
Parabolic vector bundles on curves 

U. N. Bhosle 

Seshadri introduced the notion of parabolic structures on vector bundles [4] 
and later constructed a moduli space for semistable parabolic vector bundles on 
curves [2]. In this small note we describe a different construction of the moduli 
space generalising the method of Gieseker [1]. This has some advantages. This con- 
struction is much simpler and shorter than in [2]. It avoids the use of unitary bundles 
and hence is applicable in positive characteristics. One does not need the introduc- 
tion and comparison of different parabolic structures. Moreover, some computa- 
tions which have to be repeated here (proposition 2) become simpler in this method. 
The generalisation to parabolic principal bundles will be considered in a subsequent 
paper. 

I would like to thank M. S. Narasimhan and A. Ramanathan for helpful dis- 
cussions. 

1. Preliminaries 

Let X be an irreducible nonsingular projective curve. 
Let S be the set of all parabolic semistable vector bundles of rank k, degree d, 

parabolic degree zero, a fixed quasi-parabolic structure at a given point x0 in X 
with fixed weights 0<~l-<e~< . . .<e ,<  1. One knows that S is bounded i.e. there 
exists m0 such that for m>=mo, we have HX(E(m))=O and H~ generates 
E(m) for all E in S. Also for any real number q, the set of all subbundles F of ele- 
ments of S with degree _->q is bounded (p. 226, [2]). 

Let g be the genus of X. Choose an integer m>>g so that Ha(F(m))=0 and 
H~ generates F(m) for F i n  S or FcE, E in S and degree F>=(-g-8)k. 
Let n =h~ E in S. Let Q be the Hilbert scheme of coherent sheaves over X 
which are quotients of d~ and whose Hilbert polynomial is that of E(m) with E 
in S. Let J be the universal family on QXX. Let R be the subscheme of Q con- 
sisting of points q in Q such that H~(J~) =0, h~ ---n, Jq is locally free and gen- 
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erically generated by global sections. Notice that R contains the set of points in Q 
corresponding to elements of S. Let G ( J )  be the flag bundle over RX {x0} of 
type determined by the quasiparabolic structure at x0 and le t /~  be the total space 
of this flag bundle./~ has the local universal property for parabolic vector bundles. 
Let Ks, (respectively/~s) be the set of points o f /~  corresponding to parabolic semi- 
stable (respectively stable) vector bundles. The group G=SL(n) acts on R, _R 
keeping/~s~ a n d / ~  invariant. 

Let do=d+km, A=Picdo(X), g: X •  projection and M the Poincare 
bundle on XXA. Let 

Z = P(o~~ (AkO~, g,M)*). 

SL(n) acts on Z preserving the fibres over A. Let Z ~ (resp. Z ~) denote the set of 
semistable points (resp. stable points) of Z for the linearisation of the action of 
SL(n) with respect to the ample line bundle 0z(m-g) .  Given a "goodpair" (F, (o) 
where F is a flat family of vector bundles parametrised by S such that for all s in 
S, F~ is generated by global sections at the generic point of XXs and go: 0~-~p, F 
is an isomorphism, one gets a morphism T(F, cp): S-~Z ([1]; p. 57). 

For s in S, T(F, ~o)(s) is the composite AkK" a~,s~, AkHO(F,) y ~  HO(Ak F,), 
where T is the natural map. Notice that if z is a closed point of Z with g(z)=L 
in A, then z can be regarded as an element of Horn (AkK ", H~ 

Suppose, in addition, that F is a family of parabolic vector bundles with a 
fixed parabolic structure at x 0. The underlying quasiparabolic structure on Fs is 
given by a flag 

(F,)xo = FI(Fs)~o D F~(F,)~o ~. . .D FI(F,)~o D O. 

This induces (via rp) a flag on Kn=H~ 

K n = F1 (F~) D r 2 (Fs) D . . .  D Fz (F~) D F t + 1 (F~), 

where FI+I(Fs) is the kernel of the evaluation map e~o: K~(F~)x~ and FI(F,)= 
e~01(F~(F~)~0 ) for all i = 1 , 2  . . . . .  l. Let f i = d i m F ~ ( F ~ ) , i = l  . . . .  , l + 1 .  Let G ,=  
//~G.,y,, where G.,~, denotes the Grassmannian of f~-dimensional vector sub- 
spaces of K ~. Let L~ be the ample generator of Pic G., I," On G., take the polarisation 

L = cq L1 + (~  - ~1) L2 +--. + (~ ; -  c~l- 1) L~ + (1 -- al) Lt+ 1 = ~ i  ei Li. 

One has a morphism f :  S~G~ which associates to s in S the element (Fi(F~)) in 
G~. Thus we have a morphism ~(F, <o): S-+ZXG, ~(F, go)=T(F, go)Xfi Let T 
denote the morphism _R-+ZXG, thus obtained; it is SL(n)-invariant. On Z• 
we take linearisation with respect to the ample line bundle Oz(m--g)+L. 
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Remarks and definitions 1 

l(i) A point (% (F~)) in Z• is semistable (or stable) if and only if for 
any subspace W of V=K", we have 

dim W(~'i e, dim F~) - dim V(~',  dim W n  Fi) 

+ ( m -  g) (d dim g - k dim IV) :> 0 (or > 0), 

where d is the maximum of the cardinalities of z-independent subsets of W. 
Define wt V=al ( f~-f2)+e~(f2- fa)+ . . .+0h(f t - - f t+ l )  f~=dim Fi; wt W= 

z ~ ( f / - f ~ + 0 ,  f [ = d i m  Wc~Fi. Then wt V+f~+~=ZeJ~,  wt W+f[+~=~eJ[ 
and the above condition reduces to 

o" w -= dim W(wt V+f+O-d imV(wt  W+f{+O 

+ ( m - g ) ( d d i m V - k d i m W )  ~_ 0 (or >0) .  

l(ii) For E in/~ and F=E, define 

ZF = n[(m-g)rk F+(rk  F - w t  F)] 

- -  h ~ ( F ( m ) )  [(m - g) k + (rk E--  wt E)] 

where wt denotes the parabolic weight of the vector bundle. 
10ft) Let W=V, let F(m) be the subbundle generated by W. Using the Rie- 

mann--Roch theorem and wt E =  -degree E, one sees that 

)% = - n [paradeg F +  h a (F(m))], 

where paradeg denotes the parabolic degree i.e. degree+parabolic weight. In par- 
ticular, if Ht(F(m))=0, ZF = - n  paradeg F. 

l(iv) If F(m) is generated by global sections, W=H~ and 

Ha(r(m)) = O, 
then 

)CF =-17W. 

2. The main results 

Proposition 2. 

(a) qER ~ =~ T(q)E(Z• ~, 

(b) qE_~ ~ =~ T(q)E(ZXG,) ~, 

(c) qER. q ~  =*" T(q)~(Z• ~ 

(d) qE_~--~ ~ =. T(q)~(Z• ~. 



18 U.N. Bhosle 

Proof. (c) Let q correspond to a parabolic vector bundle E. Suppose E is 
not parabolic semistable. Then there exists a parabolic semistable subbundle F of 
E with paradegF>paradegE=0.  Let W=H~ As m>>g, we have by 
1 (iii) and 1 (iv), 

aw = Zr = - n paradeg F ~: 0, 

contradicting the semistability condition for T(q). 

(d) Suppose that E is parabolic semistable but not stable. Then there exists a 
parabolic stable subbundle F of E with paradeg F=0.  

As above, for W=H~ we have 

aw : ZF : O. 

(a) and (b) Suppose E is a parabolic semistable (or stable) bundle. Let W 
be a subspace of V and let F(m) be the subbundle of E generically generated by W. 

Case 1. If W satisfies the conditions of l(iv) we get aw=ZF-- - n  paradeg F 

_~0 or > 0  

according to E being parabolic semistable or stable. 

Case2. If degF<=(-g-8)k ,  then we will show that aw>O. Let V " =  
H~ Using the fact that d=rk  F in 1(i), we get 

(*)  aw-- Zv = n(wt F--rk F+d im W--fi'+ l -  wt W) 

+ (dim V " -  dim W)[k ( m -  g) + ( k - w t  E)]. 

Now, wt E=Z~=t a i ( f i - f t + l ) < ~ ( f i - f i + , ) = k = d i m  V-f i+l ;  similarly, wt IV< 

dim W--fl+l. Hence, 

aw--Zr >= n ( w t F - r k F )  >: --nrkF~_ - -2k(m--g)rkF.  

As in Lemma 4.3 [2], Zr>:3k(m-g) rk F. So, 

ave = (aw--ZF)+ZF >= k rk F(m--g) > O. 

Case3. d e g F > ( - g - 8 ) k .  In this case, by our choice of m, we have 
H*(F(m))=O and V"=H~ generates F(m). If V"=W, we are through 
by case 1. Hence, may assume V '~  W. By l(iii), we have Zr~0 or >0  according 
to E being parabolic semistable or stable. Soit suffices to show that arv-Zr>=O. 
Using the commutative diagram 

V" , F(rn)x o - +  0 

W ~ I m W ~  W/WnFt+ 1, 
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W �9 we have dim V " - d i m  W_~rk F - d i m  -f~+l. From (.) ,  we then have 

aw - Z r  => n(wt F - w t  W ) -  n dim (W' -  dim W) 

+n(d imV"-d imW) ,  as n = ( k - w t E ) + k ( m - g )  

= n(wt F - w t  W) 

> 0 .  

This completes the proof of the proposition. 

Proposition 3. The morphism 

T:  ~ "  -* (ZXG,)" 
# proper. 

Proof. Let P be a closed point of a nonsingular curve C. Let  kg: C--P-~R "s 
be a morphism such that To7  ~ extends to a morphism ToTt: C--,(Z• ~. By 
the valuative criterion for properness, to show T/I~ ~ is proper, it suffices to show 
that the dotted arrow in the following commutative diagram can be realised. 

C r;~" , ( Z •  

On X •  we have the surjeetive morphism ~p: 0 " ~ / ' = ( I d x  70" / .  By 
lemma 4.2 [1] or otherwise, we can e x t e n d / '  to ~7, over X• flat over C, so 

n mp that ~Oe: 0 ~ / x x e  is generically surjective. By the completeness of the flag variety, 
there exists a parabol c structure o n / x •  (see the beginning of the proof of proposi- 
tion 3.3, [2]). Thus ~(/',~) extends to 2P(/', 0) and T(~' ,  ~p)P=ToT~(P) is in 
(Z• ss. In particular, ~xxe is generated at (x0, P)  by global sections - '  OfJxxe .  
By proposition 2(c), it follows that -" / x x e  is parabolic semistable and hence 

(p~).(~):  o~ --  ( p ~ ) , / "  

is an isomorphism. Thus ~ extends to a map C ~  ss realising the dotted arrow in 
the diagram. This proves that T/R ss is proper. 

Theorem. There exists a coarse moduli scheme M for the equivalence classes of  
semistable parabolic vector bundles (on an irreducible nonsingular complete curve X} 
of  rank k, degree d, parabolic degree 0 and having a fixed parabolic structure at a 
given point :Co in the curve X. The scheme M is a normal projective variety of  dimension 
k Z ( g - 1 ) + l + d i m  F where F is the flag variety of  type determined by the fixed 
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quasiparabolic structure. The subset M ~ of M corresponding to stable parabolic bundles 
is a smooth open subvariety. 

Proof. From the construction of / ~  and lenuna 4.3 [1] it follows that T is 
injective. Thus T is a proper injective and hence an affme morphism f r o m / ~  into 
(Z)<G,) ~ which is SL(n)-invariant. By proposition 3.12 [3], a good quotient of 
/~'~ exists if a good quotient of (Z• ~ by SL(n) exists. The existence of a good 
quotient of (Z• ~ by SL(n) is well-known. Hence the good quotient M of 
/~'~ by SL(n) exists. Since RS~ is a nonsingular quasiprojective variety of dimension 
k2(g - 1) + 1 +n  2 -1  +d im F, it follows that M is a normal projective variety of 
dimension k~(g--1)+l+dimF. Also, / ~ M  s is a geometric quotient, M s is 
nonsingular a s / ~  is so. 

3. Relation with Seshadri's method 

In Theorem 4.1 [2] Seshadri gives an . . . . .  ~ N ~ mjectwe morphlsmf:  g ~ (Hi, k •  H,,t,) , 
where/4. ,  t denotes the grassmannian of t-dimensional quotient spaces of K" and 
N is a sufficiently large integer. Under duality isomorphism, one has H,,t,~G,, A 
in our notation i.e. Hi H,,t,'~G,. The induced map .R~S-,-H~k associates (roughly) 
to a vector bundle E the quotients (H~ E~, being the fibre of E at a 
fixed point x i  of X, for i =  1, 2, ..., N. We shall show that f factors through T. 
The morphisms/~s-~G, induced by T and f a r e  the same under the above identifica- 
tion. Now, Z=P(~om(Ak(9], g,M)*). The isomorphism g*(Hom(Ak(?], g,M))-~-~ 
( Ak O~XA)* | g'g* M composed with the evaluation map g* g ,  M ~ M gives, for each 
x in X, a morphism Tx: Horn (Ak(9~t, g,M)-~(AkCp])*|215 and hence a 
rational map 

~ :  z -~ P ( a  ~ r 

Roughly speaking ~ , o T  associates to a bundle E the one-dimensional quotient 
AkE~, of AkK" i.e. an element of H,,k embedded in P (AkK"). Let 7 j = 7ix, •  • ~ , , .  
The rational map ~ is a morphism on T(/~ s~) as bundles representing elements of 
Rs~ are generated by global sections. Clearly, 7 'eT=f  The main difficulty in [2] 
was that the morphism f could not be shown proper (remark 4.5, [2]). We have 
factored f though a proper morphism T (prop. 3) making a direct application of 
geometric invariant theory possible and thereby avoiding the complications in [2]. 
The following simple example for k = 2  indicates that ~e,~ is not proper in general, 
~'~s being the restriction o1 ~ to the largest subset of Z ~" on which ~ is a morphism. 

Example 5. Let V and W be two vector spaces over C, the dimension of V 
being even. Fix a basis (ei) of W, let Pi denote the projection on the i th coordinate 



Parabolic vector bundles on curves 21 

i.e. Pi: W--C, Pi(~i wjej)=wi. Then Pi induces a linear map Hom(A2V, W ) ~  
(A z V)* and hence a rational map 

7~i: P = P ( H o m  (A2V, W)*) ~ P(A2V). 

Let ku=// i  ~ .  SL(V) acts linearly on both sides above, the action on W being 
trivial. It is easy to check that d~(1) pulls back to d~(1) under 7Ji, i=1 ,  ..., l. So if 
we take the polarisation given by d~(l) on P and by d~(1) on each P(A2V), we get 
an induced map 7/: PsS-+H~ P ( A2 v)  ~, ss denoting semistable points for the above 
linearisations of SL(V) action. Let D denote the maximal subset of  P on which 
7 j is a morphism. Let bar ' ' denote the image in projective space. Then for 
TCHom (A~V, W), TED iff pioT#  o Vi. We shall show that the morphism 

~P~.: D" ~ (lliP(A~V)) ~" 

is not proper using the valuative criterion. The elements of (A S V)* can be regarded 
as alternating bilinear forms and the nondegenerate forms are semistable for SL(V)- 
action. Let tC(O, 1). Let (T~(t))E(I[~P(AZV)) " be given by Ti(t)= the alter- 

nating form given by the matrix [t_,O I to'~ ] ' I being / / the identity matrix of rank = 
1 J 

~-dim. V and a~s are integers not all equal. Then 

limTi(t) =li~mo (t"Ti(t')- = [ ~ 

belongs to P(A2V) " & hence limt.o(T~(t)),E(IIP(A2V)) "s. Now, an element 
TEHom (A2V, W) is just an l-tuple of forms (pioT)x~_i~_t. Define T(t) by pioT(t)= 
Ti(t), so e(T(t))=(T~(t)). Let ao=max(a3 .  Then 

= l!mT(t) = -t-o(limt~~ ( = ~i) 
where 

b i = { ! , ~  I0] if ai=ao, 

otherwise. 

Thus Tog~D showing that ~ss is not proper. 
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