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Hamburger's theorem asserts that a function ~0: No-~R is the moment se- 
quence of a measure on the real line if and only if ~o is positive definite in the sense 
that the kernel (n, m)~o(n+m) is positive semidefinite. (See [1], Theorem 6.2.2). 
The corresponding two-sided problem, consisting in characterizing those functions 
r Z-~R which are the two-sided moment sequences of measures /~ on R\{0}  
in the sense of 

~o(n)= f x"d~(x), nEZ, 

has a similar solution: Such functions ~o are precisely those which are positive definite 
in the sense that the kernel (n,m)~q~(n+m) is positive semidefinite. This was 
shown in [4]; see [1], Theorem 6.4.1, for a simple proof. 

The complex moment problem, a natural analogue of the moment problem 
solved by Hamburger, requires the characterization of those functions ~0: N~-*C 
which are complex moment sequences of measures/~ on C in the sense that 

(p(n, m) = f z"~" dg(z), (n, rn)EN0 ~. 

In this case the pertinent concept of positive definiteness arises by considering 
the semigroup (No ~, +)  with the involution (*) given by (n, rn)* =(m, n) and agree- 
ing to call a function (p: N~-+C positive definite if the kernel (s, t)~rp(s+t*) 

2 on N0• o is positive semidefinite. While every complex moment sequence is posi- 
tive definite, there exist positive definite functions on No ~ which are not complex 
moment sequences ([1], Theorem 6.3.5). 

Observe that [1], Theorem 6.1.10 implies the following somewhat roundabout 
solution of the complex moment problem: A function ~o: N ~ C  is a complex 
moment sequence if and only if Z, , , ,  c,,,,cp(n, rn)>=O for each (c,,~)ECCN.') such 
that ~ . ,~  (..'n, mZnZ.m~o for all zEC. 

Like Hamburger's moment problem, the complex moment problem has a two- 
sided companion, the problem of characterizing two-sided complex moment se- 
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quences, that is, functions ~o: Z2~C representable in the form 

~o(n, m) = f z"~m dp(z), (n, m)EZ z 

with # a measure on CN,{0}. 
Consider the group Z ~ with the involution (n, m)* =(m, n) and define a func- 

tion ~p: Z2-~C to be positive definite in case the kernel (s, t)~o(s+t*) on Z 2 •  z 
is positive semidefinite. We shall show a necessary and sufficient condition for a 
complex function on Z z to be a two-sided complex moment sequence is that q) 
be positive definite. This is somewhat remarkable in view of the failure of the cor- 
responding condition in the one-sided complex moment problem. 

From Ill we recall a few definitions. A (abelian) *-semigroup (S, + ,  *) con- 
sists of an abelian semigroup (S, +)  with zero 0 and an involution, that is, an 
involutory automorphism, in S, written as s~s*. A function q): S ~  C is positive 
definite if for any NEN and any sl, ...,sNES the N•  matrix (q)(s~+s~)), 
L k =  1, ..., N, is positive semidefinite. A character (called 'semicharacter' in [1]) 
is a function p: S ~ C  satisfying p(0)=l ,  ~(s*)=~(s), Q(s+t)=~(s)p(t) for all 
s, tES. The set of characters on S, denoted by S*, is considered with the topology 
of pointwise convergence. I f #  is a Radon measure on S* such that Q~Q(s): S * ~ C  
is #-integrable for each sEC, the function fi: S ~ C  defined by 

p(s) = f sos (1) 

is called a moment function and the measure/~ is said to represent p. The moment 
function/~ is determinate if no Radon measure on S* other than/z  represents /3. 
A perfect semigroup is a *-semigroup S such that every positive definite function 
on S is a determinate moment function. 

Examples. (1) If  S is an abelian group equipped with the involution s*=  - s ,  
the characters on S are the usual group characters; by the discrete version of the 
Bochner--Weil theorem S is a perfect semigroup. In particular, the group Z with 
the involution n*=-n  is perfect (Herglotz' Theorem, also known as Herglotz' 
Lemma). 

(2) Let S be either of the semigroups (N 0, +)  or (Z, +),  equipped with 
the identical involution n* =n.  By the solution of Hamburger's moment problem 
or its two-sided version, every positive definite function on S is a moment function. 
Yet S is not perfect since there exist indeterminate moment functions, such as 
n-+exp (n 2) ([1], Example 6.4.6). 

For a study of perfect semigroups we refer to [1], w 6.5. 
If  S and T are *-semigroups, we may consider the Cartesian product semi- 

group S X T  with the involution given by (s, t)*=(s*, t*). By [1], Theorem 6.5.4, 
the product of two perfect semigroups is again perfect. It is natural to wonder whether 
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the class of *-semigroups with the property that every positive definite function is 
a moment function is likewise stable under the formation of Cartesian products 
(of two factors). 

A simple counterexample is provided by the semigroup (No, +) :  Although 
every positive definite function on No is a moment function (Hamburger's theorem), 
the semigroup N0• admits a positive definite function which is not a moment 
function ([1], Theorem 6.3.4). 

If, however, we require one factor to be a perfect semigroup and if we impose 
one additional constraint (dictated by proof technique rather than b y  examples 
showing its necessity), we obtain a positive result: 

Proposition 1. I f  S is a perfect semigroup and i f  T is a finitely generated *-semi- 
group such that every positive definite function on T is a moment function then every 
positive definite function on S X  T is a moment function. 

Proof. The greater part of the proof consists in copying portions of the proof 
of [1], Theorem 6.5.4, to which we therefore find it convenient to refer. 

Let ~o: S •  be positive definite. The proof of [1], Theorem 6.5.4 up 
to and including line 7 from below on p. 205, except for the words 'uniquely deter- 
mined' in the last line, holds verbatim in our situation. Hence, for each tE T there 
is a unique complex Radon measure/h on S* such that 

~o(s, O = f ~(s)d~,(e), sOS; 
and for each Borel set A in S* there is a Radon measure era on T* (denoted by ca 
in [1]) such that 

~ , ( A )  = f ~(t)d, ra(O, tOT. 

In contrast to the situation of [1], Theorem 6.5,4 (where T is assumed to be perfect), 
our mapping A-*a a cannot be expected to be even finitely additive. To remedy 
this, consider the set P of finite Borel partitions of S*. The natural ordering on P 
is that of refinement, i.e. rc<=rc ' if and only if each element of rc is the union of 
those elements of re' which it contains. With each Borel set A in S* we associate 
an element TC a of P by rca={A, S * \ A }  if A~{0, S*}, rcr }. For any 
rcEP with n=>rc a define a Radon measure a~, a on T* by 

a~,a = ~DC~: Pea cro" 

Since the elements of rc contained in A form a Borel partition of A, 

~Ir, A(t)  ~- XDC~r: DcA ~D(t) : ZDEIr: DcA / t , (D) =/~,(A) 

for each tE T. 
Select a universal subnet (lh) of the identical net on P. For each Borel set A 

in S* the net (a,,,a), indexed by those i for which ni_->rca, is a universal net in 
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the set of representing measures of the positive definite function t~pt(A) on T. 
The latter set is weakly compact, T being finitely generated ([1], Proposition 6.'1.7). 
Hence, 

~ i , A  "-~ "CA 

weakly for some Radon measure z~ on T* with ~a(t)=pt(A), tET. We claim the 
mapping A ~ x  a has the following three properties: 

(i) % = 0 ;  

(ii) ZA=ff~n~_,ZA. whenever A,, A2 . . . .  are pairwise disjoint Borel sets in S* 

with union A; 

(iii) zx=sup{zclC compact, CcA} for each Borel set A in S*. 

First note that if A,, A2 are disjoint Borel sets in S* then 

ffrt, A1UA2 ~ Glr, A1JVff~,A2 

whenever rcEP is such that n~nA~ and rc~rca2. It follows that ZAlUA=ZAI+TA. 
Thus the mapping A ~ r  a is finitely additive and, in particular, increasing. 

Condition (i) needs no proof. To prove (ii), observe that the set function 
~: &(T*)~[0, ~oj (~(T*) denoting the Borel a-field in T*) given by 

tI(B) = ~=~ %4,(B), BE~(T*) 

is dominated by ~A. By [1], 2.1.28, it follows that t/is a Radon measure. Since 

~(T*) = Z7=, ~A,(T*) = ZT=~ m(A,) = m("4) = ZA(T*), 

we conclude that rl =Za. 
To prove (iii), define O: ~(T*)-~[0, r by 

O(B) = sup {'cc(B)[C is a compact subset of A} 

for BE ~(T*). Then O _-< va; by [1], 2.1.29, it follows that O is a Radon measure. 
The equality 

O(T*) = sup zc(T* ) = sup po(C) = po(A) = ZA(T*) 
shows ,9 = z a . 

As shown in the proof of [1], Theorem 6.5.4, conditions (i), (ii), (iii) imply the 
existence of a Radon measure :r on S*XT* such that ZA(B)=x(AXB) for all 
AE&(S*), BE~(T*);  and 

~(s, 0 = f o(s)r (s, OES• 

Thus if (S• is identified with S*XT* via the homeomorphism (~, ~)-- 
~| S*XT*-~(SXT)* given by O| t)=O(s)~(t) then the measure z rep- 
resents ~p. 
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Remarks. (1) The hypothesis that T be finitely generated is used only to ensure 
that the set of representing measures of any positive definite function on T be weakly 
compact. That the latter condition holds if only T is countable is easy to verify, 
using the fact ([3], p. 53) that any countable projective system of Radon measures 
has a limit in the form of a Radon measure. Possibly, the assumption that T be 
finitely generated could be omitted altogether. 

(2) Suppose S and T are *-semigroups such that every positive definite func- 
tion on S •  T is a moment function. It is fairly easy to verify that any positive 
definite function on S or T is a moment function. We conjecture that S or T must 
be perfect. 

(3) Equation (1) makes sense for any measure # defined on a a-field in S* 
rendering the integrands measurable - -  provided, of course, that the integrals exist. 
Suppose we redefine the terms 'moment function' and 'perfect semigroup' by ad- 
mitting this wider class of representing measures (see [2] for a development of this 
idea). Then Proposition 1 holds without the assumption that T be finitely gen- 
erated. 

Theorem 1. Consider the group (Z 2, +)  with the involution (n, m)*=(m, n). 
A function go: Z*~ C is positive definite i f  and only i f  there exists a Radon measure 
It on C~{0} such that for each (n, m)EZ 2 we have f Izl "+" d/~(z)< ~o and 

go(n, m) = f z"~r"d#(z). (5) 

Proof. The mapping z~Qz: C"x{0}~(Z~) * given by oz(n, m)=z"~ m, zEC\{0},  
(n, m)EZ 2, is a homeomorphism of C\{0}  onto (Z2) *. Thus the functions go 
on Z z having a representation of the form (5) are just the moment functions on Z 2; 
in particular, they are positive definite. 

To prove the converse, let S denote the group (Z, +)  equipped with the 
involution n * = - n  and let T denote the group (Z, +)  equipped with the involu- 
tion n*=n. We consider the group G = S •  with the product involution, i.e. 
(p, q)*= ( - p ,  q). 

The mapping h: Z~-~G defined by h(n, m ) = ( n - m ,  n+m) is a *-isomorphism 
of Z 2 onto the *-stable subgroup H of G given by H={(p ,  q)EGIp+qE2Z}. It 
therefore suffices to show that every positive definite function on H is a moment 
function. 

By Herglotz' theorem, S is a perfect semigroup; by the above-mentioned solu- 
tion of the two-sided Hamburger moment problem every positive definite function 
on T is a moment function. Now Proposition 1 implies that every positive definite 
function on G is a moment function. 

Let go: H-~C be positive definite and define ~: G ~ C  by ~]H=go, 
~[(G',,,H)=0. Then r is positive definite. To see this, let ca, ..., c, EC and 
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sl, ...,s, EG be given. Note that H is of index 2 in G and that the element 
a=(1,  0) represents the coset G',,,H. Defining tj=sj+a and noting that tj+t~= 
=sj+s~, we find 

Z "  c j~(s~+s~)  = c ~ ( s j + s ~ )  

= Z~,~c , ,c j~o(s j+s~)+Z, j~c~\~ ,  ~j~o(tj+t~) >= o, 

each term being nonnegative since in the first term the sj, in the second term the t j ,  
are in H. 

Since �9 is positive definite there is a Radon measure v on G* such that ~ = 9 .  
It follows that ~p =/~ where # is the image measure of v under the 'projection' 
e ~ I H :  G*~H*. 
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