]. 
d) When i n = - n ( l - 0 ) ,  I~+fl l=l ,  (1.5) yields 

C 
(1.7) IVk(x, y)[ -<_- 

I x - y l  "+v~ " 

Operators with kernels satisfying (1.7) have been studied in [3], [1], [2]. They are non- 
convolution generalizations of some weakly strongly singular operators considered 
by C. Fefferman [8, p. 21]. 
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e) Theorem 1.1 remains true when the operator is defined by an amplitude 
instead of a symbol. 

f) The mean value theorem combined with Theorem 1.1 implies the following 
estimate that we note for further reference. 

g) When Q=I and 6 = 0  pointwise estimates have been obtained by A. Lap- 
tev [17]. 

(1.8) 

Ik(x, y ) - k ( z ,  Y)I + [k(y, x ) - k ( y ,  z)l <= Ix-zl if 2 l x - z l  ~ ly-zl.  
lY-  z[ ~+"+~)/~ 

We show now that the estimates of  Theorem 1.1 are sharp. 

Theorem 1.2. Suppose that m + n>=O and 0<: ~<_-1. Then there exists an opera- 
tor LE~Q~,0 such that for each 8>0 

sup Ix-y[("+"-")/o [k(x, Y)I = co. 
x ~ y  

Proof We will first conclude the result assuming that the following statement 
is true: 

Given e > 0  ~L~ELP~,"~ such that 

(1.9) sup Ix - y l  (m+n-~)/Q Ik,(x, y)l -- ~,  
x ~ y  

where k, denotes the distribution kernel o f  the operator L,. 

Now, for e>0  and NEZ+ fixed, set 

F, s = {aES~.o: sup Ix-yl(m+"-~)/~ , y)[ ~ N}. 
x # y  

This is a closed subset of  S~6. Moreover, Fff has empty interior. In fact, ifa~ denotes 
the symbol of  the operator L~ satisfying (1.9), given aEFf, a+ta~r for every 
t>0 .  Thus, Baire's theorem implies that UFI~ J is a proper subset of  S~Q,n. To 
complete the proof, it remains to show (1.9). I f  this statement were not true for 
some positive e, the closed graph theorem would imply that the map 

S~a3a ,--,. I x -  yl<r"+"-")/~ y ) E L = ( R " •  

would be continuous. In that case, given M > 0 ,  there has to exist a continuous 
seminorm III "111 in S~,a such that 

(1.10) aES'~",~, Illalll <= 1 ~ sup Ix-yl(m+"-")/elk(x, Y)I -<- M. 
x ~ y  

We will exhibit a symbol in S~I ~ that violates (1.10). In the construction below we 
assume that Q<I,  The case Q=I is similar. 
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It is convenient to use the notation [l~[] =max  (141[ . . . . .  14,1) for a vector ~ER". 
Consider a function, 0<_- q~ (x)C 6P(R'), such that q~ (x) => 1 if  Ixl <-- 1 and its Fourier 
transform ~(~) is supported in the cube 114][<1/2. Set 

(1.1 l) a (r = Z~=I  ap(4) 
with 

(1.12) ap(~) = p,./(1-Q) ~ i~kll =p eiv(P'~) O(P-~/~I-Q) 4 - k), 

where k runs over the lattice points of R" and V(P, k) denotes real numbers to be 
chosen later. It is easy to check that ap(r is supported in the cubic annulus 
(P-- l12)p Ql(~-q)<= ][~l[ <=(P+ II2)p qlO-Q). Furthermore, there are (2p+ 1 ) " - ( 2 p -  l)" 
terms in the sum (1.12) corresponding to functions with disjoint supports. Thus, 
for every multi-index a we have the estimate 

ID~a(4)l ~ C=(l+l~l)m-r 4ER", 

which shows that aES~I o. Moreover, the constants C, do not depend on V(P, k) 
so we may assume without loss of  generality that ]llall[ <= 1 for all choices of V (P, k). 
A simple computation shows that off the diagonal, the distribution kernel of  the 
convolution operator associated to the symbol a is given by 

k(x,  y)  = Z ~ = a  p(m+nQ)/(1-e) 

• •,,k, =p exp [ipQ/(1-~)k. (x--y)+ iv (p, k)igo(pq'O-Q)(X--y)). 

Taking xo#yo(R" and defining V(P, k)=-P~ we obtain 

(1.13) k(xo ,  Yo) = ~.a p=l"~ p(m+nQ)/(1--Q) 2ilk[, =P q~(pq/O-Q)(x_ y))" 

Let N be the smallest integer such that pQ/(l_q)[x0-Y0[ --> 1 (in particular, NQ/(1-Q)= > 
Ix0--Y0[-1). Then (1.13) and the choice of  ~0 imply 

k(x0, Y0) => ~,N-1 (m+nQ)/(1--Q) 2 1P (2v - - v = ~  p [( p +  - - -  - -  1)"] 

> C~S-lp[(m+nQ)lO-~)]+n-1 > CN~m+n)l(1-e) > C]xo--Yol-(m+n)/Q p=l 

Therefore, [xo-yo[(m+'-~)/Qk(xo, Yo)~C[xo-Yo[ -~. This violates (1.10) i f  x0 and 
Yo are taken close enough. 
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2. Integral estimates for the distribution kernel 

Theorem2.1. Let LEZP~#, 0<Q-<I ,  0=<d<l,  with kernel k ( x , y )  and set 
2 = max {0, ( 6 -  e)/2}. 

a) I f  m~_-n[ (1 -Q) /2+2] ,  then 

sup f lk(x, y ) - k ( x ,  z)l dx <= C, o ' < 1 ;  
lY-zl~a [x-z[>2aQ 

(2.0 
f [ k ( x , y ) - k ( x , z ) [ d x < -  C, t r > l .  sup x z >2a 

lY-zl~a [ - 

b) I f  m <- - n ( 1 - q ) / 2 ,  then 

sup f Ik(y, x ) -k(z ,  x)l dx <- C, a < l ;  
ly_zl_~t r Ix--zl>2tre 

(2.2) 
sup f Ik~y, x) - k ( z ,  x)l ax ~- c, ~ > 1. 

ly_zl_~a Ix-zl>2r  

Proof The proof  is an adaptation of  [14, p. 1053] (see also [15, p. 272]). Ac- 
cording to Theorem 1.1 b), there is no loss of  generality in assuming that the symbol 
p(x,  4) of  L vanishes for 141 -< 1. Consider a function O<=r supported in 
the interval [1/2, 1] such that 

s s (2.3) f f( t-x)t-X dt = O(t-~)t-~ dt = 1. 

Let 
k(x, y, t) = (2~)-" f e~X-') ~p(x, 4)r162 

s o  

(2.4) k(x, y) = f o k(x, y, t) dt/t = f ?  k(x, y, t) dt/t. 

We will prove (2.1). Let us first take 0 < a < l .  Let N>n/2  be a natural number. 
Then, 

(2.5) f,x-z,>,,, tk(x, y, tl-k(x, ~, t)l ax 

<_-- I f  (1 + tZ~ - zl2)Nlk(x, y, t)-- k(x,  z, t)[ 2 dx] 1/2 [ f  (1 § t '~ - z]~) -N dx] 1/' 

<-_ c [f (l +t,,ix-zl')~lk(x, y, t ) - k ( x ,  z, t)l• dx] a/' t -~ 

Let us estimate the integral in (2.5). Given a multi-index e, lel-<_N, we have 

t~~ '(~- ")" r  '<x-~)'r ~)ff(l~l/t)d4 

= t~t't ( x - z ) ' f d ~ x - ' ~ r 1 6 2  1)p(x, r d4 

= 2 a  ~_, C,a t~ f e ,~-  ")'r [(e"" - ')" r  1)p (x, r t -I ,-al  (D~ - a r  0 r d~. 
N o w ,  

Id(*-y)'e- II <= l y -  zll~l <= tq 
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on the support of  ~9(l~[/t) for l y - z l < a .  On the other hand, if  [7[>0, 

ID~e~(~-Y)'e I <= [y-z [  Ifl =< t-Ifl (ta)lfl -<= C[~[-l~l(ta)lfl 

for [ y - z l < a  if  (~("t .  
Let us now suppose that to-< 1. The above estimates show that if zEC~~ 

is equal to 1 on the support of  ~ (so ~=ZO),  the set of  functions 

{I~I"(1-Q)/z+~ [(e i(z-y)'r 1)p(x § z, ~)]Z(I el/t): lY-  zl < a, zCR n} 

is a bounded subset of .vm+,,(1-o)/2 with bounds ~Cta ,  for each 0<=fl~a. At  
this point we recall 

Theorem 2.2. ([13], p. 766.) Assume that m<= - n  max {0, ( 6 - 0 ) / 2 } :  -n2 ,  0<  
0-<_t, 0<_-6<1 andlet  a(x, ~)ES~=~ verify 

]D~D~ a(x, 4)1 <= M(1 + I~l)m+al~l -~lal 

for I~1, I/~1 <_--[n/2] + 1. Then, the pseudo-diff erential operator with symbol a is bounded 
in L z with a norm proportional to the best bound M. 

Since m + n ( 1 - O ) / 2 ~ - n 2 ,  the family of symbols defined above gives rise to 
operators bounded on L 2, with norm <=Cta. 

Thus the integral in (2.5) can be estimated by 

Cto- ~'P~-~,J~I-~N C~a llt~l~ll~l-"(~-Q)/~-Qlal t-I~-PI(D'-P g')(lr <-- Cte"/2ta. 

This means that we may estimate (2.5) by Cta, provided that tcr~l .  Let us see 
next what estimate can be obtained without the restriction ta <- 1. Since [x-z]  > 2 a  e 
and ] y - z l < a  imply that [ x - y ] > ~  for o-<1, we have 

tie(x, y, t)l dx 

<-- I f .~  (t~lx-yl=)~ Ik(" Y' t)12 dx] 1/2 [flx-y[>ee (t2eIx-- yI2)-N dx]l/2 

< = c[f(t=Olx--yl~)NIk(x, y,  t)[ 2 dx] 1/2 t--QNff~(n/2~ 

Let M = N .  Then, 
foist (x -y )=  f e'(=-') ~p(x, 0 ~'(lr d~ 

= Za~=C,ptel'l fd(~-')eOgp(x, ~)t-I~-Pl(D~-ar d~. 

Now, for each /~c~, yER", the L2-norm of  the function of  the x-variable 

f ei(~-r)'eD~p(x, ~)t-I~-al (D~-a,p)(lr dx 

is the same as the L2-norm of 

f d~.r y, r (D~-ar162 dr 
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On the other hand, {[~l"(x-~ O: y~R"} is a bounded subset 
of  S m+"(1-Q)/~ for each f l ~ ,  so Theorem2.2 implies that the corresponding Q,6 

pseudo-differential operators are uniformly bounded in L 2. Thus, the first factor 
above can be estimated by 

C~_~,l~l=~v tQl~l t-n(1-e)12-el~l t-~l~-~l t'12 = Ctenl2" 

This proves that 

(2.6) f Ex-~l>2~, [k(x, y, t)} dx -<- C(ta) a"12-N). 

In the same way, it can be proved that 

(2.7) fj.~--~l>2~ ]k(x, z, t)l dx ~ C(ta) Q('/2-~v). 

Finally, using these estimates and (2.4), we get that if 0 < a < l  and [ x - z l < a ,  

f I f1  -I ~ l L~-~I,-2~ [k(x, y ) - k ( x ,  z)] dx <= C ta + -, (ta)a "/2-N) dt/t <= C. 

To prove (2.1) when a ~ l  it will suffice to show that 

sup f Ik(x, y, t ) - k ( x ,  z, t)l dx ~ C(ta)a'12-s' 
ty-zl<~ Ix-zl>~ 

with N>n/2.  This can be checked along the line of  proof  of  (2.6) and (2.7). 
Let us now prove (2.2). It is an adjoint version of  (2.1) and its proof  is some- 

what simpler. The fact that a symbol does not depend on y (as an amplitude would), 
accounts for the less restrictive conditions on the order (for 6>~) .  We will only 
outline the main steps in the proof. We may write 

(2.8) (2rt)"(k(y, x, t ) - k ( z ,  x, t)) 

= f e-i(x-Y)'r 4) - p ( z ,  ~))~/t(l~l/t ) dY. -{-f e-iX'r i fC-  ei>r ~)r162 d~ 

= f ( x -  y, y, z, t) + g (x, y, z, t), 
and we wish to estimate 

I f (x- -y ,  y, z, t)[ dx and fl,-~l>~-~ [g(x, y, z, t)l dx, 

when l y - z l < a  and a < l .  We have 

(2.9) f lg(x, y , z , t ) l d x  <= Ct-e"/2[f  lg(X,y,z,t)I2(I+t2QIxI=)N dx] '/2. 

The integrand on the right-hand side of  (2.9) is a sum of  terms of  the form 

Cl(t~ x) 'g(x,  y, z, t)l 2 

with I~I-~N. Since g is the Fourier transform in the first variable of  G(r y, z, t ) =  
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(e~Y'r162 O~(l~l/t), we obtain, by the Plancherel theorem, assuming that 
t a  < I ,  

(2.10) f ]g(x, y, z, t)[ dx <= C t  -~"/~ 21,1~_N tql'l [IDle G ( ' '  Y' z, t)]jL: 

<---- Ct-e"t~ ~l~!-~N,a-~ IID~ [(e'r~-e'z'~)p(z' r162 

<= Cto't nO-e)/z+'n ~ Cta, ta < 1, t =~- 1, 

where we have used the estimates: 

(2.11) 
IDc~[(eiY'e-e i='r 4)]1 <= Ctat =-Qlpl if l Y - z l  ~ a, ta < 1, 1/2 <_- I~l/t ~< 1, Ifll =< N, 

IO~-P[r <- C~atlal-I~l , fl =< ~t, ]suppff(l~l/t)]----< Ct"& 

A similar argument shows that for all t e l ,  and a < l  

(2.12) f " < I,-=t>z,, Ig(x, y, z, t)l dx = C(ta) {"/=-N)Q. 

Furthermore, estimates analogous to (2.10) and (2.12) are valid for f i x - y ,  y, z, t) 

(observe that ft~-=~>2,o ] f ( x - y , y , z ,  t)l dx = fI~+r-=l>=,, I f ( x , y , z ,  t)l dx<= 

<=fI~i>,, I f (x ,y , z ,  t)l dx for a < l ) .  They are proved in the same way, with (2.11) 

replaced by 

sup IO~[p(y, { ) - p ( z ,  4)]1 <= Ct=+a-elally-zl <= C tatm-Ql#l, 
t /8~l~l~t 

l y - z l  < 131 =tr ,  t > l  -<-N. 

Hence, we obtain from these estimates 

f ?  f l~-~>2~ (Ig(x, y, z, t)l + I f ( x - Y ,  y, z, t ) l )dxdt/ t  <- C, 

which implies (2.2) for ~r<l in view of  (2.4). We leave to the reader the proof  of  
the case a > 1. This completes the proof  of  Theorem 2.1. 

Remarks. a) Theorem 2.1 extends [1, p. 75]. 
b) According to (1.8), if m - - - n ( l - ~ )  then the kernel of  an operator in 

.LP~,~, 0<~<-1,  0___-~<1, satisfies 

(2.13) 
Ix - z l  

Ik(x, y ) - k ( z ,  y ) I + l k ( y , x ) - k ( y ,  z)l <= C lY_z l ,+v  ~ , 2 I x - z [  < lY -Z l .  

An easy computation shows that (2.13) implies (2.1) and (2.2). For 6 > 0 ,  Theo- 
rem 2.1 asserts that it is enough to take the larger m =  - n ( 1  + 6 - 2 Q ) / 2  to obtain 
(2.1) and (2.2). However, as 6~1 ,  the latter value o f m  tends precisely to - n ( 1  - p). 
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This is natural because the value of  5 is irrelevant concerning pointwise estimates 
for the kernel. 

c) We will use (2.1) to prove (L ~, weak L ~) and (H ~, L x) continuity. On the 
other hand, (2.2) will be one of the ingredients in proving (L ~, BMO) continuity. 

d) I f  the operator L is defined in terms of an amplitude p(x ,  y, ~), then a 
variation of  the proof of  Theorem 2.1 shows that both (2.1) and (2.2) hold if 
m<-_-n[(1-O)/2+22]. The more restrictive conditions on the order are due to 
the fact that one has to replace Theorem 2.2 by [13, Thm. 2]. 

e) Inspection of the proof of  Theorem 2.1 shows that the constant C in (2.1) 
depends on the size of  the derivatives of the symbol D~D~p(x, ~) for I~I<_-N, 
1fll<=2N, and the constant C in (2.2) on the size of D~p(x, ~), Ifll<=N, where 
N =  [n/2] + 1. 

3. (H ~, L1), (L 1, weak L~), (L ~, BMO), (U', L~)-continuity 

As before, we set ;~=max {0, (6-Q)/2}. 

I.emma 3.1. Given LC LPe~,~, 0 < ~ 1 ,  0=<3<1, m<= - n[ (1-  O)/2 + 2], L is con- 
tinuous from L 2 into L 2/~ and from L 2/~2-Q) into L 2. 

Proof. According to Theorem 2.2 and the calculus of  pseudo-differential oper- 
ators, the compositions with the Bessel potential of  order n ( 1 -  ~)]2, J"(I-o)/2L and 
LJ  "(l-~ are bounded in L 2 (J=(I-A)I/~) .  By the Hardy--Litt lewood--Sobolev 
estimates, we know that f-(,-o)/2 maps L z (resp. L ~/~2-~)) into L 2/Q (resp. L2). Thus 
the lemma follows by composition. 

Theorem 3.2. Let LEXeom ~, 0<~o~1, 0-<~<1, m<--n[(1-Q)]2+2].  Then, L 
and L* map continuously 

a) the Hardy space H 1 into L1," 
b) L 1 into weak L1; 
c) L ~ into BMO. 

Proof. To prove a) for L it suffices to show that there exists a constant C > 0  
such that for each (1, ~ )  atom a, we have IILaIILI<_--C. Let us recall that a (1, ~ )  
atom a is a measurable function satisfying the following conditions for some ball 
B=B(z ,  tr): 

s u p p a c n ,  ]Ia[[L= <= Ial -a, f a(x)dx = O. 

Now, let a be a (1,~,) atom and assume that t r< l .  Set B' - -B(z ,  2a ~) and 
A --- R " \ B ' .  Thus, 

 3.1) f laat ax <= f ,, ILal ax + f A ILal a x  = 11+12. 
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According to Lemma 3.1, L is of  type (2 / (2 -0) ,  2). This takes care of  11. In fact, 

11 <= Ca"Q/~ ]lZa]lL, <- Ccr"QI2 l]a!]L,/C2-~, . 

Using the above conditions on the function a, we can conclude that I1~C. 
Since the mean of  a is zero, we can write 

12 ~ f a  fB  ]k(x, y ) -  k(x, z)[ [a(y)] dy dx ~ sup f a  ]k(x, y ) - k ( x ,  z)l dx. 
[y-zt<a 

Since the kernel o f  L satisfies (2.1) we also obtain that Iz<=C. When a ~ l ,  we 
use  (3.1) with B'=B(z ,  2a) and A = R " \ B ' .  To estimate the first term one uses 
that L is of  type (2, 2) and for the second one the second inequality of(2.1) applies. 

The only properties that were used to prove a) for L concerned the type of  L 
and (2.1). In view of Lemma 3.1 and Theorem 2.1, these properties are shared by 
L*, so L* satisfies a). We may conclude by duality that c) is also true but  a direct 
proof  is easy to get by. Given fEL7  and B----B(z, tr), let us first decompose f as 

f =  fzw+fZA = f l + A ,  

where B'=B(z ,  2ae), A=R" \B"  and Zn' (resp. 7~a) indicates the characteristic 
function of  B '  (resp. A). Let b=Lf~(z) (notice that the pseudo-local property im- 
plies that Lfz is smooth in B '  and b is well defined). Then, 

Igl-x f B IZf -b l  dx <- iB1-1 f. Itf~l dx + Inl -x f . ]tf2-bl dx ~ I l  q- I z . 

Since L is of  type (2, 2/0) we have 

It <= Igl-~ <= CIBI-~ ~ Cllf[lL ~. 

On the other hand, 

I2 IBl-l f A Ik(x, y ) - k ( z ,  Y)I If(Y)l dydx <= CiiflIL=, 

where we have hsed that k satisfies (2.2). The same estimate is valid when a > l  
(in this case one takes B'=B(z ,  2tr)). Hence, 

l 
f B lLf(x)--bl dx ~- .LStlL~, L ~ C! Ic1~ fE c , sup inf 

where the infimum is taken over all complex numbers. This inequality implies that 
L verifies c). The same proof  works for L*. 

Finally, to prove b) we recall 

Theorem 3.3. ([2, p. 414].) Let T: C ~ ( R " ) ~ "  be a linear and continuous 
operator associated to a kernel k(x, y). Suppose that k(x, y) satisfies (2.1) and 
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that T is o f  type (2,2) and (q, 2), with 1/q=l/2+fl /n for some (1-Q)n/2_<-fl< 
< n/2. Then, T maps continuously Z 1 into weak L 1. 

Then, Theorem 2.1 and Lemma 3.1 show that L as well as L* satisfy the hypoth- 
eses of Theorem 3.3. 

T h e o r e m  3.4. Given LE ~ , ~ ,  0 < Q-~ 1, 0 <= 6 < 1, 1 <p < ~ ,  L is continuous fi'om 
L v into itself, provided that 

1 1 
(3.2) m ~ - n [ ( 1 - ~ o ) - ~ - - - ~ -  4 2 ] .  

Proof The proof uses complex interpolation between (H ~, L ~) and (L ~, L 2) 
for l < p < 2  and between (L 2, L 2) and (L=,BMO) for 2<p<~o.  In fact, L is of  
type (2, 2) if  m =  < - n 2  by Theorem 2.2. On the other hand, according to Theo- 
rem 3.2, L will be bounded from H ~ into L ~ and from L = into BMO if  m <- - 
n[(1 - ~)/2+2]. Then, (cf. [10, p. 156]) L will be of  type (p, p) for l /p=(1  - - t ) /q+ t]2, 
0 < t < l ,  with q = l  or q = ~  if 

m ~ - n ) d - n [ ( l -  ~)/2 + 2 ] ( 1 - t ) ,  

that is to say if m satisfies (3.2). 

Theorem 3.5. Let LE.oq'Qmn, 0<Q<=I, 0<_-6<1, l<p==_q<~. Then, L is o f  type 
(p, q) in the following cases: 

a) i f  l <p<=2<=q and 

(3.3) 

b) i f  2<=p<=q and 

(3.4) m <= - n 

c)  i f  p<=q<=2 and 

(3.5) m =< - n  
1 1  I -)----q-+(1 - ~ t q 2 )  ) 

Proof Let p, q, m as in a) and set m l = - n ( 1 / p - 1 / 2 ) ,  m 2 = - n ( 1 / 2 - 1 / q ) .  
Then, m-< m~ + m z -  n2 and the Hardy--Litt lewood--Sobolev estimates imply that 
yml is of  type (p, 2) and a rm' is of  type (2, q). Set 

L = jm, ( j- , ,~ L j- , ,1) jml. 

The calculus of  pseudo-differential operators shows that the term between paren- 
- n~ Z 2 theses is a pseudo-differential operator in Ls.~, bounded in by Theorem 2.2. 

This proves a). 
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Consider nowp, q, m as in b) and set m '=  - n O / p -  l/q) so J~" is of type (p, q). 
Then, J-m'L has order m-m'<=-n(1/2-1/p+2) and Theorem 3.4 implies that 
it is of type (p,p). Thus, L=jm'(J-m'L) is of type (p,q). Finally to show c) 
one sets m ' = - n ( 1 / p - 1 / q )  and writes L=(LJ-m')J m" to obtain the desired con- 
clusion. 

Remarks. a) Theorems 3.2 and 3.4 extend [9, p. 414] to the case 6=>~. 
b) Theorem3.5 extends the results of [11, p. 162] in two ways. First by in- 

cluding the case ~ => Q. Second, by allowing equality in (3.4) and (3.5). This answers 
a question posed in [11, p. 163]. 

c) Observe that (3.4) reduces to (3.3) for p = 2  and (3.5) reduces to (3.3) for 
q=2.  Also, Theorem 3.5 specializes to Theorem 3.4 as p=q. 

4. Po intwise  es t imates  for the sharp m a x i m a l  funct ions  

The sharp maximal function f ~ ofC. Fefferman and E. M. Stein, (cf. [10. p. 153]) 
is defined as follows, 

1 
f~(x) = sup inf - ~  f B If(y)- bl dy 

where the infimum is taken over all complex numbers bCC and the supremum is 
taken over all balls BcRn  that contain the point x (taking balls centered at x 
decreases f* by a fixed ratio depending only on the dimension n). The condition 
f*~L ~ characterizes BMO. On the other hand, knowing that f~L  po for some 
1 <-po<~,fELP if and only if f#~L v, po<=p<~o ([10, p. 153]). 

Given l<=p<~o, Mpf(x) will denote the function M(lf[p)l/v(x), where M 
stands for the Hardy--Littlewood maximal function. 

As before, 2=max {(c5-0)/2, 0}. 

Theorem 4.1. Given LCs 0<0<=1, 0 ~ 6 < 1  and given p > l ,  there exist 
Cp>0 such that 
(4.1) 
provided that 

and 

where 

(Lf)l(x) = CvMpf(x), fECg~(R'), 

1{  2n2 / 
O < Q ~ - ~ - -  1--n--~-~) or ~o=1, 

m <= - n(1 - ~o) - / z ,  

2~ = 1+ n(e +2)-1/[1 + n ( e +  Z)] ~-4nz. 

(Notice that # = 0  i f  ;t=0.) 
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Proof. Since Mpf(x) is an increasing function of  p, it suffices to prove (4.1) 
when l<p<-2 .  Let B=B(z, a) be such that [x-z l<a and let us suppose that 
a < l .  Given rECk(R"),  we decompose f as 

f = fZB" +fga  = f~ +f2, 

where B'=B(z, 2a~ A=R~, ,B  ', and 0<0=<1 will be chosen conveniently. 
We have 

1 
f ~ [Lf(y)- Lf2(z)[ dy 

IBI 

1 1 
<- Ist f ,  [Lft(y)[ d y + - ~  f ILA(y)-LA(z)I dy = 11+12. 

Let us assume that for some q=>p>l,  L is of  type (p, q). Thus, 

I1 <= ILfll'dy <= ClBl-1/~[[fdz ,, <= CIBl~ 

On the other hand, if  [y-zl<a, 

IZfdy)--LA(z)l <= f A Ikfy, w)-k(z, w)l If(w)l dw. 

According to (1.8) 

ly-z[ Ik(y, w) -  k(z, w)l -<- C 
Iw__zl.+~ ' 

when lY-z l<a<l ,  Iw-zl>2a ~ where ~=[rn+n(1--o)+l]/~. Thus, 

L Z~'= Ca ~ j=x 2-J~Mf(x)" 12 ~ C 1 (2J+laO)n+~ (z.~.~+,,~o) If(w)l dw ~= _~-o~ "~= 

So, in order to obtain (4.1), the parameters O, q, a, have to satisfy the conditions: 

(4.2) 0 ~ P ;  
q 

(4.3) ct > 0; 

(4.4) 0 ~ min {1, l/a}. 

Moreover, L has to be of  type (p, q), and the order m must satisfy m + n + l  >0.  
If  Q= 1, then 2 = p = 0 .  Then Theorem 3.4 implies that all required conditions 

are satisfied if  we take m<-0, 0=a - -1  and q=p. Let us assume now that 0<1 .  
According to Theorem 3.5, L will be of  type (p, q) i f  

(4.5) l < p < _ - 2 < _ - q  and m --<- - n  [ + - + + 2 ] .  
k p  q ] 
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To avoid working with negative numbers let / ? = - m  and let us suppose that 
/ / < n ( 1 - 0 ) + l  is such that for each l<p_<-2 there exists q=>2 satisfying (4.5) and 

(4.6) p_< 1 
q 

This would allow us to find 0<0=<1 satisfying all the other conditions. Hence, 
in view of (4.5) and (4.6), we have 

fl ~= n + 2  ~ <= 
q ' q l + n ( 1 - O ) - / ~  

Assume that q--"qo as p-~l. Thus, 

1 0 1+2-~/n <-_-- <: 
q0 1 + n ( l - 0 ) - / ~  " 

The smallest fl < n ( 1 -  ~o)+ 1 for which the above inequality can occur is 

f l 0 = n ( 1 - 0 )  if 2---0; 

f i~=n(1-O)+/~  if 2 > 0 .  

It is clear that # = 0  if 2=0. Now taking m = < - / ~ = - n ( l - - 0 ) - # ,  0=0/(1--#), 
q=p/O, it is easy to check that 0<0<=1, ~ e = m + n ( 1 - Q ) + l > 0  and q=>2 pro- 
vided that O<Q<-[1-2n2/(n+2)]/2. Hence, conditions (4.2), (4.3) and (4.4) are 
satisfied and this implies (4.1) for o-<1. The case ~r>l can be handled in a similar 
way using the decomposition 

f : fx~' +fzA 

with B'=B(z, 2~r) and A=R"\B'.  We leave details to the reader. 

Remarks. a) With the same technique one can extend Theorem 4.1 to the 
range [1-2n,~/(n+2)]/2<Q<l. However, one has to rely in this case on part c) 
of Theorem 3.5 instead of using a) of the same theorem. This makes the conditions 
rather cumbersome and we have no indication that the restriction that the method 
imposes on the order of the pseudo-differential operator is sharp, so we do not 
state this extension explicitly. 

b) For 6<-Q~_1/2, Theorem4.1 states that (Lf)~<=CvMvf(x) for all p > l  
if m_- < - n ( 1 - 0 ) .  On the other hand S. Chanillo and A. Torchinsky proved that 
(Lf)#(x)~CM2f(x) if m<=-n(1-O)/2 ([5]) and asked whether p = 2  was the 
smallest possible value o fp  for that order. This question remains open. 
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5. Continuity on Hardy spaces 

We start by proving "dyadic" estimates of  the type considered in [2]. We use 
the notation 

Cj(z, r) = {xER": 2Jr < ]x-z l  < 2J+lr}, j = 1, 2, . . . .  

The meaning of  2 is the same as in the previous sections. 

Theorem 5.1. Let LCs 0 < Q ~ I ,  0<=6<1, with kernel k(x,y).  Then, 
a) I f  m <- - n [ ( 1 - Q ) / 2 + 2 ] ,  0 < 0 ~ 1 ,  j = l ,  2 . . . . .  

sup fc Ik(x, y ) - k ( x ,  z)l dx <= c2-J/Qa ~-~ if a < 1; 
l y - z l < a  j(z, o ~ 

(5.1) 
sup f Ik(x, y ) - k ( x ,  z)[ dx <= C2 - j  if a_->l. 

lY--zl <a Cj(z, ~r) 

b) I f  m<--n(1--O)/2, 0<0<_-1, j = 1 , 2  . . . . .  

sup ~f~(~,,o)Ik(y, x ) - k ( z ,  x)l dx <= C2-J/Qa ~-~ if o- < 1; 
[y--zl<~ 

(5.2) 
sup f c  [k(y, x ) - k ( z ,  x)l dx <= C2 - j  if o- -> 1. 

[y_z[.~ r j(z, a) 

Proof. The proof  is similar to that of  Theorem 2.1. With the same notation, 
we start estimating for a < l ,  ] y - z ] < a  and 0 < 0 ~ 1 ,  

(5.3) fc,(., ~o) Ik(x, y, t ) - k ( x ,  z, t)l dx 

2 a/~ IX-- zl~)-Ndx] 1/2, <= [ f  ( l+t2e lx -z l2 )Nlk(x ,y , t ) -k (x , z , t ) l  dx] [L,(=.,o)(I+t2Q 

where N>n/2 is a natural number to be determined later. We know from the 
proof  of  Theorem 2.1 that the first factor on the right-hand side of  (5.3) is dom- 
inated by 

Cat t e"l~ if at <= 1. 

To estimate the second factor consider the function 

(5.4) F ( r ) =  o < r  

It is clear that F is smooth, F(r)~r  ~12 as r-~0 and F(r)~r  "/2-N as r - ~ .  It  
is easy to check that the second factor on the right-hand side of  (5.3) is dominated by 

Ct - Q"/2F(t~ 2 y a~ 
which implies that 

(5.5) f c Ik(x, y, t ) - k ( x ,  z, t)l dx <= CtaF(tQ2Ja~ ta <= 1. 
j(z, a e) 
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A similar computation, as in the proof  of  Theorem 2.1, shows that 

(5.6) f c  Ik(x, y, t)l + Ik(x, z, t)l dx <- C(tQ2Ja~ ~/~-~. j(z, ~e) 

Hence, (2.4), (5.5) and (5.6) yield 

(5.7) 

fc,(z. ~o, Ik(x, y)-k(x,  z)l dx <= C [fo-' taF(tO2'a~ f 2 ,  (t~176 dt/t. 

Now we choose N so that o ( N - n / 2 ) > l ,  which makes f F(tQ)dt<o~ in view of  
(5.4). Then (5.7) implies 

f ca~z ' ~o) Ik(x, y ) - k ( x ,  z)l dx 

<= C(2-JlOtrl-OIQ+2J(nl2-N)a(1-OIo)o(N-n/e)) <---- C2-Jl~ 1-~ 0 < tr < 1, 

by the choice of  N. This proves (5.1) for a < l .  Inequality (5.1) for a=>l as well 
as (5.2) can be proved along the same lines and will be left to the reader. 

The next theorem deals with (H p, L 0  continuity for some range of  p<=l 
and extends results o f  [9]. 

Theorem 5.2. Let LE.Lf~,~, 0<6<-1 ,  0-<6<1.  Assume that 

m < f i n 2  

for some n(1-~) /2<=fl<n/2  and set 

1 1 fl(1/Q + n/2) 
( 5 . 8 )  - -  ~- 

Po 2 n(1/O-- 1 +fl) 

(it  is understood that for 0 = I ,  po=n/(n+ l) even when fl=O). Then L maps con- 
tinuously H p into L p for po<-p<-l, when 0 < 0 < I ,  and for p0<p<_-l, when 6 = 1 .  

Proof. The proof  relies on 

Theorem 5.3. [2, p. 412.] Let T: C~' (R")~N'  be a linear operator associated to 
a kernel k(x ,  y) satisfying (5.1). Moreover, suppose that T extends to operators o f  
type (2,2) and (r, 2) with 1/r=l/2+fl/n,  n(1-Q)/2<=fl<n/2, 0<6<_-1. Then T 
maps continuously H p into L v for po<-p<-l, when 0 < Q < I ,  and 3'or po<p<-l, 
when Q = 1. 

We now check that the hypotheses of  Theorem 5.3 are satisfied. Indeed, since 
fl-> n (1 - ~o)/2, it follows from Theorem 5.1 that k (x, y) satisfies (5.1). Next, Theo- 
rem 3.5 and the fact that m <- - f l - n 2  imply that L is of  type (r, 2) if l /r= 1/2+fl/n 
and certainly of  type (2, 2). The proof  is complete. 
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Theorem 5.4. Let LE ~e~,~, 0<Q_<-I, 0<-6<1. Assume that 

m < - - / ~ - n ~  

for some n(1--~)/2<-fl<n/2 and L*(1)=0 in the sense of  BMO. Then L maps 
continuously H p into itself for p0<p<-i  where Po is given by (5.8). 

Proof. According to Theorem 3.1 L* maps L ~* into BMO, so the condition 
L*(1) =0  is well defined. Furthermore, L is of types (2, 2) and (r, 2) with I/r= 
l/2+fl/n, and its kernel satisfies (5.1). Applying [2, Thm. 3.5] we get the result. 

Remarks. a) The same kind of  analysis shows that if  we change in Theorem 5.4 
condition L*(1)=0 to L(1 )=0  (in the sense of BMO), we will obtain that L maps 
BMO into itself. 

b) Theorems 5.3 and 5.4 were known for 4=  1 when the pseudo-differential 
operators involved are associated to standard kernels. 

6. A eomlterexample to a T 1 theorem 

In this section we show that operators with kernels verifying estimates slightly 
worse than those of  standard kernels do not verify a T1 theorem, i.e., its L2-con - 
tinuity is not related to the conditions T1 and T*I EBMO. 

Lemma 6.1. Let T: C~(Rn)~N ' be a linear and continuous operator whose 
distribution kernel is locally integrable outside the diagonal and satisfies 

(6.1) I k ( x , y ) - k ( z ,  Y)I <- C Ix - z l  l y _ z l , + ,  i f  2 Ix - z [  < l y - z l  

for some # > 0 .  Then, given fECg=nL ~, T f  is well defined as a linear, continuous 
functional on 

~o-=- {gECr(Rn): fg(x)dx=O}. 

Proof. It follows [7, p. 372]. Let us fix ) ' ~ C ~ n L  *~ and zER ". Given a ball 
B(z, a) with a=>l, let us consider a test function q~EC~(R~), such that O~q~<-l, 
rp = 1 on a neighborhood of  B(z, 20"). 

The adjoint T* is continuous and linear from C~ (R ~) into ~ '  and associated 

to the kernel k(y, x). Thus (T(fqg), g)---(T*g, fq~) is well defined for any test 
function g if  we denote by ( , )  the duality between test functions and distribu- 
tions. Suppose that gE~0 and suppgcB(z ,a ) ,  a>=l. Then, for l y - z l>2a ,  
we have 

T*g(y) = f k--~, y)g(x) dx = f (k(x, y) -- k(z, y))g(x) dx. 
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Thus, 
o-n+l 

IT* g(y)l <= C l y_  zl,+u llgi!L~, 

which implies 

I(T*g, f(1-~o)> I -< c[[U[]L=HgIIL.a"+I f ,,-=,>2o l y - z l - " - "  dy = C]lfllL~[lgllL~cr"+x-". 

Hence, we may define 

(Tf, g) a~(T(f~o), g)+ f T* g(y)f(y)( l  -~o(y)) dy, g~CF(B(z,  a)). 

It is easy to check that this definition of  Tfis  independent of ~0 as long as q~ = 1 

on a neighborhood of  B(z, 2a), and it agrees with the original definition of  T f  
i f  f is compactly supported. Since a=>l is arbitrary, T f  defines an element of-~0. 

One technical ingredient in the T1 theorem of  David and Journ6 is the so-called 
weak botmdedness property, WBP. Given an operator T: C~ ~ ( R " ) ~ ' ,  linear and 
continuous, T has the WBP if: 

For each bounded subset ~cC~ ' (R" ) ,  there exists a constant C > 0  such that, 
for any aER", t>0 ,  (p, O~M, 

l+l t}  l l>l < - .  
I t  is simple to verify that a pseudo-differential operator will satisfy the WBP 

if  its symbol is bounded. 

Theorem 6.2. For each ~>0, there exists a linear and continuous operator 
T: C c ( R n ) - - ~  ' with a distribution kernel k(x, y), smooth outside the diagonal and 
verifying 

C 
(6.2) IVk(x, y)l -<- i x _ y l , + l + , ,  x # y, 

such that: 

i) T has the WBP; 
ii) T I = T * I = O ;  

iii) T is unbounded in L ~. 

Proof. We follow closely H6rmander's construction [12, p. 530]. Let us denote 
I I ~ l [ = m a x ( l r  . . . . .  I~.1), ~CRn, and let e = ( 1 , 0  . . . . .  0)~R" be the first vector in 
the canonical basis. Consider a function 0_-<~oEC~(R"), supported in the cube 
[]~ll<l/2, such that q~=l if  11~11_-<1/4, and set, for 0<~o<6<1 fixed, 

(6.3) pj(x, ~) = ~ll,ll<2Jr exp [ -  i2J~k, x]~o(2-i-o~-2J(l-O)e-k), j = 1, 2 . . . . .  
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where k runs over the lattice points of  R". For any fixed jC Z +, all terms in (6.3) 
have disjoint supports and the number of  terms is (2 [2 i(o-~)] + 1)n =>(2i(o-e)_ 1)". 
The i-projection of  the support of  p~(x, 4) is contained in a cube centered at 2Je 

.<3 j~ 
with side l j = ~ - 2  . Hence, ~ 2  ~ on the support of  pj and there exists Jo de- 

pending on 6 such that for j ,  l>-jo the supports of  pj and Pt are disjoint if  j r  
Thus, 

(6.4) p(x,  4) = ZT=jo  pj(x ,  4) 

is a symbol in ~ .~.  We will check that if T is the pseudo-differential operator with 
symbol given by (6.4), (6.3), and if 0 <  Q < 6 <  1 and j0 are chosen conveniently, T has 
all required properties. First, Theorem 1.1 e) with M = I  shows that (6.2) holds 
for Ix-yl<=l  if  ( n + l ) / ~ < n + l + e ,  and a) of  the same theorem guarantees that 
(6.2) holds for Ix -y l  >1.  So (6.2) is achieved by fixing ~ close enough to 1. Further- 
more, T has the WBP property because p(x,  4) is bounded. 

Now, T1 is defined in the sense of  distributions and equal to the function 
p(x, 0). Hence, i f  we increase J0 so that 2~0r all terms in (6.3) 
will vanish at ~=0  for J>-Jo and we get TI  =0.  On the other hand, T*I is also 
defined in the sense of  distributions and a simple computation gives 

T* 1 (y) : . ~ = j 0  Z Jlkll <~J~-~' go (-- 2 J(1-~) e) exp [--i2 je k .  y]. 

By our previous choice of jo ,  we have for J>-Jo, 112Jtx-~)ell =2JO-Q)>=2Jd~-*)>l/2 
so T*I =0. 

Finally, we recall H6rmander's argument to show that T is unbounded in L 2. 
Take 0~k6SP(R"),  with ~ compactly supported in the cube 11411<1/4 and set 

(6.5) ~J : ~ ,k,, <~J'~-~' ~ (~ - 2J e - 2 jQ k), 

so, in particular, all terms in (6.5) have disjoint supports. Then, 

p(x, r t~j({) = Z,~,I <2~'*-~' exp [-i2i~/c. x ] f f ( 4 - 2 i e - 2 i ~ k ) ,  

where we have used that ~o(2-Je{)=l on the support o f ~ .  Thus, 

Tuj(x) = exp [i2J x �9 e] z~ l,t,,, <2J'~-,,' r (x), 
so 

(6.6) []TUjHL, >: (2 j ( ' -~  -- 1)nH~/HL,. 

On the other hand, IlujllL~=Cllaj[lL,<=(2J(6-~)+l+l)"/211~b][L~ which in view of  (6.6) 
shows that T is unbounded in L ~. 
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