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The spectral measure of a Jacobi 
matrix in terms of the Fourier 
transform of the perturbation 

Oleg Safronov(1) 

A b s t r a c t .  We s tudy the  spectral  proper t ies  of Jacobi matrices.  By combining Killip 's tech- 
nique [12] wi th  the  technique of Killip and Simon [13] we obta in  a result relating the  proper t ies  
of the  elements  of Jacobi  matr ices  and the  corresponding spectral  measures.  This  theorem is a 
na tura l  extension of a recent result of Lap tev -Naboko  Safronov [17]. 

O. I n t r o d u c t i o n  

Let S be the shift operator on l 2 (N) whose action on the canonical orthonormal 
r oc basis { ~}~=0 is given by Sen e~+l. Let A and B be selfadjoint diagonal operators: 

Ae~=c~ne~, Be~=/%~en, c ~ > - l , / ~ E R .  We study the spectrum of the operator 

J=S+S*+Q, w h e r e Q = S A + A S * + B .  

Such an operator can be identified with the Jaeobi matrix 

/~0 l+c~0 0 0 ... 
l+c~o ~ 1+c~1 0 ... 

(0.1) J =  0 l + c ~  r 1+~2 ... 
: : : : " .  

If the entries of this matrix are bounded then J is a bounded operator on l 2(N). 
To J we associate the measure # given by 

(0.2) ?T?~r := (e0, ( J - z ) - l r  = / R  d~t(t)t_z, z ~ C. 

(1) The author  thanks  Sergei Naboko for useful discussions and Barry Simon for point ing 
out the  conjecture.  
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The spectral significance of this function is represented by the relation 

(0.3) p(~) = (&(5)eo ,  eo), 

where Ej  denotes the spectral measure of J and 5 c R  is a Borel set. 
Conversely, to each measure # with a compact support containing infinitely 

many points there is a standard procedure of constructing a aacobi matrix via 
the corresponding orthogonal polynomials (see [13] for historical references and 
bibliography). Therefore similar problems were intensively studied by specialists in 
this field [21], [1]. 

A Jacobi matrix can be understood as a discrete approximation of a second 
order differential operator, whose properties play an important  role in quantum 
mechanics. For example, the spectral measure # of a SchrSdinger operator is an 
object which can be measured by a physicist in the corresponding experiment. 
So a question, similar to the one we ask in the case of Jacobi matrices, would be 
translated by a physicist in the following way: what can we tell about the interaction 
in the system, if we know everything about the "distribution" of the spectrum? 

Since there is a one-to-one correspondence between Jacobi matrices and prob- 
ability measures, it is natural to ask how the properties of the entries of Jacobi 
matrices are related to the properties of probability measures. We are interested in 
a class of matrices J "close" to the "free" matrix J0 for which c ~ = 0  and /3~=0, 
n=0 ,  1, .... 

Obviously, 
# ( R )  = Ileoll 2 = 1.  

Denote by >' the derivative of the absolutely continuous part of the measure #. Most 
of our questions will be related to convergence of the integral of log(1/#'(2 cos 0)) 
with respect to the weight 

r~0 

(0.4) t)(ei~ t)(k) W(/~) 2, W ( k ) =  ~ w,~k '~, 
~ 2 ~  ~ 0  

where W(e i~ is real-valued and no is finite. In order to state our main result we 
denote by ~p the standard Schatten classes of compact operators: 

Gp = {T:  ][TII~ = tr(T*T) p/2 < oc}. 

T h e o r e m  0.1. Let J be a Jacobi matrix, > the corresponding measure (0.3) 
and the weight 0 be given by (0.4) with W(1)W( 1)r  Assume that the operator 
Q = J -  Jo satisfies 

(o.5) O. 
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Let further A(O) and B(O) be the s u m s  of the Fourier series ~n~=_~ ei~~ and 
~nc~=_~ ei~~ fln, respectively. Then 

(0.6) / /  /5( 12  ~ 20)120(e i~ dO 
~r 

if and only if # satisfies the following three properties: 
(1) s u p p p = [ - 2 , 2 ] U { E + } f _ + l O { E f } f  1, where - l - E f t > 2  and 0 < N ~ < o c ;  
(2) (Quasi-Szeg6 condition) 

(3) (Lieb-Thirring bound) 

N+ N 

Z IZ, + - 21 IEj +21 < 
j = l  j = l  

Remark 1. One can generalize this result to the case W ( 1 ) = W ( - 1 ) = 0 ,  where 
3 instead of the Lieb Thirring bound with the power ~ we would have the one with 

5 In this case condition (3) can simply be omitted. the power ~. 

Remark 2. The question whether the condition (0.5) can be substi tuted by a 
weaker assumption is still open. However one can t ry  to work with the class 64  

using two trace formulas for J 0 + Q  and J 0 - Q  simultaneously. 

Although this theorem is a natural  generalization of a recent result of Kill ip- 
Simon, it has some disadvantages. Namely, for a given measure p we are not able 

to check in advance whether the condition (0.5) is fulfilled for the corresponding 
Jacobi matr ix  Y. However, in the cases 9 (C~ [13] and 0(ei~ 2 0 [17] one is 
able to avoid this obstacle and obtain stronger results, where one does not have the 
a priori condition (0.5). 

It  should be mentioned that  the proof of (0.6) for our class of Jacobi matrices 
is based on a technique developed in [13], namely, on results related to the notion 
of entropy. In spite the fact that  [12] was writ ten earlier than  [13], the ideas of [12] 
combined with [13] lead to the local logarithmic integrability of the derivative of the 

spectral measure and it might seem tha t  in terms of the "forward spectral problem" 
our result is weaker than  the results of [12]. However, this is not the case, since 
Theorem 0.1 allows us in many situations not only to find the location of exponential 
zeros of p ' ,  but  also to say something about  the order of these zeros. 
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Let us remark that  some new information about the measure can be obtained 
by considering both "forward" and "inverse" directions of the theorem simultane- 
ously. However, if one splits the two statements apart, then one gets two statements 
whose usefulness without the other part of the theorem would he limited. It is also 
interesting to combine Theorem 0.1 with the results of [13]. In particular, for a 
given set of finitely many points in [-2,  2] it is easy to find a Jacobi matrix whose 
spectral measure p~ vanishes at each of these points. 

The main idea of this paper is to modify the known trace formulae. For J ' s  
with Q = J - J o  of finite rank, the standard trace formulae are due to Case [2], [3]. 
Recently, Killip-Simon [13] found how to exploit these sum rules as a spectral tool. 
In particular, Killip and Simon have shown the importance of extension of sum 
rules to a larger class of Q's. In particular they gave a complete characterization 
of spectral measures p corresponding to Q's from the Hilbert Schmidt class. In 
its turn the impressive paper [13] was motivated by work on Schrhdinger operators 
by Deift-Killip [6] and Denisov [7], [8]. In the paper [6] the authors prove that  if 
V ~ L 2 (R), then the absolutely continuous spectrum of - d  2/dx 2 + V is "essentially 
supported" by (0, +oo), which roughly speaking means that  the derivative of the 
spectral measure is positive almost everywhere on (0, +oc). Another consequence 
of trace formulae has been observed by Denisov [7], who noticed that  the singular 
component of the spectral measure of" the Schrhdinger operator with a square in- 
tegrable potential can be more or less arbitrary. Finally, the author would like to 
mention the paper [26], the results of which are used in this work. 

The subject we study here has a long history of results, which would be difficult 
to describe in such a short paper. However we would like to mention that  it was A. 
Kiselev [14] who first started the investigation of the absolutely continuous spectrum 
of Schr6dinger operators with slowly decaying potentials. We also supply the article 
with many relevant references, which can introduce the reader to the theory of 
orthogonal polynomials. 

1. P r e l i m i n a r i e s  

For each T~G1,  one can define a complex-valued function d e t ( l + T ) ,  so that  

Ide t ( l+T)  l < exp IITII~,. 

For TEG3 one defines 

(1.1) 

Then 

(1.2) 

d e t a ( l + T )  = d e t ( ( l + T ) e  T+T2/2). 

Ideta(1--f) l  <expcl l f l ]~3,  e > 0 .  
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L e m m a  1.1. Let A and B be of finite rank. There is a constant C such that 
one of the conditions 

(1.3) I I m z l > l  or IRez l>3+l lQI  I 

imply 

(1.4) [log d e t a ( I + O ( J 0 - z ) - l ) l  < CIIQII3~. 

Pro@ Let z=A+iG, where A and c are real. One can repeat the arguments of 
Proposition 5.2 [121 to show that 

d logdeta(I+Q(Jo-z)  1) = i t r ( J o _ z ) - l Q ( j _ z ) - l _ t r Q ( J o _ z )  2 

+trO(go-~)-lO(go z) 21 
(1.5) 

On the other hand, 

=ltr((Jo-z)-lQ(jo-z) 1Q(J-z)-l(Jo z) 1Q)I 
<_ II(Jo-~)-* tL~II(a-~)-ILI IIO[tg~. 

lim de t3 ( I+Q(Jo-z )  1) 1. 
~--900 

Therefore the estimate (1.2) follows from (1.5) by the fundamental theorem of cal- 
culus. [] 

2. T r a c e  f o r m u l a e  

Let A and B be of finite rank. By H0 we denote the operator on/2(Z)  defined 
e oo on the standard basis { ~} oo by 

H0e~ = e~+l+e~_l ,  r~cZ.  

It is convenient to replace m~ by 

M . ( / ~ ) = - g / , . ( z ( ~ ) ) =  ~7~/x(~+~ 1 ) = s  kd#(t)  
(2.1) l _ t k + k  2, Ikl <1.  

It is known (see [22]) that the limit 

M(e iO) = lira M~,(rei~ 
r" l  
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exists almost everywhere on the unit circle and 

ImM(ei~ 0C[0,7c]. 
7[  

We borrow from [13] one important relation which expresses the spectral mea- 
sure in terms of the perturbation determinant 

(2.2) tL(~~ ~m~(e ~~ : s i n ( 0 )  det(1 +A) 2 , 

where 
L(k) : det ( l+Q(Jo  - (]~-- 1/~)[)--1). 

Therefore for z=2 cos 0, 

(2.3) 

1 [ sin 0 ] 
log - -  ~ = - l o g l d e t ( Z + A ) l + R e t r Q ( J o - z )  1 

1 Retr(Q(yo_z)-l)2+logldet3(i+Q(jo ~)-bl 
: :g (0 )+ log  Idet3(I+Q(Yo-z) 1)1. 

The function d3(k)=det3(I+Q(Jo-z) -1) vanishes when k+l/k is an eigenva]ue 
of J. Let {xn} be the zeros of d3(k) lying in the domain Ikl<l. We introduce the 

Blaschke product 
X n -- ]{ X,r~  

n 

Clearly IGl=l when k=e i~ Choose a>O so small that every point z k+l/k with 
Ikl=a satisfies the condition (1.3). Obviously a<rnin~ Iznl. Thus, by using the 
Cauchy theorem we find 

] f f  i A 1 o g ( ~ )  @(k) (k2-1)2 2 logld3(k)l~(e~~ Re~ I=a k3 d k  
71- 7r 

i /k log(da(k))w(k)d~. ~.f(~,O, (2.4) : Re ~ I ~ ,~ 

where 

and 

f (x )  = Re 

(k2-1) 2 

~(k)  v(k) k2 

I a ~ 1 - - ~ k l 5 1  
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The first identity in (2.4) holds due to the fact that da(k)/G is an analytic function 
which does not have zeros in C\{0}.  The latter integral can be computed by the 
residue calculus, in particular one can show that f(~4) is a finite linear combination 
of powers ~• and log IxI. However, instead of calculating it explicitly we prove 
that 

(2.5) f ( t )=~o(T1)l t•177 a s t - + T I ,  I t [< l .  

Indeed, since w(k)=w(1/k) we observe that 

(2.6) 

L ~ R e  27r log w( k ) ~77. " 

Now assmne that  x = l - s ,  where s--+0, and let 

f k  dz 

Then integration by parts leads us to the expression 

1 .)(k ( 1 ~ ) F ( k ) d k  
2 f ( z ) = R e 2 - ~ /  r=l/~ x i k  1 k 

1 f~ k ( 1 ~ )F(k)dk .  - R e  2~i I=~ z Z  k 1 k 

Thus, by the residue calculus we obtain 

f ( x )  = Re �89 ( F ( x ) - F ( 1 / , ) )  

which proves (2.5) for the case t--+l. The other case is similar. 
By the inequality (1.4) the first term in (2.4) is bounded by a constant C =  

C(a, cg, IIQll) (depending on a, L)and IIQ[I)times I IQI la  : 

(2.7) c=c(a, ,liQII). 

Now, since the kernel of the resolvent R(z) = (Ho - zI) - i is of the form 

(2.s)  =k+k -1, O<lkl<l ,  

we obtain the following result. 
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L e m m a  2 .1 .  F o r  k = e  i~  

R~ t r  R ( ~ ) Q R ( ~ ) Q  - 1 12eioA(20)+~(20)12+trA2 
4 sin S 0 

Pro@ By using (2.8) we compute 

RetrR(z)BR(z)B - 

4 sin 2 0 
77/~ ~ n 0 

4 sin 2 0 rn,~=O 

1 1~(20)12 ' 
4 sin 2 0 

where z = 2  cos 0. Similarly, 

Re tr  R(z)SAR(z)SA = Re tr  R(z)AS*R(z)AS* 

1 ~ cos ( ( im_nl  + in+ 2 _ m 0 0 ) a n + l  c~.~ 
4 sin S 0 

Tr~ , 7 ~ 0  

__ 1 ( ~ COS(2(~ __,~__ l)O)(~Tt__j O{fr~ 
4sin z0 ~ . . o  2 

,rL2 rr~ n = 0  

_ 1 (]~(20)[2_2sin2(O)trA2), 
4 sin 2 0 

and, since S and S* commute with Ho, 

Re tr R(z)SAR(z)AS* = Re tr R(z)AS*R(z)SA 
[A(2o) I 2 
4 sin 2 (0) 

Finally 

1 
RetrR(z)SAR(z)B=Retr•(z)AS*•(z)B- 4sin 2 0 

which completes the proof. [] 

We will need the following relation, which is valid for k = e  i~ 

oo fl.~ + 2c~r/0 
(2.9) a e t r R ( ~ ) Q = a e Z  2"~sin0 - i r A .  

7 7 ~ 0  
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The kernel for the resolvent ( J o - z I )  -1 of J0 is of the form 

C ( n , ~ ; ~ ) =  k (k~+~,+2_kt~_<):Cl(n,m;z)+C2(,~,m;~).  

The first term here does not play any role because its contribution involves only 
finite number of entries of J.  Indeed we can prove the following result. 

P r o p o s i t i o n  2.1. Let r be a boundary value of an analytic function in the 
unit disc except .for a pole of order j at the point zero. Then the function 

�9 (Q) = t r  (QR(z) -Q(Jo-z ) - l ) r  dO 
7c 

(2.1o) 1 // - - t r  ((OR(z)) ~ -(Q(g0 - z ) - ~ ) ~ ) r  dO 
2 

is a second order polynomial only of a finite number of elements c~ and/3n. 

Proof. Let Fk be the operator on 12(N) with the kernel Gl(n, m; z), z = k + k  -~ 
and P be the orthogonal projection fl'om 12(Z) onto 12(N). Then F k - - ( J 0 - z )  - 1 -  
PR(z)P.  Therefore the integrand in (2.10) can be rewritten in terms of t rQFk,  
tr(QP~) 2 and t rOlJkQR(z) .  The functions ( k 2 - 1 ) t r O P e ,  ( k 2 - 1 ) 2 t r ( O r ~ )  2 and 
(/c 2 - 1) u tr QFkQR(z) are analytic in the disc and the coefficients of the Taylor series 
about zero depend on finite number of entries c~, and ~ .  For example 

(k~-~)~trBr~BR(z)=k ~ ~ Z~+2Z,~Z..~ �9 [] 
n = 0  rrt  0 

From (2.3), (2.4), (2.7) and (2.9) we obtain 

- / 7  r  i,,o q / ;  1 lOgklm~_(eio)jO(eiO)sin2OdO 2 g(O)~(eiO)sin20d 0 
7F 7c 7C vr 

- ~  f ( ~ ) + ~ ( o ) ,  
n 

where ~(Q)  is finite even if Q~G3 and can be estimated by a function of HQIIG~. 
From Lemma 2.1 we see that  

(2.11) g(O)=-logldeta( l+A)l+ l~12e~~ 
8 sin 2 0 

where (Do is the integrand in (2.10) with 0=1.  Tlms we obtain the trace formula 

/ [ sin 0 ] i0 

( 2 . 1 2 )  "~ 

4~ ~ 12~~ 20)+ 20)I%(~%d0+A(@, 

where the absolute value of A(Q) is bounded by a certain function of IIQll6a. 
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3. Perturbations of infinite rank 

Given a per turbat ion of class G3 there is a beautiful technique which enables 
one to prove that  if one of the sides in (2.12) is finite, then so is the other side. This 
technique is due to Killip and Simon [13] and uses the fbllowing facts: 

f ~  [ sin 0 1 - ~ l ~ 1 7 6 1 7 6  , C : C ( g ) ,  

and 

(3.1) 
OO OO 2 

~r n=0 j = 0  

However, since we are forced to deal with the sums appearing in the right-hand side 
of (3.1) a bet ter  reference is the one to the paper  [17] where the technique is more 
adjusted to the special case of the trace formulae (2.12). Below we denote by D the 
unit disc in C. 

Let j (N) and Q(N) be operators whose realizations in the s tandard basis 
e oc { ~}~=0 are given by 

(3.2) j ( N )  

(3.3) Q(N) = 

/3N+1 I+OZN+I 0 

I+CtN+I /3N+2 1-]-CtN+2 
0 l + a N + 2  fiN+3 

r a x + l  0 ...'~ 

O/N+I /~N+2 OZN+2 

0 aN+2 [~N+3 
: : ! 

"'" / ' 

and let 

We introduce 

/ ] dO. At(J) := 

P ,t(Q) := 

The "tails" in the sums A t ( J  ) and A t ( J  (N)) cancel each other, so that  the dements  
of the matrices B and A do not enter in the difference PN,t(Q) start ing fi'om a 
certain index. Thus PN,~(Q) is a continuous function of a finite number of dements  
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of the matrices B and A and can be extended to arbitrary matrices B and A. Below 
PN,e(Q) is extended for any B and A. Let 

(3.4) G0(#) = ~1 J-=f~ log]l ~sinO 9(ei0) sin 2 0 dO+~_,f(x~). 

It is important for us to find conditions when 

(3.5) G o(/s)-  q)e(J(N)) = Px,~ (Q) +A(Q)-A(Q(m)) .  

The identity (3.5) is valid if Q is of finite rank. The case when the function M~ is 
meromorphic in the neighborhood of the unit disc follows from Proposition 4.3 and 
Theorem 4.4 in [13] and the fact that 

/ .,~o -~2 

is a finite linear combination of powers k :Lm. 
Notice that y ~ - l o g y  is convex. Assume that 

f /  o(e ~~ 20d0 1. 
7r 

Employing Jensen's inequality we find that 

, l~176 ) cg(ei~ l~ L sin0 /sinUOodO 

>_- log[2 L~(ImM~)sinOdO] 

/; 2 log[~(e~~ sin2(O)~dO 

= - l o g [ ~ ( - 2 ,  2)] 

(3 .6)  - 2  log [e (e~~  sin2(O)edO 

> - l o g  7r- 2 log[~(e~~ sin2(O)edO 
=: c (~) ,  

where we use that #~c(-2, 2)-<1. Formulae (3.5) and (3.6) imply that 
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where the quantity F(IIQIIG,, Q) depends only on IIC211~ and e. The latter inequality 
was obtained for M~ meromorphic in the neighborhood of the unit disc. However, 
this inequality can also be extended to arbitrary measures # satisfying conditions 
(1) (3) of Theorem 0.1. 

Indeed, assume that  condition (2) of Theorem 0.1 is fulfilled. According to 
Remark 1 following after Theorem 2.1 in [26], 

(3.7) limr.?l f l~176176 0 dO= . f  log[ImM(ei~176 2 0 dO. 

Now, given any J and M-function M(z) associated to it, there is a natural approx- 
imating fmnily of M-functions meromorphic in a neighborhood of the closure of the 
unit disc D. The next result is proved in [13], Lemma 8.3. 

L e m m a  3.1. Let M~ be the M-function of a prvbability measure p obeying 
condition (1) of Theorem 0.1. Define 

(3.8) M(")(z) = r -~Mf ( rz )  for O < r <  1. 

Then, there is a family of probability measures #0) such that M(~')=Mp(,-). 

The poles of M~(~.) are given by 

xs(;(,o ) 
r 

where we consider only those j for which Ix j l<r .  Thus if condition (3) of Theo- 
rem 0.1 is satisfied then ~ f(xj(#(~))) is a continuous function of r whose limit is 
equal to ~ f (xj) ,  as r~'l. Moreover, the convergence Mff(,-)(z)--+M~(z) is uniform 
on compact subsets of the upper half of D, which means that  the coefficients of the 
Jacobi matrices must converge. Thus for any N, 

= ~ ( t t ) - C ( ~ ) + F ( H Q l l G , ,  e). 

Therefore sup N PN,e(Q)<oc which guarantees (0.6). 
Conversely, suppose that  the conditions (0.6) and (0.5) are fulfilled. We would 

like to establish that  

(3.9) 
1 f ~  [ sin 0 ] 

L ,J C ,  l~ sin (O)  < 
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Definition. Let v, and # be finite Borel measures on a compact Hausdorff space 
X. The entropy S(u l#  ) of u relative to # is defined by 
(3.10) 

S ( u l # ) = { - o c , ' / x l ~  ifuisabs~176176176 

The following result is proved in the paper of Simon and Killip, [13], Corol- 
lary 5.3. 

L e m m a  3.2. The entropy S(u[#) is weakly upper semi-continuous in #, that 
is, if #~ ~ > #, then 

S(u I P) -> lira sup S(u I P~). 
79,--+ OO 

Let us use the fact that  the formulae (2.12) are valid at least for finite rank 
operators A and /? .  Suppose now that  A and /~  are arbitrary compact selfadjoint 
operators such that  (0.5) and (0.6) hold. It is then clear that  the right-hand side 
of (2.12) is finite. Now let the sequences of operators An and Bn converge to A and 
B in ~3 so that  

.F /[ A( 12J~176 12e g~ 20)+ 20)12 ~(e~~ dO, 
7r 7r 

as n-~oe.  Let Q,,~=SA~+AnS*+Bn, J~=S+S*+Q,,~ and #n(# )=(E j , (5 )eo ,  eo), 
where 6 is an arbitrary Borel set. Since (l ,~-z) -1 converges to ( J - z )  -1 uniformly 
on compact subsets of the upper half-plane we obtain that  #,~ is weakly convergent 
to #, 

Applying Lemma 3.2 we obtain that  if du=o(ei~ and # is the spectral 
measure of J,  then 

s ( .  > - o o .  

This is exactly what is needed for (3.9). 

In order to complete the proof we only have to show that  (0.6) and (0.5) imply 
condition (3) of Theorem 0.1. This can be done by a simple trick (see [17]) whose 

P essence is that  one first has to consider a finite sum ~ j = l  f ( z j ) ,  prove that  this 
sum can be approximated by the corresponding sum for A~ and /3n and then let 
p ~ o o .  
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