Local surjectivity in C^{∞} for a class of pseudo-differential operators

Paul Godin*

Let X be a C^{∞} paracompact n-dimensional manifold and P a properly supported pseudo-differential operator on X, having a principal symbol p homogeneous of degree m. P is said to be locally solvable at $x_0 \in X$ if there is a neighbourhood V of x_0 such that for all $f \in C^{\infty}(X)$, there exists $u \in \mathcal{D}'(X)$ satisfying Pu = f in V. P is said to be of principal type if for all $(x, \xi) \in T^*X \setminus 0$, one has $\partial p/\partial \xi \neq 0$. For operators of principal type, Beals and Fefferman [1] proved that the so-called condition (\mathcal{P}) is sufficient for local solvability. On the other hand, Egorov [1] proved local solvability for a class of pseudo-differential operators of principal type which need not satisfy condition (\mathcal{P}) . Egorov's result is the following. Let U be an open set of X and suppose that each point of $p^{-1}(0)$ above U has an open conic neighbourhood Γ in $T^*X \setminus 0$ in which one of the following conditions is fulfilled:

(a) There exists in Γ a C^{∞} function μ , homogeneous of degree (m-1), such that $i^{-1}\{\bar{p},p\} \leq 2 \operatorname{Re}(\mu p)$ in Γ (here $\{\bar{p},p\}$ is the Poisson bracket of \bar{p} and p and its expression in local coordinates is

$$\sum_{1}^{n} \left(\frac{\partial \bar{p}}{\partial \xi_{j}} \frac{\partial p}{\partial x_{j}} - \frac{\partial \bar{p}}{\partial x_{j}} \frac{\partial p}{\partial \xi_{j}} \right).$$

- (b) For some $z \in \mathbb{C} \setminus \{0\}$, $(\partial/\partial \xi) \operatorname{Re}(zp) \neq 0$ in Γ and $\operatorname{Im}(zp) \geq 0$ in Γ .
- (c) For some $z \in \mathbb{C} \setminus \{0\}$, $(\partial/\partial \xi)$ Re $(zp) \neq 0$ in Γ and there exists a conic submanifold Σ of Γ , of codimension 1, such that each null bicharacteristic strip of Re (zp), emanating from a point of Γ , intersects Σ exactly at one point and transversally. Furthermore one assumes that for each null bicharacteristic strip γ of Re (zp) in Γ , one has Im $(zp) \geq 0$ on γ^- and Im $(zp) \leq 0$ on γ^+ . Here γ^- and γ^+ are defined as follows: Let ϱ_{γ} be the intersection point of $\gamma \cap \Gamma$ and Σ ; if s is the parameter of $\gamma \cap \Gamma$ occurring in the Hamilton—Jacobi equations dx/ds =

^{*} Supported partly by a grant from the F. N. R. S. (Belgium) and partly by a grant from the Swedish Institute.

290 Paul Godin

 $=(\partial/\partial \xi) \operatorname{Re}(zp), \ d\xi/ds = -(\partial/\partial x) \operatorname{Re}(zp), \text{ one defines } \gamma^- \text{ (resp. } \gamma^+) \text{ as the part of } \gamma \cap \Gamma \text{ described for } s < 0 \text{ (resp. } s > 0) \text{ if } \varrho_\gamma \text{ corresponds to } s = 0.$

Under those conditions, Egorov proved that for each point $x_0 \in U$ and each $s \in \mathbb{R}$, there exists a neighbourhood $W_s(x_0)$ of x_0 such that for each $f \in H_s(X)$, one can find $u \in H_{s+m-1}(X)$ satisfying Pu = f in $W_s(x_0)$.

Unfortunately, W_s could depend on s and consequently Egorov's result does not answer the question of local surjectivity of P in C^{∞} , i.e. the question is if for each $x_0 \in U$ one can find a neighbourhood $V(x_0)$ of x_0 in U such that for all $f \in C^{\infty}(X)$ there exists $u \in C^{\infty}(X)$ satisfying Pu = f in V. We will prove that the answer to this question is positive, if we make some hypotheses on the null bicharacteristic strips. More precisely we will prove:

Theorem 1. Suppose that P is a properly supported pseudo-differential operator with homogeneous principal symbol p of degree m on a C^{∞} manifold X. Let U be an open relatively compact subset of X, and suppose that for each m_0 in $T^*X \setminus 0$ above \overline{U} such that $p(m_0)=0$, one of the following conditions is satisfied:

- (a) There exists a conic neighbourhood Γ of m_0 in $T^*X \setminus 0$ and a C^{∞} function μ in Γ , homogeneous of degree (m-1), such that $(1/i)\{\bar{p},p\} \leq 2 \operatorname{Re}(\mu p)$ in Γ .
 - (b') For some $z \in \mathbb{C} \setminus \{0\}$, the Hamiltonian field $H_{\text{Re}(zv)}$ (given by

$$\sum \left(\frac{\partial \operatorname{Re}(zp)}{\partial \xi_i} \frac{\partial}{\partial x_i} - \frac{\partial \operatorname{Re}(zp)}{\partial x_i} \frac{\partial}{\partial \xi_i} \right)$$

in local coordinates) is not parallel to the cone axis at m_0 , the null bicharacteristic strip γ_{m_0} of Re (zp) through m_0 does not stay forever above \overline{U} and if m_0^{\mp} are the boundary points of the connected component of $\gamma_{m_0} \cap T^*\overline{U}$ containing m_0 , one has Im $(zp) \leq 0$ in a neighbourhood of $[m_0, m_0^+]$ (we assume here that the positive direction goes from m_0^- to m_0^+ on the oriented curve γ_{m_0}).

(c') m_0 has a conic neighbourhood Γ in $T^*X\setminus 0$ in which there exists a conic submanifold Σ codimension 1, passing through m_0 , with the following property: there exists $z \in \mathbb{C} \setminus \{0\}$ such that for all $\tilde{m}_0 \in \Sigma \cap p^{-1}(0)$, $\gamma_{\tilde{m}_0}$ does not stay forever above \overline{U} , intersects Σ only at \tilde{m}_0 and transversally, and such that for all $\tilde{m}_0 \in \Sigma \cap p^{-1}(0)$, $\operatorname{Im}(zp) \leq 0$ in neighbourhood of $[\tilde{m}_0, \tilde{m}_0]$ and $\operatorname{Im}(zp) \geq 0$ in a neighbourhood of $[\tilde{m}_0, \tilde{m}_0]$. Here $\gamma_{\tilde{m}_0}$ is the bicharacteristic strip of $\operatorname{Re}(zp)$ through \tilde{m}_0 , and \tilde{m}_0^+ the boundary points of the connected component of $\gamma_{\tilde{m}_0} \cap T^*\overline{U}$ containing \tilde{m}_0 (such that the positive direction goes from \tilde{m}_0^- to \tilde{m}_0^+ on the oriented curve $\gamma_{\tilde{m}_0}$).

Then if U is sufficiently small and $f \in C^{\infty}(X)$, there exists $u \in C^{\infty}(X)$ such that Pu = f in a neighbourhood of \overline{U} . (In fact the same result holds if we replace the complex number z occurring in (b') or (c') by some elliptic symbol, homogeneous of degree 0).

Remark. For operators satisfying (a) everywhere in $T^*\overline{U}$, the result of Theorem 1 has been proved by Hörmander [2]. In [3] (Theorem 3.5.1) he has also proved

propagation of singularities result for pseudo-differential operators P satisfying Im $p \ge 0$ in a conic neighbourhood of an arc of bicharacteristic strip of Re p.

The main part of the proof of Theorem 1 will be the following result of propagation of singularities.

Theorem 2. Let P be a properly supported pseudo-differential operator with principal symbol p homogeneous of degree m. Suppose that $m_0 \in T^*X \setminus 0$, $p(m_0) = 0$ and that m_0 has a conic neighbourhood Γ in $T^*X \setminus 0$ in which there exists a conic submanifold Σ of codimension 1, passing through m_0 and transversal to $H_{\text{Re }p}$ at m_0 . We assume that Γ is so small that for each point \tilde{m}_0 in Σ , the bicharacteristic strip $\gamma_{\tilde{m}_0}$ of Re p through \tilde{m}_0 intersects Σ exactly once and transversally. If s is the parameter of $\gamma_{\tilde{m}_0} \cap \Gamma$ occurring in the Hamilton—Jacobi equations

$$\frac{dx}{ds} = \frac{\partial \operatorname{Re} p}{\partial \xi}; \quad \frac{d\xi}{ds} = -\frac{\partial \operatorname{Re} p}{\partial x},$$

define $\gamma_{\widetilde{m_0}^-}$ (resp. $\gamma_{\widetilde{m_0}^+}$) as the part of $\gamma_{\widetilde{m_0}} \cap \Gamma$ described for s < 0 (resp. s > 0) if $\widetilde{m_0}$ corresponds to s = 0. Assume that for each $\widetilde{m_0} \in \Sigma$, $\operatorname{Im} p \leq 0$ in a neighbourhood of $\gamma^-(\widetilde{m_0})$ and $\operatorname{Im} p \geq 0$ in a neighbourhood of $\gamma_{\widetilde{m_0}}^+$. Let now $m_1 \in \gamma_{m_0}^-$, $m_2 \in \gamma_{m_0}^+$. Then if $u \in \mathscr{D}'(X)$, $Pu \in H_s$ on $[m_1, m_2]$ and $u \in H_{s+m-1}$ at m_1 and m_2 , one has $u \in H_{s+m-1}$ on $[m_1, m_2]$

The proof of Theorem 2 will be a modification of the proof of Theorem 3.5.1 of Hörmander [3], which tells us already that $u \in H_{s+m-1}$ on $[m_1, m_2] \setminus \{m_0\}$.

By multiplying P by a real elliptic symbol and using Fourier integral operators associated to a suitable canonical transformation as in Duistermaat—Hörmander [1], we may as well assume that P has order 1, and that its principal symbol is

$$p(x, t, \xi, \tau) = \tau + iq(x, t, \xi, \tau) \tag{*}$$

in a conic neighbourhood of $m_0 = (x_0, t_0, \xi_0, \tau_0)$. Here we are working in local coordinates (x, t) of X, $x \in \mathbb{R}^{n-1}$, $t \in \mathbb{R}$, and (ξ, τ) are the dual variables of (x, t); and q is a real-valued function.

In the proof of Theorem 2, it will be convenient to use the following lemma.

Lemma 1. Let P satisfy the hypotheses of Theorem 2 and be of the form (*). Then there exists a real function ϱ , homogeneous of degree 0, and a conic neighbourhood V of m_0 , such that in V we have

- (1) $\varrho^{-1}(0) = \Sigma$,
- (2) $H_{\text{Re}\,p}\varrho > 0$,

(3)
$$\sum_{j=1}^{n-1} \frac{\partial^2 \varrho}{\partial x_j \partial \xi_j} + \frac{\partial^2 \varrho}{\partial t \partial \tau} = 0 \quad on \quad \Sigma,$$

(4) $q = \varrho r$ for some function r which is ≥ 0 and homogeneous of degree 1 everywhere.

292 Paul Godin

Proof of Lemma 1. The existence of a function satisfying (1), (2), (4) follows from Taylor's formula. Let $\tilde{\varrho}$ satisfy (1), (2), (4). Then if f is homogeneous of degree 0, and >0 at m_0 , $f\tilde{\varrho}$ will satisfy (1), (2), (4) and for (3) to be valid it is sufficient that f satisfies

$$\sum_{j=1}^{n-1} \frac{\partial \tilde{\varrho}}{\partial x_j} \frac{\partial f}{\partial \xi_j} + \sum_{j=1}^{n-1} \frac{\partial \tilde{\varrho}}{\partial \xi_j} \frac{\partial f}{\partial x_j} + \frac{\partial \tilde{\varrho}}{\partial t} \frac{\partial f}{\partial \tau} + \frac{\partial \tilde{\varrho}}{\partial \tau} \frac{\partial f}{\partial t} + f \left(\sum_{j=1}^{n-1} \frac{\partial^2 \tilde{\varrho}}{\partial \xi_j \partial x_j} + \frac{\partial^2 \tilde{\varrho}}{\partial \tau \partial t} \right) = 0.$$
(5)

Since $\tilde{\varrho}$ satisfies (2), the vector field $(\tilde{\varrho}'_{\xi}, \tilde{\varrho}'_{\tau}, \tilde{\varrho}'_{x}, \tilde{\varrho}'_{t})$ is not parallel to the cone axis at m_0 and we can find a solution of (5) which is homogeneous of degree 0, and >0 at m_0 . Q.E.D.

Denote by ϱ a function as in Lemma 1 and define $\Gamma_{\varepsilon} = \{m \in \Gamma; |\varrho(m)| \leq \varepsilon\}$, where Γ is the set occurring in the statement of Theorem 2, and which we suppose to be so small that ϱ satisfies conditions (1), (2), (3), (4) of Lemma 1 in some neighbourhood of it. Let $M \subset S^{s-1}(\mathbb{R}^n \times \mathbb{R}^n)$ be a set of real symbols with support in Γ_{ε} , bounded in the S^s -topology. The main part of the proof of Theorem 2 will be the following result, in which we assume that $\Gamma \subset T^*\mathbb{R}^n \setminus 0$.

Lemma 2. Let $u \in \mathscr{E}'(\mathbb{R}^n)$ be such that $u \in H_{s-1/2}$ in Γ and $Pu \in H_s$ in Γ . If $c \in M$, define C as the pseudo-differential operator with symbol c and $\mathscr{L}_{\eta}(c)$ as the pseudo-differential operator with symbol

$$\frac{1}{2}\varrho\frac{\partial c^2}{\partial t} + \frac{1}{2}\left(\frac{\partial\varrho}{\partial t} - 6\eta\right)c^2.$$

Then for each $\eta > 0$, there exists $\varepsilon > 0$, independent of s, such that $\operatorname{Re}\left(\mathscr{L}_{\eta}(c)u,u\right) \leq K_{1}(\eta)\|CPu\|_{0}^{2} + K_{2}(\eta)$. Here $K_{1}(\eta)$ and $K_{2}(\eta)$ are uniform constants when c runs over M.

Proof of Lemma 2. By K we will denote various positive constants, which may depend on u, but which are valid uniformly when c runs over M. We write P=A+iB, with $A=2^{-1}(P+P^*)$ and $B=(2i)^{-1}(P-P^*)$, where P^* is the adjoint of P with respect to the scalar product $(f,g)=\int f\bar{g}$. We shall denote by b the principal symbol of B, and by S a properly supported pseudo-differential operator with symbol equal to ϱ (except perhaps when $|\xi|+|\tau|$ is very small). Taking the imaginary part of both members of the identity

(SCPu, Cu) = (ASCu, Cu) + i(BSCu, Cu) + ([SC, A]u, Cu) + i([SC, B]u, Cu), we get Im(SCPu, Cu) = (1) + (2) + (3) + (4), where

$$(1) = \frac{(A(S - S^*)Cu, Cu)}{2i} + \frac{(Cu, [S, A]Cu)}{2i}$$

- $(2) = \operatorname{Re}(BSCu, Cu)$
- $(3) = \operatorname{Im}([SC, A]u, Cu)$
- $(4) = \operatorname{Re}([SC, B]u, Cu).$

About the term (1).

If Γ is sufficiently small, then in view of Lemma 1, $(2i)^{-1}(S-S^*)$ has symbol $\sim \varrho \lambda_{-1} + l_{-2}$ in a neighbourhood of Γ (the subscripts indicate the orders of the symbols). Furthermore in a neighbourhood of Γ , [S,A] has symbol $\sim -i^{-1}\partial \varrho/\partial t + l_{-1}$. So (1) $\geq \operatorname{Re}(ASA_{-1}Cu,Cu) - \operatorname{Re}(Cu,2^{-1}S_tCu) - K$, where A_{-1} and S_t are pseudo-differential operators with principal symbols λ_{-1} and $\partial \varrho/\partial t$ respectively.

But we can find properly supported pseudo-differential operators S_j with principal symbols ϱ_j homogeneous of degree 0, j=1, 2 such that $S=S_1+S_2$, $|\varrho_1| \le 2\varepsilon$ and WF(S_2) $\cap \Gamma_\varepsilon = \emptyset$. Furthermore, if $H(x, t, D_x, D_t)$ is a properly supported pseudo-differential operator with principal symbol h homogeneous of degree 0, such that h=0 except when (x, t) belongs to some compact set, we have:

For each compact set $T \subset \mathbb{R}^n$, there exists a constant C_T such that $||H\varphi||_0^2 \le \max |h(x, t, \xi, \tau)|^2 ||\varphi||_0^2 + C_T ||\varphi||_{-1/2}^2$ when $\varphi \in L^2_{\text{comp}}(T)$. Combining those 2 facts, we find that:

$$\begin{split} \|SD_{t}\Lambda_{-1}Cu\|_{0}^{2} &\leq 2 \|S_{1}D_{t}\Lambda_{-1}Cu\|_{0}^{2} + 2 \|S_{2}D_{t}\Lambda_{-1}Cu\|_{0}^{2} \\ &\leq 2(4\varepsilon^{2}\|D_{t}\Lambda_{-1}Cu\|_{0}^{2} + K\|D_{t}\Lambda_{-1}Cu\|_{-1/2}^{2} + K) \\ &\leq 8\varepsilon^{2}K\|Cu\|_{0}^{2} + K\|Cu\|_{-1/2}^{2} + K. \end{split}$$

So for each $\omega > 0$ we have:

$$|(SD_t\Lambda_{-1}Cu,Cu)| \leq \frac{1}{\omega} \|SD_t\Lambda_{-1}Cu\|_0^2 + \omega \|Cu\|_0^2 \leq \frac{8\varepsilon^2K}{\omega} \|Cu\|_0^2 + \frac{K}{\omega} + \omega \|Cu\|_0^2.$$

Now if we take $\omega = \varepsilon \le (8K+1)^{-1}\eta$, we obtain

$$\text{Re}(SD_{t}\Lambda_{-1}Cu, Cu) \ge -\eta \|Cu\|_{0}^{2} - K(\eta),$$

which implies

$$(1) \ge -\eta \|Cu\|_0^2 - \text{Re}(Cu, \frac{1}{2}S_tCu) - K(\eta). \tag{1'}$$

About the term (2).

If Γ is small enough, B has symbol $\sim \varrho r + l_0$ in a neighbourhood of Γ , where l_0 has order 0. Denoting by R a properly supported pseudo-differential operator with principal symbol r, we find that there exists a properly supported first order pseudo-differential operator L with principal symbol vanishing in a neighbourhood of Γ such that

$$(BSCu, Cu) = (SRSCu, Cu) + (LSCu, Cu)$$
$$= ((S - S^*)RSCu, Cu) + (RSCu, SCu) + (LSCu, Cu).$$

294 Paul Godin

But we have

$$\begin{aligned} \left| \left(((S - S^*)R + L)SCu, Cu \right) \right| &= \left| (SCu, ((S - S^*)R + L)^*Cu) \right| \le \\ &\le \left| (S_1Cu, ((S - S^*)R + L)^*Cu) \right| + K, \end{aligned}$$

where S_1 is the same as in (1). Now the same argument as in (1) gives:

$$\operatorname{Re}\left((S-S^*)RSCu,Cu\right)+\operatorname{Re}\left(LSCu,Cu\right)\geq -\eta \|Cu\|_0^2-K(\eta),$$

if ε is small enough.

Furthermore the sharp Gårding's inequality gives that

$$\operatorname{Re}(RSCu, SCu) \ge -K \|SCu\|_0^2 \ge -4\varepsilon^2 K \|Cu\|_0^2 - K$$

So if ε is small enough we have

$$(2) \ge -\eta \|Cu\|_0^2 - K(\eta). \tag{2'}$$

About the term (3).

$$\text{Im}([SC, A]u, Cu) = \text{Im}(C^*[SC, A]u, u) = (Wu, u)$$

if we define

$$W = \frac{C^*[SC, A] - [SC, A]^*C}{2i}.$$

The principal symbol of W is $\operatorname{Im}(ci^{-1}\{\varrho c, a\}) = -c\{\varrho c, a\} = c(\partial/\partial t)(\varrho c)$. (Here we have denoted by a the function $(x, t, \xi, \tau) \to \tau$.) When c runs over M, the full symbol of W is $c(\partial/\partial t)(\varrho c) + \operatorname{an}$ error bounded in S^{2s-1} . So

$$\operatorname{Im}\left([SC,A]u,Cu\right) \ge \operatorname{Re}\left(Zu,u\right) - K \tag{3'}$$

where Z has principal symbol $2^{-1}(\varrho \partial/\partial t + 2 \partial\varrho/\partial t)c^2$.

About the term (4).

Re $([SC, B]u, Cu) = \text{Re }(C^*[SC, B]u, u)$. $C^*[SC, B]$ has the purely imaginary principal symbol $i^{-1}c\{\varrho c, b\}$ and its full symbol differs from $i^{-1}c\{\varrho c, b\}$ by an error which is bounded in S^{2s-1} , when c runs over M. So

$$Re([SC, B]u, Cu) \ge -K. \tag{4'}$$

Collecting (1'), (2'), (3'), (4') we get

$$\operatorname{Im}(SCPu, Cu) \ge -2\eta \|Cu\|_0^2 - \operatorname{Re}(Cu, 2^{-1}S_tCu) + \operatorname{Re}(Zu, u) - K(\eta).$$

But on the other hand we have

Im $(SCPu, Cu) \le |(SCPu, Cu)| \le \frac{1}{\omega} ||SCPu||_0^2 + \omega ||Cu||_0^2 \le \frac{M}{\omega} ||CPu||_0^2 + \omega ||Cu||_0^2$ for all $\omega > 0$.

So if we take $\omega = \eta$, we finally get:

$$\operatorname{Re}\left(\mathscr{L}_{\eta}(c)u,u\right) \leq K_{1}(\eta) \|CPu\|_{0}^{2} + K_{2}(\eta),$$

and this completes the proof of Lemma 2.

Proof of Theorem 2. We may assume that $u \in H_{s-1/2}$ and $Pu \in H_s$ in Γ , and that $u \in \mathscr{E}'$. Using Lemma 2 we will now construct a pseudo-differential operator Θ of order s, elliptic at m_0 , such that $\Theta u \in L_2$. Set $k_{\eta} = 2^{-1}(\partial \varrho/\partial t - 6\eta)$. If η is small enough, k_{η} is >0 at m_0 . Choose a symbol δ homogeneous of degree s for $|\xi| + |\tau| > 2^{-1}(|\xi_0| + |\tau_0|)$, with support in a very small conic neighbourhood of m_0 , such that $(2^{-1}\varrho\partial\delta^2/\partial t + k_{\eta}\delta^2)(m_0) > 0$ and $(2^{-1}\varrho\partial\delta^2/\partial t + k_{\eta}\delta^2) \ge 0$ on Σ . (We denote $\xi(m_0)$ and $\tau(m_0)$ by ξ_0 and τ_0 respectively, where (x, t, ξ, τ) are local coordinates near m_0 .) All this is possible thanks to the transversality at m_0 of Σ with respect to $\partial/\partial t$. Then choose real symbols θ , g with small support in Γ , homogeneous of degree s for $|\xi| + |\tau| > 2^{-1}(|\xi_0| + |\tau_0|)$, such that θ is elliptic at m_0 and $\theta^2 \le 2^{-1}\varrho \partial \delta^2/\partial t + k_{\eta}\delta^2 + g^2$.

If we now define, for $0 < \alpha \le 1$, $\sigma_{\alpha}(x, t, \xi, \tau) = (1 + \alpha^2(|\xi|^2 + \tau^2))^{-1/2}$ and if Θ_{α} and G_{α} denote pseudo-differential operators with symbols equal to $\sigma_{\alpha}\theta$, $\sigma_{\alpha}g$ respectively, an application of the sharp Gårding's inequality to $\mathcal{L}_{\eta}(\delta\sigma_{\alpha}) - \Theta_{\alpha}^2 + G_{\alpha}^2$ combined with use of Lemma 2 gives

$$\|\Theta_{\alpha}u\|_{(0)} \leq K$$
 where K is independent of α .

So if $\alpha \to 0$, we get $\Theta u \in L_2$, where Θ has symbol θ . This proves the theorem.

Proof of Theorem 1. We denote by P^* the L_2 -adjoint of P with respect to some smooth positive density.

If $u \in \mathscr{E}'(\overline{U})$ and $P^*u \in H_s(X)$, one has $u \in H_{s+m-1}$ in the region corresponding to condition (b'), by Theorem 3.5.1 of Hörmander [3], and also in the region corresponding to condition (c'), by Theorem 2. So $\operatorname{WF}_{s+m-1}(u)$ is contained in the region corresponding to condition (a). But now the proof of Proposition 2.2 in Duistermaat [1] shows that $u \in H_{s+m-1}(X)$ because if \overline{U} is small enough, we can as in Chapter VIII of Hörmander [1], find a function φ satisfying the hypotheses of this Proposition 2.2. The conclusion of Theorem 1 now follows by standard results on surjections in Fréchet spaces (cf. e.g. Duistermaat—Hörmander [1], Theorem 6.3.1).

Remarks. (1) In some cases it is possible to prove Theorem 2 by constructing a parametrix, for example if P has the symbol

$$\tau + it|x''|^2 \xi_{n-1}, \quad |x''|^2 = \sum_{i=1}^k x_i^2, \quad k \le n-2, \quad \text{and} \quad \xi_{n-1} > 0,$$

one can construct near each point where t=0, a microlocal left parametrix with wave front set contained in the union of the diagonal of $T^*X \setminus 0$, and of the bicharacteristic relation for τ above x''=0, and prove propagation for P in the same way as it is done for D_n in Theorem 6.1.1 of Duistermaat—Hörmander [1].

(2) It is easy to construct non-elliptic boundary value problems which are described on the boundary by operators satisfying the hypotheses of Theorems 1 or 2, in view of the reduction theory developed in Hörmander [2].

References

- Beals, R., Fefferman, Ch. [1], On local solvability of linear partial differential equations. *Annals of Math.* 97 (1973), pp. 482-498.
- Duistermaat, J.-J. [1], On Carleman estimates for pseudo-differential operators. *Inventiones Math.* 17 (1972), pp. 31—43.
- Duistermaat, J.-J., Hörmander, L. [1], Fourier integral operators II. Acta Math. 128 (1972), pp. 183—269.
- EGOROV, Yu. V. [1], On sufficient conditions for local solvability of pseudo-differential equations of principal type. *Trudy Moskov. Mat. Obs.* 31 (1974), pp. 59-83. (Russian)
- HÖRMANDER, L. [1], Linear partial differential operators, Springer, 1963.
- HÖRMANDER, L. [2], Pseudo-differential operators and non-elliptic boundary problems. *Annals of Math.* 83 (1966), pp. 129—209.
- HÖRMANDER, L. [3], On the existence and the regularity of solutions of linear pseudo-differential equations. L'Ens. Math. 17 (1971), pp. 99—163.

Received October 6, 1975

Paul Godin Département de Mathématiques Université Libre de Bruxelles Avenue F. D. Roosevelt 50 B-1050 BRUXELLES, Belgien