Local surjectivity in C~ for a class
of pseudo-differential operators
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Let X be a C*™ paracompact n-dimensional manifold and P a properly supported
pseudo-differential operator on X, having a principal symbol p homogeneous
of degree m. P is said to be locally solvable at x,¢X if there is a neighbourhood ¥V
of x, such that for all f€C*=(X), there exists uc 2’(X) satisfying Pu=fin V. P is
said to be of principal type if for all (x, &)€ T* X\ 0, one has dp/0¢ 0. For operators
of principal type, Beals and Fefferman [1] proved that the so-called condition (&)
is sufficient for local solvability. On the other hand, Egorov [1] proved local solvability
for a class of pseudo-differential operators of principal type which need not satisfy
condition (#). Egorov’s result is the following. Let U be an open set of X and suppose
that each point of p~*(0) above U has an open conic neighbourhood I'' in 7* X\ 0
in which one of the following conditions is fulfilled:

(a) There exists in I' a C* function y, homogeneous of degree (m—1), such
that i~*{p, p}=2 Re (up) in I' (here {p, p} is the Poisson bracket of p and p and its
expression in local coordinates is

, [ 9 dp 9 ap ]
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(b) For some z¢C\ {0}, (9/0&) Re (zp)#0 in I' and Im (zp)=0 in T.

(c) For some ze C\ {0}, (0/9¢) Re (zp)0 in I' and there exists a conic sub-
manifold ¥ of I, of codimension 1, such that each null bicharacteristic strip of
Re (zp), emanating from a point of I, intersects ¥ exactly at one point and trans-
versally. Furthermore one assumes that for each null bicharacteristic strip y of
Re (zp) in I', one has Im (zp)=0 on y~ and Im (zp)=0 on y*. Here y~ and »*
are defined as follows: Let ¢, be the intersection point of ynI" and X; if s is the
parameter of ynI occuring in the Hamilton—Jacobi equations dx/ds=
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=(0/0¢) Re (zp), dé/ds=—(0/0x) Re (zp), one defines y~ (resp. y*) as the part
of yn I described for s<O (resp. 5s=0) if g, corresponds to s=0.

Under those conditions, Egorov proved that for each point x,€ U and each
sER, there exists'a neighbourhood W, (x,) of x, such that for each f¢ H,(X), one can
find u€ H,,,_1(X) satisfying Pu=fin W,(x,).

Unfortunately, W, could depend on s and consequently Egorov’s result does
not answer the question of local surjectivity of P in C*, i.e. the question is if for
each x,€U one can find a neighbourhood V(x,) of x, in U such that for all
f€C™(X) there exists u€C=(X) satisfying Pu=f in V. We will prove that the
answer to this question is positive, if we make some hypotheses on the null bichar-
acteristic strips. More precisely we will prove:

Theorem 1. Suppose that P is a properly supported pseudo-differential operator
with homogeneous principal symbol p of degree m on a C= manifold X. Let U be an
open relatively compact subset of X, and suppose that for each my in' T* X\ 0 above
U such that p(myg)=0, one of the following conditions is satisfied:

(@) There exists a conic neighbourhood I' of my in T*X\0 and a C* function
u in I'y homogeneous of degree (m—1), such that (1/i){p, p}=2 Re (up) in I.

(b") For some z€ €\ {0}, the Hamiltonian field Hy.,, (given by

Z,[(‘)Re(zp)_{?__{)Re(zp)i
851 3x, 3xi 361'

in local coordinates) is not parallel to the cone axis at m,, the null bicharacteristic
Strip Y, of Re (zp) through my does not stay forever above U and if mg are the boundary
points of the connected component of Vimy O T*U containing my, one has Im (zp)=0
in a neighbourhood of [my, mi] (we assume here that the positive direction goes from
my to my on the oriented curve VY, ).

(c’) my has a conic neighbourhood I' in T*X'\ 0 in which there exists a conic sub-~
manifold X codimension 1, passing through my, with the following property: there
exists z€ C\ {0} such that for all #,€Z 0 p~'(0), y;; does not stay forever above U,
intersects X only at iy, and transversally, and such that for all i € X n p~1(0), Im (zp)=0
in neighbourhood of 11y, i1 and Im (zp)=0 in a neighbourhood of [y, #|. Here Vi
is the bicharacteristic strip of Re(zp) through Wy, and W] the boundary points of the
connected component of Va0 T *U containing w, (such that the positive direction
goes from my to mg on the oriented curve Vi ).

Then if U is sufficiently small and f€ C=(X), there exists u€ C<(X) such that
Pu=f'in aneighbourhood of U. (In fact the same result holds if we replace the complex
number z occurring in (b’) or (¢’) by some elliptic symbol, homogeneous of degree 0).

Remark. For operators satisfying (a) everywhere in T*U, the result of Theo-
rem 1 has been proved by Hormander [2]. In [3] (Theorem 3.5.1) he has also proved
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propagation of singularities result for pseudo-differential operators P satisfying
Im p=0 in a conic neighbourhood of an arc of bicharacteristic strip of Re p.

The main part of the proof of Theorem 1 will be the following result of propaga-~
tion of singularities.

Theorem 2. Let P be a properly supported pseudo-differential operator with
principal symbol p homogeneous of degree m. Suppose that my€ T*X\ 0, p(my)=0
and that my has a conic neighbourhood I' in T* X\ 0 in which there exists a conic
submanifold X of codimension 1, passing through m, and transversal to Hy,, at my.
We assume that I is so small that for each point g, in X, the bicharacteristic strip
Vs, Of Re p through my intersects X exactly once and transversally. If s is the parameter

of vz 01 occurring in the Hamilton—Jacobi equations

dx ORep df  ORep

ds 9 ds T ox
define - (resp. yz+) asthe part of Y, OT described for s<0 (resp. s=0) if M, cor-
responds to s=0. Assume that for each my,¢Z, Im p=0 in aneighbourhood of v~ ()
and Im p=0 in a neighbourhood of y,ﬁo . Let now my€v, , mzey;:o. Then if uc9’'(X ),
PucH, on [my, m,] and ucH_,,_, at m; and m,, one has u€H_, _, on [ml,mz].

The proof of Theorem 2 will be a modification of the proof of Theorem 3.5.1
of Hormander [3], which tells us already that uc H ., on [m,, my]\ {m,}.

By multiplying P by a real elliptic symbol and using Fourier integral operators
associated to a suitable canonical transformation as in Duistermaat—H6rmander
[1], we may as well assume that P has order 1, and that its principal symbol is

px, 1,817 = t+ig(x, 1, 7) (*)

in a conic neighbourhood of my=(x,, t,, &, 7,). Here we are working in local
coordinates (x, t) of X, x€R"™%, ¢t¢R, and (&, 1) are the dual variables of (x, );
and g is a real-valued function.

In the proof of Theorem 2, it will be convenient to use the following lemma.

Lemma 1. Let P satisfy the hypotheses of Theorem 2 and be of the form (x).
Then there exists a real function g, homogeneous of degree 0, and a conic neighbourhood
V of my, such that in V we have

1) ¢ =3,
(2) HRepQ = Oa

a Do Po
@ 2iagros T 0 B

(4) g=or for some function r which is =0 and homogeneous of degree 1 everywhere.
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Proof of Lemma 1. The existence of a function satisfying (1), (2), (4) follows
from Taylor’s formula. Let § satisfy (1), (2), (4). Then if fis homogeneous of degree 0,
and =0 at m,, f§ will satisfy (1), (2), (4) and for (3) to be valid it is sufficient that f
satisfies

n-1 00 3f w1 08 Of 0@ 3f 98 of [ n-1_ 070 32 }
2ty 98 T 2= 5, o, T or a7 T oe or T\ 219805, T gear) = O
(%)

Since ¢ satisfies (2), the vector field (g}, @,, 8%, 8;) is not parallel to the cone axis
at m, and we can find a solution of (5) which is homogeneous of degree 0, and =0
at m. Q.E.D.

Denote by ¢ a function as in Lemma 1 and define I',={mecrI; |g(m)|=¢},
where I' is the set occuring in the statement of Theorem 2, and which we suppose
to be so small that ¢ satisfies conditions (1), (2), (3), (4) of Lemma 1 in some neigh-
bourhood of it. Let M S (R"XR") be a set of real symbols with support in I',,
bounded in the S°-topology. The main part of the proof of Theorem 2 will be the
following result, in which we assume that I'c T*R*\ 0.

Lemma 2. Let uc&’'(R") be such that u€¢H_y, in I and Puc H in I'. If c€M,
define C as the pseudo-differential operator with symbol ¢ and Z,(c) as the pseudo-
differential operator with symbol

1 0dc do
2% T2 [3! 6”]

Then for each 1=0, there exists ¢=0, independent of s, such that Re (%, (c)u, u)=
=K, ()| CPuli+K,(n). Here K\(n) and K,(n) are uniform constants when c runs
over M.

Proof of Lemma 2. By K we will denote various positive constants, which may
depend on u, but which are valid uniformly when ¢ runs over M. We write P=A+iB,
with 4=2"1(P+ P*) and B=(2i)"*(P—P*), where P*is the adjoint of P with respect
to the scalar product (f, g)= [f2. We shall denote by b the principal symbol of B,
and by S a properly supported pseudo-differential operator with symbol equal to
¢ (except perhaps when |€[+]t| is very small). Taking the imaginary part of both
members of the identity

(SCPu, Cu) = (ASCu, Cu) +i(BSCu, Cu) + (SC, Alu, Cui) +i([SC, Blu, Cu), we get
Im (SCPu, Cu) = (1)+ () +(3)+(4), where

_ (AS—8Cu,Cu) | (Cu, [S, AICu)
(1) = 2 + 2i
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(2) = Re (BSCu, Cu)
(3) = Im ([SC, A}u, Cu)
(4) = Re ([SC, Blu, Cu):
About the term (1).

If I' is sufficiently small, then in view of Lemma 1, (2{)7'(S— S*) has symbol
~gA_y+1_5 in a neighbourhood of I' (the subscripts indicate the orders of the
symbols). Furthermore in a neighbourhood of T, [S, A] has symbol ~ —i~dg/dt+
+7_4. S0 (1) =Re (4SA4_,Cu, Cu)—Re (Cu, 21 S,Cu)—K, where A_,; and S, are
pseudo-differential operators with principal symbols A_, and dg/dt respectively.

But we can find properly supported pseudo-differential operators S; with
principal symbols ¢; homogeneous of degree 0, j=1, 2 such that S=5;+S;, [,/ =2¢
and WF(S,) n I",=0. Furthermore, if H(x, ¢, D,, D,) is a properly supported pseudo-
differential operator with principal symbol # homogeneous of degree 0, such that
h=0 except when (x, 7) belongs to some compact set, we have:

For each compact set TCR?”, there exists a constant Cj such that |Hollj=
=max h(x, t, &, DPol5+ Crllol® 1 when @€Ll  (T). Combining those 2 facts,
we find that:

ISD, A_1Cull§ = 2{|S; D, A Cull§+2S; Dy A, Cul§
= 2(48*| D, A, Cull§+ K|\ D, A_,Cul|% 12+ K)
= 82 K|Cul§ + K| Cul, .+ K.
So for each w=0 we have:

82K
w

1 K
[(SD: A1 Cu, Cu)| = — ISD,A_, Culli + 0 | Culli = ICulls +—+ o [ICulg.

Now if we take @ = ¢ = (8K+ 1)~15, we obtain
Re (SD,A_1Cu, Cu) = —1|Cull— K(n),
which implies
(1) = —n||Cul3—Re(Cu, 5S,Cu) — K(n). 1’

About the term (2).

If I' is small enough, B has symbol ~ gr+/, in a neighbourhood of I', where-
I, has order 0. Denoting by R a properly supported pseudo-differential -operator
with principal symbol r, we find that there exists a properly supported first order
pseudo-differential operator L with principal symbol vanishing in a neighbourhood.
of I' such that

(BSCu, Cu) = (SRSCu, Cu) +(LSCu, Cu)
= ((S—S*) RSCu, Cu)+ (RSCu, SCu) + (LSCu, Cu).
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But we have
[(((S—S*H R+ L)SCu, Cu)| = |(SCu, (S—S*) R+ LY*Cu)| =
= |($,Cu, (S—SHR+L)*Cu)| +K, |
‘where S; is the same as in (1). Now the same argument as in (1) gives:
Re (S~ §*) RSCu, Cu)+ Re (LSCu, Cu) = —n | Cul3— K(n),

if & is small enough.

Furthermore the sharp Garding’s inequality gives that

Re (RSCu, SCu) = — K||SCu|j? = —4e*K||Cu|i— K.
So if g is small enough we have

(2) = —n|Cul§— K®n)- @)
About the term (3).

Im ([SC, A]u, Cu) = Im (C*[SC, Alu, u) = (Wi, ©)

if we define
_ C*[SC, A]—[SC, A]*C
= > .
The principal symbol of W is Im (ci~*{oc, a}) = —c{oc, a}=c(9/0t)(oc). (Here we
have denoted by a the function (x, 7, £, ) -~1.) When ¢ runs over M, the full symbol
of W is c(9/0t)(ec)+an error bounded in S*1. So

Im ([SC, Alu, Cu) = Re (Zu, u)—K (3"
where Z has principal symbol 2~(g 8/0t 2 dg/d1) ¢2.

About the term (4).

Re ([SC, Blu, Cu)=Re (C*[SC, Blu, u). C*[SC, B] has the purely imaginary
principal symbol i~*c{gc, b} and its full symbol differs from i~'c{oc, b} by an
error which is bounded in S*~%, when ¢ runs over M. So

Re ([SC, B]u, Cu) = —K. @)

Collecting (17), (2), (3"), (4) we get

Im (SCPu, Cu) = —23||Cul2— Re (Cu, 2715,Cu) + Re (Zu, u) — K(n).

But on the other hand we have

w

Im (SCPu, Ct) = (SCPu, Cu)| = % ISCPulE+ o [Cullt = % ICPul + o | Cull

for all @=0.
So if we take w=y, we finally get:

Re (&, (c)u, u) = K () |CPull§ -+ Kz (1),

.and this completes the proof of Lemma 2.
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Proof of Theorem 2. We may assume that u¢H,_,, and Pu¢H; in I', and that
u€é’. Using Lemma 2 we will now construct a pseudo-differential operator @ of
order s, elliptic at m,, such that Qué L,. Set k,=27"(dg/dt—61). If y is small enough,
k, is =0 at m,. Choose a symbol 6 homogeneous of degree s for [&|+[t|=>
=271(|&] + |7ol), With support in a very small conic neighbourhood of my, such
that (271006%/0t + k,6%) (m) >0 and (270d8%/9t +k, 6% =0 on X. (We denote & (my)
and (m,) by &, and 1, respectively, where (x, ¢, £, 7) are local coordinates near m,.)
‘All this is possible thanks to the transversality at m, of X with respect to d/dt. Then
choose real symbols 6, g with small support in I', homogeneous of degree s for
€]+ It] =271 (|| + Ito]), such that 0 is elliptic at m, and 02=2""0 6%/t +k, 62+ g*.

If we now define, for O<a=1, o,(x, t, & 1)=(1+02(|éP+72))~"* and if O,
and G, denote pseudo-differential operators with symbols equal to ¢,0, ¢,g res-
pectively, an application of the sharp Garding’s inequality to .%,(60,)—O2+G>
combined with use of Lemma 2 gives

1©,ulley = K where K is independent of «.
So if -0, we get Que L,, where @ has symbol 6. This proves the theorem.

Proof of Theorem 1. We denote by P* the L,-adjoint of P with respect to some
smooth positive density.

If uc&’(U) and P*uc H(X), one has u¢H,,,_, in the region corresponding
to condition (b"), by Theorem 3.5.1 of Hormander [3], and also in the region cor-
responding to condition (¢”), by Theorem 2. So WF,,,,_;(#) is contained in the
region corresponding to condition (a). But now the proof of Proposition2.2 in
Duistermaat [1] shows that u€ H,,,,_,(X) because if U is small enough, we can
as in Chapter VIII of Hoérmander [1], find a function ¢ satisfying the hypotheses of
this Proposition 2.2. The conclusion of Theorem 1 now follows by standard results
on surjections in Fréchet spaces (cf. e.g. Duistermaat—Hoérmander [1], Theo-
rem 6.3.1).

Remarks. (1) In some cases it is possible to prove Theorem 2 by constructing
a parametrix, for example if P has the symbol

i, W= 3h % k=n—2 and &, >0,

one can construct near each point where #==0, a microlocal left parametrix with
wave front set contained in the union of the diagonal of T* X\ 0, and of the bichar-
acteristic relation for t above x”=0, and prove propagation for P in the same way
as it is done for- D, in Theorem 6.1.1 of Duistermaat—Hormander [1].

(2) It is easy to construct non-elliptic boundary value problems which are
described on the boundary by operators satisfying the hypotheses of Theorems 1
or 2, in view of the reduction theory developed in Hormander [2].
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