Fredholm representations of uniform subgroups
Glenys Luke

Introduction

In [8] Mishchenko defined the notion of a Fredholm representation of a discrete

group I' and a map

a: R(I') — K(BI)
from the set of Fredholm representations of I to the K-theory of the classifying
space BI'. For the special case when BI’ is homotopy equivalent to a compact
manifold of negative curvature, it was proved that the image of « generates
K(Bry®Q. This led to a proof of a conjecture of Novikov concerning rational
homotopy invariants.

We give an extension of this result for the case when I’ is a torsionless, uniform
subgroup of a non-compact, semisimple Lie group. By enlarging the class R(I)
to include representations which become unitary after projecting to the Calkin algebra,
it can be proved that the map is surjective.

1. Fredholm representations

Let H, H,, H, be Hilbert spaces. The symbol B(H,, H,) will be used to denote
the space of bounded linear operators from H, to H,, and A(H), the Calkin
C*-algebra of H. A representation ¢ of a group I' on H will be said to become

unitary in the Calkin algebra if

e —e (™)
is compact for all y€r.
A Fredholm representation of a discrete group I is a triple

((Hls QI)’ (H29 QZ)7 F)

where (Hy, ¢;) and (H,, ¢,) are representations of I' on H; and H,, resp.,
that become unitary in their respective Calkin algebras and F: H,->H, is a Fred-
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holm operator such that

Fo:(y)—0.(WF

is compact for all yer.

Two Fredholm representations ((Hy, ¢y), (Hz, ¢2), F) and ((H}, ¢y, (Hs, ¢3), F’)
will be said to be equivalent if there exist invertible 4,¢€ B(H,, H,) and 4,€ B(H,, H,)
such that

() 4:0:(0) = 0141, 4:0,(¥) = 05(y)4, for all y€r,

(ii) F’'A;—A,F is compact.
Then R(I') will denote the set of equivalence classes of Fredholm representations
of I

If I' has the property that BI' has a triangulation, then Mishchenko (see [8])
has shown how to define a map

a: R() -~ K(BI).

A uniformly continuous family J: BT ~B{H,, H,) parametrized by the universal
covering space of BI' is said to be associated to a Fredholm representation

((Hls ﬁl)s (H2’ ﬁ2)s F) Of F lf '
(i) F—3(x) is compact for all x€ BT,
(i) JOox) = (M I(Xe. (™) forall yel, xeBI

where I' acts on BI' by deck transformation. For each Fredholm representation,
an associated family may be constructed by selecting a I'-invariant triangulation

of BI', constructing an associated family on the zero skeleton and extending it to

Br by linear interpolation on the higher dimensional simplices. Dividing out by the
action of I' gives a family of Fredholm operators on BI', which in turn determines
an element of K(BI') (see [1]).

2. The basic operator

In this section we examine the properties of an operator constructed by Hor-
mander (see [4]). It was suggested by Professor M. F. Atiyah that this operator might
be used to generate Fredholm representations.

Let G be a non-compact semisimple Lie group with Lie algebra g,. Let
g,=ko+p, be a Cartan decomposition, 6 the associated involution, K the corre-
sponding maximal compact subgroup and G/K the non-compact symmetric space
of maximal compact subgroups. Let B denote the Killing form on g, and A4 the
positive definite form given by

AX,Y) =-B(X,6Y).
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The left invariant metric on G induced by A is invariant under the action of right
translation by K.
The Killing form induces a G-invariant metric on G/K. Let r(x, y) denote
the geodesic distance between x and y in G/K and r(x) the distance from x
to the coset ¢K. Let d denote exterior differentation on forms and d* its metric
adjoint. Let ¢ and i denote the exterior and interior products of forms,
We consider the (unbounded) operator
D: I(Q*(G/K)) ~ IX(@* (GIK)
on square-integrable differential forms defined by the formula
D =d+d*+e(d(r?¥/2))+i(d(r¥/2))
and taking the closure of the operator on smooth forms of compact support.
Lemma 2.1. The operator D is self-adjoint.

The proof is standard (see {4]).
Let A*(Q*(G/K)) denote the completion of the space of smooth forms of
compact support with respect to the graph norm associated to D.

Theorem 2.2. The restricted operator

D: AY(Q°(G/K)) ~ L3(Q°%(G/K))

is surjective with a one dimensional kernel generated by the function e "2

It is easy to check that the kernel of the restriction of D to O-forms, i.e.,
functions, is generated by e~"*/2. The proof is then completed by proving the exist-
ence of positive constants C,, ¢=1, 2, ..., dim G/K, such that

IDfllz = Cylifllee for all fEHAY(QUG/K)).
Our method is a generalization of that given by Hormander in [4]. If n: G—~G/K
denotes the canonical projection, clearly, it suffices to find positive C, such that

In*Df|| = Cylln*fll, q=0.

Let X, ..., X, be an orthonormal basis for p, and X,.,,..., X, an ortho-
normal basis for k,. We will use the same notation-for the corresponding left
invariant vector fields on G and wy, ..., w, for the dual Maurer—Cartan forms.
If fisa k-form on G/K then n*f=>) fiw' where I={i=i,=...=i} is a sub-
set of the indices 1, ...,r and w/=w'tA ... Aw¥*. Further

n*df) = 2 2 XKW AW,
(@ f) = _21,,' XI(fpiw)(wh).
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Let n*(d(r¥2))=2 x;w’. Then

I7w*DfIE = 3 25 e+ XNfP+ 25 ) Zpym oy Gt Xos X, — X1 i fin)
where [xH—X,, x;—X)=X;(x))+ X, (x;) +[X;, X;}. The derivation property d*=0
implies that X;(x;)=X7(x;) and the theorem is proved by computing

L2600 fins fu) + (X, Xl 5. fiD))
Notice that in the Euclidean case, G=R", [X;, X;]=0 and X;(x)=3;, see ([4)).
Proposition 2.3. The Lie Bracket term satisfies
W (d+d)f12 =2 = WG U+ 3o g 250 (X XS, fu) =
= —(@DIFI+2(a~ D7 Zhegor,amria | 2, 521 Gy Fima]

where the Cy,; are the constants of structure given by

[XM’ XJ'] = Zm=r+1 Crﬁan'

a

Proof. This may be computed directly but is better understood by considering
the Weitzenbock formula for the Ldplacian on forms, namely, if V denotes the con-
nection associated to the metric, then

A = —trVoV+DIR

where RCI(TQRT*Q@T®T*) denotes the curvature and DR, the linear operator
induced on g-forms, the derivation extension of R (see [10]).

The operator 3, (X, X|1fjL, fir) is precisely (DIR(f),f).

The Weitzenbock formula gives a decomposition of D?R(f) into two parts:
the operator induced by the Ricci curvature and the difference. The Ricci curvature
R;, =3 R;j; of anon-compact symmetric space is 1/2 (Riemannian metric) (see [7])
and hence the first term —(g/2))l 7i2, the order ¢ of the form enters as repetition
coming from the number of ways of expressing f; as f;;, |L|=g—1.

We explain the remaining term more carefully.

Let (R,f,f) denote the remaining term. Then

(R2f)i1...iq =2 Z,KV (= 1)u+vR?vbiufabi14..i,L...i.,‘..iq
where we are using the orthonormal basis wy, ..., w, for p; and R,,, denotes
the curvature coefficient with respect to this basis. Then

(Rof.f) = “(‘I"l)—12]L|=I,_g, a,bv,u (Ryvap SaoL> four) =
=(q—D7 3 Roapy farr> Sun) + (@ =17 2 Ropva fabrs frnr) =
= (=17 3 (Ryspw fuvrs fuv) — (=D 2 (Ropay farr> fonr) =
= (g—1D)7" 5 (Ropows Jabrs finr) — (Rof, f)-



Fredholm representations of uniform subgroups 105

However,

Rbauv = _B([[Xua XVL Xa]s Xb) = —B([Xu» Xv]a [Xa: Xb]) = Za C:v b+
Hence

(sza f) = Z(q'_l)_l Za, a,b,p,v CﬁvC:b(fabL’ fnvL) =
=2(g—-1D)71 3, HZ’a,,, CfbfabL“z-

Proposition 2.4. If f is a square integrable q-form on G[K, then
St 2ipima1 KOs fi) = 4 Zypyg Mal®
Proof. We consider the bilinear form with coefficients X;(x;). Note that
X;(e) = B([X;, 2 x.X:], Xu)
where D x;X; is the vector field on G dual to the form
> xwh = n*(d(r%2)).

In terms of the Cartan decomposition G=exp p,- K, we define a vector valued
map ¢: G—~py by

¢(g) =ad(k~)(P) where g=expP-k=k-expo(g)

X,(6) = B(X;(0), X)).

and then

The function ¢ is left K-invariant, ¢(kg)=¢(g), so

B(X;(p), X;)(kg) = B(X;(¢), X))(2)
and hence X;(x;) is left K-invariant. It now suffices to calculate the form on
exp Pp-
The map ¢ factors n-7: G>~KXp,—p, where t(kexp P)=(k, P) is a dif-
feomorphism and = the projection onto the second factor in the product.

We compute
(LexpP Z) ((P) = Z(QD . Lexp p) where ZE Po-
Firstly
(Lexp PZ) ((0) = d([) (Lexp PZ) =dn- dT(Lexp PZ)

where do €I (T*(G)®p,) is the vector valued exterior derivative.
A tangent vector at (k, P) has the form (L,7, Y) where T¢k,, Y€p, and

1 —e—2d(®)

(dt——l)(k,P)(LkTa Y)=Liexpp [e—ad(P)T_;__;d_(}?)_(Y)] .
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According to the Cartan decomposition g,=k,®p,, the k, component is
given by
1—cosh ad (P)

€Y cosh ad (P)T'+ 2d(P) Y}
and the p, component by

. sinh ad (P)
'(2) sinh ad (P)T +_5.an)—‘ Y.

Equating compact and non-compact components in

((d‘r)exp P)—l (Lexp P Y) = (d‘l.' _1)(2’ P) (Lexp P Y) = Lexp P Za
we have (1)=0 and (2)=Z. Hence

Z = —sinhad (P)T +si_n;1d_a(%ﬂ Y = A(P)(Y —ad (P)T)
where A(P)= ____sh;l:{zzg]’)

The map A(P): p,—p, is well known to be invertible: if exp: p,—~G/K, then
(dexp)p=L,,pA(P). Hence Y—ad (P)T=A(P)"*Z. From (1) we get

exp

coshad (P)—1

T+—ap

(ad (P)T—Y) =0

and hence
coshad (P)—1
ad (P)

Finally, Y—ad (P)T= 4(P)~*Z, Y = coshad (P)(4(P)'Z),
i€, (dp)(LexppZ) = coshad (P)(4(P)~12Z).

T = A(P)Z.

We now choose an orthonormal basis Xj, ..., X, for p, by taking X;=F/||P]
and X;, 2=i=r to be eigenvectors of the self-adjoint transformation ad (P)?: p,—~
~po with ad (PY®X;=1;X;. The symmetric space G/K has negative sectional cur-
vature and it follows that 4;=0, 1=i=r. Finally,

Xj(xl) = B(d(”(LexpPXj)’ Xz) = B(COSh ad (P)(A(P)_lXj)’ Xl) =

——V—Tl—_—-éﬂ if 4;#0
=1 tanh ¥,
0, it 4;=0
and ——VLzl.
tanhV—};
Hence

Zj,l,L (Xj(xl)ijsflL) =q 2, Ifl~
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The two lemmas together imply that
I=*Df |* = (3/2)q|=*fII2.

Remark. If we had chosen the weight e~*" instead of e~ ie., the form
d(er?/2), then the same method would yield positive constants C, whenever e>1/4,

2

3. The space H'(Q*(G/K))

The space H'(2*(G/K)) is the completion of the smooth forms of compact
support on G/K, with respect to the graph norm associated to D.

Lemma 3.1. The space H'(Q*(G/K)) may be characterized by
HY(Q*(GIK)) = {feL¥(Q*(G/K))|df, d*f, |r|feL*(Q*(G/K))}.

Proof. | DfIP=|df |*+||d*f |2+ |leCrdr)f |2+ li(rdr)f |+ (Rf, f)+(f; Rf) where
R denotes the Lie derivative operation with respect to the radial vector field rd/dr.
A routine calculation using spherical coordinates shows that

(RS, )+, RO = CQAR+Vielf), =0

(see Appendix).

Theorem 3.2. The inclusion H'(Q*(G/K))~ L*(Q*(G/K)) is a compact operator.

Proof. Let C&G/K be compact and let

H(C) = {feA(@*(G/K)) |supp/ < C}.

Then the inclusion H Hoycr(e* (G/K)) is well known to be compact (see [3]).

Let e=0 be small and yx: G/K—~{0, 1] be such that

K@) =1 if Blgx)=¢e2
=0 if B(x,x)=(g2)2

and |dy|=2. This can be done by defining y as a function of r.

Let

B = {flIfI, Udfl, Ud*fl, lrefll = 1}
and f€B. Then

If=xfllz = [ pyasr [F(P)|det A(P)| dP.

But f]r-f]2§1 and hence f“P">e_llf]2§8.

Hence || f—y-fll=e.
The composition
HY(Q*(G/K)) — H(C) ~ L*(Q*(Q/K))
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given by fi>y-f is compact. Hence the inclusion H'(Q*(G/K)) -~ L*(Q*(G/K))
can be uniformly approximated by compact operators and is hence compact.

Next we examine the natural action of G on H'(Q*(G/K)). It is clear that
this action is isometric on L*(Q*(G/K)) and preserves the operators d and d*.
To check that it preserves H'(Q*(G/K)), we need only observe that r—g-r is
bounded by the geodesic distance from gK to ek, ie., r(g-0,0).

A proof that bypasses the characterization of A'(Q*(G/K)) in Lemma 3.1
involves proving the following result.

Lemma 3.3, The form
w(x) = d(r(0, x)*—r(g-0, x)?)
is bounded with respect to the metric on T*(G/K).
Proof. Decomposing the form as a difference of squares, we get
w(x) = d(r(0, x)+r(g-0, %)) (r(0, x)~r(g-0, x))+
+(r(0, x)+7(g+0,x))+d(r (0, x)—r(g -0, x)).

The form d(r(0, x)) has norm 1 everywhere except at 0. The homogeneity
of G/K gives the same result for d(r(g+0, x)). Hence the first term is bounded.

Put r(0,x)=R and r(g-0, x)=¢. In terms of the metric induced on p, by
exp: po—~G/K, the sine of the angle between the geodesics from x to 0 and x to
g-0 is less than or equal to ¢/R. The cotangent vectors d(r(0, x)) and d(r(g-0, x))
are dual to the unit tangent vectors along these geodesics and hence

ld(r (0, x))—d(r(g-0, x))| = sin~* (¢/R) = 0(1/R).

Hence the second term is bounded.
This lemma implies that [D, g], the commutator of the differential operator D
and an isometry g€G, preserves H'(Q*(G/K)).

Lemma 3.4. Let gcG, then [D, g]: H(Q*(G/K))~L*(2"(G/K)) is a compact
operator.

Notice that if gc€K, then [D,g]=0 and hence K acts on H'(Q*(G/K))
isometrically. Further, the action of G becomes unitary in the Calkin algebra of
g 1(Q*(G/K)). This follows from the following general result.

Lemma 3.5. Let H be a Hilbert space, D: H~H a densely defined operator
with a closed graph, A: H—~H a unitary operator such that A (domain of D)=
=domain of D and such that the commutator [D, A] is compact. Then the restric-
tion of A to the domain of D, equipped with the graph norm, is unitary modulo a
compact operator.
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Proof. This is proved by calculating the polar decomposition of 4|domain of D.
‘When the domain of D is identified with the graph of D, the action of 4 becomes

(h, D) — (4h, DAR) = (4h, ADh+[A, H]h).

In terms of the inclusion i: graph.D (- HXH, we have that A|domain of D be-
comes

4 (4, D]
[ 0 4 ] graph D
Let P denote the orthogonal projection onto the graph of D, then,
. _ol4 [4,D]).
A|domain ofD—P[O P ]z
and hence
{1 (A}domain of Dy*(4}domain of D) =
_ A 0] (4 14,D]].
=7 [[A,D]* A-I] ’P[o 4 ]"
However,
A [A,D)). |4 A4,D].
P[o A ]"[0 A ]"
Hence

(4 o) (4 D). 1 A4, D)),
(1)~P([A,D]* A‘l][O 4 ]‘“P[[A,D]*A 1 ]"

Hence (A|domain of D)*(4|domain of D) has the form 1+4-self-adjoint com-
pact operator. The spectral decomposition of this operator implies that the positive
square root will have the same form.

4. Hilbert bundles

Let I' be a discrete, torsionless subgroup of a non-compact, semi-simple Lie
group G, ¢ asmooth vector vector bundle on I'\G/K, and ¢=C" a fixed smooth
inclusion in a trivial bundle with P the orthogonal projection of C¥ onto & We
define the densely defined operator

Dy: LX(Q*(G/K)®&) ~ LHQ*(G/K)QE)
by the composition
L} Q*(GIK)®¢&) ~ L*(Q*(G/K)®CN) e L*}Q*(G/K)®CP) LS L(2*(G/K)®¢)

where L?(Q*(G/K) ®¢) denotes the square-integrable forms taking values in the
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bundle ¢ pulled back onto G/K. The space H(Q*(G/K)®¢) is defined to be
the domain of the closure of the operator D, equipped with the graph norm. The
bundle ¢ on G/K has a canonical I'-action and hence induces an action on
L(2*(G/K) ®¢) and HY(Q*(G/K) ®¢).

We will prove that when P is constant outside a compact subset of I'\G/K
that the triple (A, L2, D;) is mapped by « to the class defined by [¢] in K(I'\G/K).

Fix yeG/K and let

D, = d+d*+(e+i)(d(r(y, x)*/2)).

Then D,—D is compact and if g-0=y (0=e-K) then D,=g-D. Let H and L
denote the trivial Hilbert bundles over G/K with fibres H'(Q*(G/K)) and
L2(Q*(G/K)), respectively.
Lemma 4.1. The family
P = {Dy}ycq/x: G/K -~ B(H, L)
is a G-invariant uniformly continuous family of bounded operators.

The proof of this lemma is similar to the proof of Lemma 3.3.
Similarly, we define a [-invariant family

2%: GIK ~ B(HU(Q(GIKX®E), LH{Q%(G]K)®E)
by using the inclusion and orthogonal projection associated to &.

Theorem 4.2. Let I' be a discrete, torsionless subgroup of a non-compact semi-
simple Lie group G and & a smooth vector bundle on G/K which is trivial on the
complement of a compact subset then ¢ and the family @; define the same element

of K(I'\G/K).
Consider the family
29 BHQ(GIK)®E ~ L2 (GIK))®¢

given by 27(»)=D,®1. At each point y€G/K, the corresponding operator is
surjective with kernel
(=D L,

Hence 2 defines the same lement as ¢ in K(I'\G/K).

The proof of this theorem consists of giving an invariant homotopy between
the families &; and 2;. Unfortunately, it is not uniformly continuous but Hor-
mander has developed a theory of strongly continuous homotopy which can be used
here (see [4]).

We summarize the results needed from this paper of Hormander.

Let I be a compact space, £ and F Banach spaces and P: I—-B(E, F).



Fredholm representations of uniform subgroups 11t

Then P is called a closed family if the graph

{(t, u, OHItel, ucE, f =P(tu} = IXEXF is a closed set.
If the map
(t,u) > P()u: IXE -~ F
is continuous, then P is said to be a strongly continuous family. Let By denote
the unit ball in E. If the image of IXBj is relatively compact in F, we say that P

is a compact family. If {E,},.; is a family of subspaces of E indexed by I, we
say that it is locally compact if {(z, e)le€ E,} is a locally compact subset of IXE.

Lemma. If {E}),.; is alocally compact family of subspaces, then

(i) dim E, is a finite, upper semi-continuous function,
(ii) if dim E, is constant, then the spaces

{E;} with the topology induced from IXE form a vector bundle over I
Proposition. Let {P},.; be a closed family of operators from E to F. Then if

() the family is almost left invertible in the sense that there exists a strongly
continuous family {Q}cy from F to E and a compact family {K};c; from E to
such that for every t€l, Q,P,=1;1+K,,

(ii) dim Ker P, is a finite ypper semi-continuous function of t, the range of
P, is closed and index P, is upper semi-continuous.

The homotopy we use is as follows. Let y€G/K, t€[0, 1]. Then exp: T,(G/K)—~
—~G/Kis a diffeomorphism. Let C, ,: G/K—G/K be the map induced on G/K by
multiplication by ¢ in 7,(G/K). The family C, ,, ¢€[0, 1] consists of contractions
along the geodesics radiating from y. Let £, , be the pullback of ¢ by C, ., ie.,
&, :(0=2¢(C,,(x)). Then &, ;=& and &, y=£(y), the trivial bundle with fibre ().

The inclusion & C¥ induces inclusions ¢, ,~C" and orthogonal projec-
tions P, ,: CN—~¢, ;. We have now two families of operators &, and 9, para-
metrized by G/KX[0, 1]

De(y, 1): HY(Q*(G/K)®¢,,) ~ LHQ*(GIK)RE, ),

D1 (. 1): H(Q*(GIK)®ES) ~ LH(Q*(G/K)REL,)
where éy{, is the orthogonal complement to &, , in CY. Altogether,
D:DPe1: GIKX[0,1] - B(HY(Q*(G/K))N, L(Q*(G/K))).

We show that the family 2, ® %, satisfies the conditions of Hormander’s proposi-
tion locally.
The first step is to produce a family of parametrices. The operator
D: AY(Q*(G/K)) ~ L*(Q*(G/K))
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is Fredholm, the kernel and cokernel have dimension 1 and hence their exists a
bounded operator P

P: [3(Q*(G/K)) ~ H'(Q*(G/K))

{mapping forms even to odd and odd to even) such that PD and DP have the
form 1+compact operator. Further, D—D, is compact and hence P is also a
parametrix for D,. The parametrix P induces a parametrix

P: X{Q*(G/K)N ~ HYQ*(GIK))¥
by taking N copies. Let
P, . LH(Q*(G/K)®¢,,,) ~ A (2" (G/K)®E,,,)

be given by P, ,P P, , and &, be the family parametrized by G/KX[0, 1] where
Py, t)=P,,and P=2;DP,. . Then 2 is our candidate for the family of para-
metrices for 9.

Lemma 4.3. The projections P, , induce a strongly continuous families of opera-
tors in both HY(Q*(G/K))" and L2(Q*(G/K))".

Proof. We prove the H*' case, the proof of the L* case is included.

Let (x,, £,,,) ~(x, £, /) be a convergent sequence in G/KX[0, 11X AY{Q*G/K))".
We must show that P, . (f)-P,,(f) and D(P, ,(f))-D(P, (f)) in
L2(Q*(G/K))V. The difference

1By, 1. (f) =Py, o (NN = IPy,, 0, (f) =Py, 0, (DI @y, =P, (NI =
= L1 +I®y,, ., =Py, )OIl

Considering P, ; as a matrix valued function on G/K, P, , —P,,
on compacta. Choose R such that

Sl fI2<e
and such that (P, . (x)—P, (0)l=e¢ for all xcR. Then
1Py, — Py (I = €|l fll +2e.

It follows that Pyn» ',.( J)—P, (f) in L2
The case involving D involves one further step,

1D, .. (£~ Py (D) = [[D@,, ., (f=D)[+|ID(@,,..~ B, ) (N)] =
= [D, P, J(fu =N+ D (fo=N+UID, Py, o — Py d(N + [®y,,0,— Py, JOI.
The last term can be made small by the argument above. Further,

[D,P, .]=[d+d".P,  |=[d,P, 1-[dP, . 1*=e@dP,  )—i(dP,, )

Ins tn

uniformly
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where Pv,.»fn is considered as an N XN matrix of functions and dPyn, ,, the cor-
responding NXN matrix of forms. Further, dP, , =t,dP-C, , . Hence dP, , —~
—~dP uniformly on compacta. It follows that

”[D:Pymt,,ﬁPy,t](f)” -0 as n—~>0.

If ¢ comes from a uniform lattice or P is constant outside a compact subset of
I\G/K, then dP is bounded. Hence,

”[Da Pymt,,] (.fn -f)u = C“.fn _fH

and hence converges to zero.

n’ tn

Yemma 4.4. The families 9 and P are strongly continuous.

Proof. A composition of strongly continuous families is strongly continuous.
The next step is to check that
PP =1+
where ¢ is (locally) a compact family. Consider the families

Py, t)=P,,PP,, and D (y,t)=P,,DP,,.
Then

%9 =P, PDP, +P, PP, D]IP, =

=P, (1+ K—l—PK;)Py,,-i—Py,,PK;Py',
where K;: H\(Q*(G/K))V~H(Q*(G/K))" is given by 1/2(e+i)(d(0, x)*—d(y, x)?)
and K by (e—i)(dP,,). These operators K, and K, are bounded on
HY(Q*(G/K))N and hence compact as operators from AYQ*(G/K))Y to LA(Q*(G/K))".
Therefore
gffo'@g(ya 1) = Py,t+ Ky,t

where K, ,=P, ,KP, ,+P, P K/P, ,+P, P K P, , is a family of compact opera-
tors on H'(Q*(G/K))".

Lemma 4.5. Let BS HY(Q*(G/K))N be the unit ball. Then

P, .(B)
0, 0€GTKx[0,1]

is a bounded subset of H(Q*(G/K)).
Proof. Firstly
IDP,, . f| = P, Df |+ D, P, If1| = | DSl + (e =) (dP,, )f|.

The restriction that P, , is constant outside a compact subset of I'\G/K
implies that dP is bounded. It now follows that P, ,KP,, is (localiy) a compact
family.
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The operators K =1/2(e-+i)(d(0, x)*—d(y, x)?) form a uniformly continuous
family of operators on LY Q%K/G))", UP,, ,(B)is a bounded subset of HY(Q2*(G/K))¥
and hence a precompact subset of L*(Q2*(K/G))". The composition P, ,P K is
strongly continuous and hence for each compact C& G/K

U P, PKP, (B)
@.0eCx[0,1]
is precompact.

Similarly, the family P, ,P K, forms a strongly continuous family of operators
from L2(Q*(G/K))¥ to H(Q*(G/K))".

Hence finally, the family K, , is (locally) a compact family as it is the sum of
three such families.

We may also show that 2.2 has the form 1+ compact family. The proof
is slightly easjer than for 2.2 because we are then working with L*(Q*(G/K)) .

Hormander’s theory now implies that 2 is a family of Fredholm operators
of constant index and that the kernels and cokernels form locally compact families
of spaces.

The proof of Theorem 4.2 is completed by considering the index of the family

De(y, 1): HY(Q*(GIK)®¢, ) ~ LH(Q*(GIK)®E, ).

We must show the that index of this family is defined as an element of
K(I'\G/K X0, 1]).
The family 2 is I-invariant. Divide out by this action to get a family

2: I'\G/KX[0,1] — B(HY(Q* (G/K))", L*(Q**(G/K))")

and a strongly continuous family of projections, P also parametrized by

I\G/KX[0,1] such that "
D =PIP+(1-P)2(1-P) = D:+D;. .
Let (3", t")eI\G/KX][0,1]. Then enlarging the domain we can deform 2
into a family surjective in a neighbourhood of (3, ¢") by taking
2(y, H®P, , o(1—P, ): H{(Q(G/K))¥ +coker D;(y’, ") +coker Dz, (¥, ') —
—~ L2(Q9(G/K))N.
On any compact set C=I'\G/K we can deform the family by a finite number of

steps of this form so as the the family becomes surjective on C'X[0, 1] and finally
we have
2ePa(1—-P): AY(Q(G/K) DV, 0V, — L2 (G/K)Y
where V; and ¥, are finite dimensional.
Hence the kernel of this deformed family forms a vector bundle over CX[0, 1],
call it n, and n#—dim V;—dim ¥V, gives the element of K(CX]O0, 1]) defined by
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the family 2. Notice that the kernel bundle n comes equipped with a continuous
family P’ of projections, coming from the projections onto & HQ(G/K) ®¢,, )@
@ V;. The continuity implies that they are of constant rank. Then P’()—dim V;
gives the element of K(CX[0, 1]) represented by the family &Z,. Finally,

P’ (1) —dim |C % {0} = [¢]
P’ () —dim ;|Cx {0} = [D}]

where D, comes from a Fredholm representation. The theorem is proved.

Appendix

We prove that if R denotes the Lie derivative with respect to the radial vector
field on G/K and f€QI(G/K), then

IR, )+(f, R = C(If12+]|Vrf|[?

where C is a positive constant.
Identify p, and G/K through the diffeomorphism

exp: p — G/K.
The Riemannian metric induced on p, is then given by
(X,Y)p = B(A(P)X, A(P)Y)

sinhad (P)
ad (P)

S = {Xepo|B(X, X) = 1).

where B is the Killing form and A(P)= . Let

Let X,, ..., X, be an orthonormal set of eigenvectors of the self-adjoint transforma-
tion ad (P/||P])®* on p, and hence a basis for the tangent space of S at P/||P|.
Let 0,,...,0, denote the corresponding normal coordinates on a neighbourhood
N of P/|P| in S, with respect to the Riemannian metric induced on S by (, ).
These functions induce coordinates on the positive cone on N,

0,(X) = O,(x/\1x1),

which together with the radial distance r(X)=B(X, X)"2, form polar coordinates.
Let fc H'(Q*(G/K)). Then f decomposes as

f=wi+w,, i(dr)wy =0, i(dryw,=0,

w; = 2]1|=q._1 fl,]dr/\ d(QI’ W2 = 2[][:,1 f2,Jd(0]:

so that
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where I=(i, ..., i,—;) is a multi-index and

dO' = d@h A ... A dO,

Then o
Rf(P) = 3, (rd|dr(fy,Ddr ndO'+ fy dr A dOY) + 3, rddr(fy, ;) dO’
and
(O (P)| = p—a-1 H?—l——uij—_:—.
=1 sinh rVa,
Hence

So, d1dr (fu,Df, 110" det A(P)|dP =
= — [ [fu. 120" *|det 4 (P)| dP—
— [ (fur> rdjdrfy, |02 |det A(P)|dP—
= [V a(rdjdr 0 |0"%) |0 |det A(P)|dP —
- f |, 12107 E(rd/dr In det A(P))|det A(P)|dP.

The derivatives d/dr In |0']? and d/dr In A(P) are bounded at oo.

The term w, is similar. Hence the result.
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