The two-sided complex moment problem

T. M. Bisgaard

Hamburger's theorem asserts that a function $\varphi: \mathbb{N}_0 \to \mathbb{R}$ is the moment sequence of a measure on the real line if and only if φ is positive definite in the sense that the kernel $(n, m) \to \varphi(n+m)$ is positive semidefinite. (See [1], Theorem 6.2.2). The corresponding two-sided problem, consisting in characterizing those functions $\varphi: \mathbb{Z} \to \mathbb{R}$ which are the two-sided moment sequences of measures μ on $\mathbb{R} \setminus \{0\}$ in the sense of

$$\varphi(n) = \int x^n d\mu(x), \quad n \in \mathbb{Z},$$

has a similar solution: Such functions φ are precisely those which are positive definite in the sense that the kernel $(n, m) \rightarrow \varphi(n+m)$ is positive semidefinite. This was shown in [4]; see [1], Theorem 6.4.1, for a simple proof.

The complex moment problem, a natural analogue of the moment problem solved by Hamburger, requires the characterization of those functions $\varphi \colon \mathbb{N}_0^2 \to \mathbb{C}$ which are complex moment sequences of measures μ on \mathbb{C} in the sense that

$$\varphi(n, m) = \int z^n \overline{z}^m d\mu(z), \quad (n, m) \in \mathbb{N}_0^2.$$

In this case the pertinent concept of positive definiteness arises by considering the semigroup $(\mathbb{N}_0^2, +)$ with the involution (*) given by $(n, m)^* = (m, n)$ and agreeing to call a function $\varphi \colon \mathbb{N}_0^2 \to \mathbb{C}$ positive definite if the kernel $(s, t) \to \varphi(s + t^*)$ on $\mathbb{N}_0^2 \times \mathbb{N}_0^2$ is positive semidefinite. While every complex moment sequence is positive definite, there exist positive definite functions on \mathbb{N}_0^2 which are not complex moment sequences ([1], Theorem 6.3.5).

Observe that [1], Theorem 6.1.10 implies the following somewhat roundabout solution of the complex moment problem: A function $\varphi \colon \mathbb{N}_0^2 \to \mathbb{C}$ is a complex moment sequence if and only if $\sum_{n,m} c_{n,m} \varphi(n,m) \ge 0$ for each $(c_{n,m}) \in \mathbb{C}^{(\mathbb{N}_0^2)}$ such that $\sum_{n,m} c_{n,m} z^n \bar{z}^m \ge 0$ for all $z \in \mathbb{C}$.

Like Hamburger's moment problem, the complex moment problem has a two-sided companion, the problem of characterizing two-sided complex moment se-

quences, that is, functions $\varphi: \mathbb{Z}^2 \to \mathbb{C}$ representable in the form

$$\varphi(n, m) = \int z^n \tilde{z}^m d\mu(z), \quad (n, m) \in \mathbb{Z}^2$$

with μ a measure on $\mathbb{C}\setminus\{0\}$.

Consider the group \mathbb{Z}^2 with the involution $(n, m)^* = (m, n)$ and define a function $\varphi \colon \mathbb{Z}^2 \to \mathbb{C}$ to be positive definite in case the kernel $(s, t) \to \varphi(s + t^*)$ on $\mathbb{Z}^2 \times \mathbb{Z}^2$ is positive semidefinite. We shall show a necessary and sufficient condition for a complex function on \mathbb{Z}^2 to be a two-sided complex moment sequence is that φ be positive definite. This is somewhat remarkable in view of the failure of the corresponding condition in the one-sided complex moment problem.

From [1] we recall a few definitions. A (abelian) *-semigroup (S, +, *) consists of an abelian semigroup (S, +) with zero 0 and an involution, that is, an involutory automorphism, in S, written as $s \to s^*$. A function $\varphi \colon S \to \mathbb{C}$ is positive definite if for any $N \in \mathbb{N}$ and any $s_1, ..., s_N \in S$ the $N \times N$ matrix $(\varphi(s_j + s_k^*))$, j, k = 1, ..., N, is positive semidefinite. A character (called 'semicharacter' in [1]) is a function $\varrho \colon S \to \mathbb{C}$ satisfying $\varrho(0) = 1$, $\varrho(s^*) = \overline{\varrho(s)}$, $\varrho(s+t) = \varrho(s)\varrho(t)$ for all $s, t \in S$. The set of characters on S, denoted by S^* , is considered with the topology of pointwise convergence. If μ is a Radon measure on S^* such that $\varrho \to \varrho(s) \colon S^* \to \mathbb{C}$ is μ -integrable for each $s \in \mathbb{C}$, the function $\hat{\mu} \colon S \to \mathbb{C}$ defined by

$$\hat{\mu}(s) = \int \varrho(s) \, d\mu(\varrho), \quad s \in S \tag{1}$$

is called a moment function and the measure μ is said to represent $\hat{\mu}$. The moment function $\hat{\mu}$ is determinate if no Radon measure on S^* other than μ represents $\hat{\mu}$. A perfect semigroup is a *-semigroup S such that every positive definite function on S is a determinate moment function.

Examples. (1) If S is an abelian group equipped with the involution $s^* = -s$, the characters on S are the usual group characters; by the discrete version of the Bochner—Weil theorem S is a perfect semigroup. In particular, the group Z with the involution $n^* = -n$ is perfect (Herglotz' Theorem, also known as Herglotz' Lemma).

(2) Let S be either of the semigroups $(N_0, +)$ or (Z, +), equipped with the identical involution $n^*=n$. By the solution of Hamburger's moment problem or its two-sided version, every positive definite function on S is a moment function. Yet S is not perfect since there exist indeterminate moment functions, such as $n \to \exp(n^2)$ ([1], Example 6.4.6).

For a study of perfect semigroups we refer to [1], § 6.5.

If S and T are *-semigroups, we may consider the Cartesian product semigroup $S \times T$ with the involution given by $(s, t)^* = (s^*, t^*)$. By [1], Theorem 6.5.4, the product of two perfect semigroups is again perfect. It is natural to wonder whether the class of *-semigroups with the property that every positive definite function is a moment function is likewise stable under the formation of Cartesian products (of two factors).

A simple counterexample is provided by the semigroup $(N_0, +)$: Although every positive definite function on N_0 is a moment function (Hamburger's theorem), the semigroup $N_0 \times N_0$ admits a positive definite function which is not a moment function ([1], Theorem 6.3.4).

If, however, we require one factor to be a perfect semigroup and if we impose one additional constraint (dictated by proof technique rather than by examples showing its necessity), we obtain a positive result:

Proposition 1. If S is a perfect semigroup and if T is a finitely generated *-semigroup such that every positive definite function on T is a moment function then every positive definite function on $S \times T$ is a moment function.

Proof. The greater part of the proof consists in copying portions of the proof of [1], Theorem 6.5.4, to which we therefore find it convenient to refer.

Let $\varphi \colon S \times T \to \mathbb{C}$ be positive definite. The proof of [1], Theorem 6.5.4 up to and including line 7 from below on p. 205, except for the words 'uniquely determined' in the last line, holds verbatim in our situation. Hence, for each $t \in T$ there is a unique complex Radon measure μ_t on S^* such that

$$\varphi(s,t) = \int \varrho(s) d\mu_t(\varrho), \quad s \in S;$$

and for each Borel set A in S^* there is a Radon measure σ_A on T^* (denoted by τ_A in [1]) such that

$$\mu_t(A) = \int \zeta(t) d\sigma_A(\zeta), \quad t \in T.$$

In contrast to the situation of [1], Theorem 6.5.4 (where T is assumed to be perfect), our mapping $A \rightarrow \sigma_A$ cannot be expected to be even finitely additive. To remedy this, consider the set P of finite Borel partitions of S^* . The natural ordering on P is that of refinement, i.e. $\pi \leq \pi'$ if and only if each element of π is the union of those elements of π' which it contains. With each Borel set A in S^* we associate an element π_A of P by $\pi_A = \{A, S^* \setminus A\}$ if $A \in \{\emptyset, S^*\}$, $\pi_\emptyset = \pi_{S^*} = \{S^*\}$. For any $\pi \in P$ with $\pi \geq \pi_A$ define a Radon measure $\sigma_{\pi,A}$ on T^* by

$$\sigma_{\pi,A} = \sum_{D \in \pi: D \subset A} \sigma_D.$$

Since the elements of π contained in A form a Borel partition of A,

$$\hat{\sigma}_{\pi,A}(t) = \sum_{D \in \pi: D \subset A} \hat{\sigma}_D(t) = \sum_{D \in \pi: D \subset A} \mu_t(D) = \mu_t(A)$$

for each $t \in T$.

Select a universal subnet (π_i) of the identical net on P. For each Borel set A in S^* the net $(\sigma_{\pi_i,A})$, indexed by those i for which $\pi_i \ge \pi_A$, is a universal net in

the set of representing measures of the positive definite function $t \to \mu_t(A)$ on T. The latter set is weakly compact, T being finitely generated ([1], Proposition 6.1.7). Hence,

$$\sigma_{\pi_i,A} \to \tau_A$$

weakly for some Radon measure τ_A on T^* with $\hat{\tau}_A(t) = \mu_t(A)$, $t \in T$. We claim the mapping $A \to \tau_A$ has the following three properties:

- (i) $\tau_{\alpha}=0$;
- (ii) $\tau_A = \sum_{n \ge 1} \tau_{A_n}$ whenever $A_1, A_2, ...$ are pairwise disjoint Borel sets in S^* with union A;
- (iii) $\tau_A = \sup \{ \tau_C | C \text{ compact}, \ C \subset A \}$ for each Borel set A in S^* .

First note that if A_1 , A_2 are disjoint Borel sets in S^* then

$$\sigma_{\pi,A_1\cup A_2}=\sigma_{\pi,A_1}+\sigma_{\pi,A_2}$$

whenever $\pi \in P$ is such that $\pi \ge \pi_{A_1}$ and $\pi \ge \pi_{A_2}$. It follows that $\tau_{A_1 \cup A_2} = \tau_{A_1} + \tau_{A_2}$. Thus the mapping $A \to \tau_A$ is finitely additive and, in particular, increasing.

Condition (i) needs no proof. To prove (ii), observe that the set function $\eta: \mathcal{B}(T^*) \rightarrow [0, \infty]$ ($\mathcal{B}(T^*)$ denoting the Borel σ -field in T^*) given by

$$\eta(B) = \sum_{n=1}^{\infty} \tau_{A_n}(B), \quad B \in \mathscr{B}(T^*)$$

is dominated by τ_A . By [1], 2.1.28, it follows that η is a Radon measure. Since

$$\eta(T^*) = \sum_{n=1}^{\infty} \tau_{A_n}(T^*) = \sum_{n=1}^{\infty} \mu_0(A_n) = \mu_0(A) = \tau_A(T^*),$$

we conclude that $\eta = \tau_A$.

To prove (iii), define $\vartheta \colon \mathscr{B}(T^*) \to [0, \infty]$ by

$$\vartheta(B) = \sup \{ \tau_C(B) | C \text{ is a compact subset of } A \}$$

for $B \in \mathcal{B}(T^*)$. Then $\vartheta \leq \tau_A$; by [1], 2.1.29, it follows that ϑ is a Radon measure. The equality

$$\vartheta(T^*) = \sup_{C} \tau_C(T^*) = \sup_{C} \mu_0(C) = \mu_0(A) = \tau_A(T^*)$$

shows $\vartheta = \tau_A$.

As shown in the proof of [1], Theorem 6.5.4, conditions (i), (ii), (iii) imply the existence of a Radon measure \varkappa on $S^* \times T^*$ such that $\tau_A(B) = \varkappa(A \times B)$ for all $A \in \mathcal{B}(S^*)$, $B \in \mathcal{B}(T^*)$; and

$$\varphi(s, t) = \int \varrho(s)\zeta(t)d\varkappa(\varrho, \zeta), \quad (s, t) \in S \times T.$$

Thus if $(S \times T)^*$ is identified with $S^* \times T^*$ via the homeomorphism $(\varrho, \zeta) \rightarrow \varrho \otimes \zeta$: $S^* \times T^* \rightarrow (S \times T)^*$ given by $\varrho \otimes \zeta(s, t) = \varrho(s)\zeta(t)$ then the measure \varkappa represents φ .

Remarks. (1) The hypothesis that T be finitely generated is used only to ensure that the set of representing measures of any positive definite function on T be weakly compact. That the latter condition holds if only T is countable is easy to verify, using the fact ([3], p. 53) that any countable projective system of Radon measures has a limit in the form of a Radon measure. Possibly, the assumption that T be finitely generated could be omitted altogether.

- (2) Suppose S and T are *-semigroups such that every positive definite function on $S \times T$ is a moment function. It is fairly easy to verify that any positive definite function on S or T is a moment function. We conjecture that S or T must be perfect.
- (3) Equation (1) makes sense for any measure μ defined on a σ -field in S^* rendering the integrands measurable provided, of course, that the integrals exist. Suppose we redefine the terms 'moment function' and 'perfect semigroup' by admitting this wider class of representing measures (see [2] for a development of this idea). Then Proposition 1 holds without the assumption that T be finitely generated.

Theorem 1. Consider the group $(\mathbf{Z}^2, +)$ with the involution $(n, m)^* = (m, n)$. A function $\varphi \colon \mathbf{Z}^2 \to \mathbf{C}$ is positive definite if and only if there exists a Radon measure μ on $\mathbf{C} \setminus \{0\}$ such that for each $(n, m) \in \mathbf{Z}^2$ we have $\int |z|^{n+m} d\mu(z) < \infty$ and

$$\varphi(n, m) = \int z^n \bar{z}^m d\mu(z). \tag{5}$$

Proof. The mapping $z \to \varrho_z$: $\mathbb{C} \setminus \{0\} \to (\mathbb{Z}^2)^*$ given by $\varrho_z(n, m) = z^n \bar{z}^m$, $z \in \mathbb{C} \setminus \{0\}$, $(n, m) \in \mathbb{Z}^2$, is a homeomorphism of $\mathbb{C} \setminus \{0\}$ onto $(\mathbb{Z}^2)^*$. Thus the functions φ on \mathbb{Z}^2 having a representation of the form (5) are just the moment functions on \mathbb{Z}^2 ; in particular, they are positive definite.

To prove the converse, let S denote the group $(\mathbf{Z}, +)$ equipped with the involution $n^* = -n$ and let T denote the group $(\mathbf{Z}, +)$ equipped with the involution $n^* = n$. We consider the group $G = S \times T$ with the product involution, i.e. $(p, q)^* = (-p, q)$.

The mapping $h: \mathbb{Z}^2 \to G$ defined by h(n, m) = (n - m, n + m) is a *-isomorphism of \mathbb{Z}^2 onto the *-stable subgroup H of G given by $H = \{(p, q) \in G | p + q \in 2\mathbb{Z}\}$. It therefore suffices to show that every positive definite function on H is a moment function.

By Herglotz' theorem, S is a perfect semigroup; by the above-mentioned solution of the two-sided Hamburger moment problem every positive definite function on T is a moment function. Now Proposition 1 implies that every positive definite function on G is a moment function.

Let $\varphi: H \to \mathbb{C}$ be positive definite and define $\Phi: G \to \mathbb{C}$ by $\Phi|H = \varphi$, $\Phi|(G \setminus H) = 0$. Then Φ is positive definite. To see this, let $c_1, ..., c_n \in \mathbb{C}$ and

 $s_1, ..., s_n \in G$ be given. Note that H is of index 2 in G and that the element a = (1, 0) represents the coset $G \setminus H$. Defining $t_j = s_j + a$ and noting that $t_j + t_k^* = s_j + s_k^*$, we find

$$\begin{split} & \sum_{j,k=1}^{n} c_{j} \overline{c_{k}} \Phi(s_{j} + s_{k}^{*}) = \sum_{s_{j} + s_{k}^{*} \in H} c_{j} \overline{c_{k}} \varphi(s_{j} + s_{k}^{*}) \\ &= \sum_{s_{j}, s_{k} \in H} c_{j} \overline{c_{k}} \varphi(s_{j} + s_{k}^{*}) + \sum_{s_{j}, s_{k} \in G \setminus H} c_{j} \overline{c_{k}} \varphi(t_{j} + t_{k}^{*}) \ge 0, \end{split}$$

each term being nonnegative since in the first term the s_j , in the second term the t_j , are in H.

Since Φ is positive definite there is a Radon measure ν on G^* such that $\Phi = \hat{\nu}$. It follows that $\varphi = \hat{\mu}$ where μ is the image measure of ν under the 'projection' $\varrho \to \varrho | H$: $G^* \to H^*$.

Acknowledgements. The author gratefully acknowledges the interest and criticism of Professor Christian Berg. This work was supported by the Danish Natural Science Research Council.

References

- Berg, C., Christensen, J. P. R. and Ressel, P., Harmonic Analysis on Semigroups, Theory of Positive Definite and Related Functions, Graduate Texts in Mathematics 100, New York—Berlin—Heidelberg—Tokyo, Springer-Verlag, 1984.
- 2. Bisgaard, T. M. and Ressel, P., Unique disintegration of arbitrary positive definite functions on *-divisible semigroups, *Math. Zeitschr.*, to appear.
- BOURBAKI, N., Eléments de Mathématique. Livre VI, Intégration, 2^e ed., Ch. 1—9. Paris: Hermann, 1965—69.
- Jones, W. B., NJÅSTAD, O. and THRON, W. J., Orthogonal Laurent polynomials and the strong Hamburger moment problem, J. Math. Anal. Appl. 98 (1984), 528—554.

Received September 24, 1987

T. M. Bisgaard
Matematisk Institut
Universitetsparken 5
DK—2100 København Ø
Denmark