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The spectral measure of a Jacobi
matrix in terms of the Fourier
transform of the perturbation

Oleg Safronov(?!)

Abstract. We study the spectral properties of Jacobi matrices. By combining Killip’s tech-
nique [12] with the technique of Killip and Simon [13] we obtain a result relating the properties
of the elements of Jacobi matrices and the corresponding spectral measures. This theorem is a
natural extension of a recent result of Laptev—Naboko—Safronov [17].

0. Introduction

Let S be the shift operator on [2(IN) whose action on the canonical orthonormal
basis {e,, }72 is given by Se,—=e, 1. Let A and B be selfadjoint diagonal operators:
Aep=ape,, Bep=0hen, ap>—1, BcR. We study the spectrum of the operator

J=5+5"4+Q, where Q=SA+AS*+B.

Such an operator can be identified with the Jacobi matrix

ﬂo 1+a0 0 0
I+ap B 1+aq 0

(0.1} J=1 0 14ar  fr 1t

If the entries of this matrix are bounded then .J is a bounded operator on I?(IN).
To J we associate the measure y given by

(0.2) mu(z)::(eo,(J—z)‘leo):/Rdu(t), zeC.

t—z

(1) The author thanks Sergei Naboko for useful discussions and Barry Simon for pointing
out the conjecture.
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The spectral significance of this function is represented by the relation

(0.3) w(d) = (E;(d)eo, e0),

where E; denotes the spectral measure of J and § CR is a Borel set.

Conversely, to each measure p with a compact support containing infinitely
many points there is a standard procedure of constructing a Jacobi matrix via
the corresponding orthogonal polynomials (see [13] for historical references and
bibliography). Therefore similar problems were intensively studied by specialists in
this field [21], [1].

A Jacobi matrix can be understood as a discrete approximation of a second
order differential operator, whose properties play an important role in quantum
mechanics. For example, the spectral measure p of a Schrodinger operator is an
object which can be measured by a physicist in the corresponding experiment.
So a question, similar to the one we ask in the case of Jacobi matrices, would be
translated by a physicist in the following way: what can we tell about the interaction
in the system, if we know everything about the “distribution” of the spectrum?

Since there is a one-to-one correspondence between Jacobi matrices and prob-
ability measures, it is natural to ask how the properties of the entries of Jacobi
matrices are related to the properties of probability measures. We are interested in
a class of matrices J “close” to the “free” matrix Jy for which «,, =0 and 3,,=0,
n=0,1,....

Obviously,

a(R) = leol|* =1.

Denote by i the derivative of the absolutely continuous part of the measure p. Most
of our questions will be related to convergence of the integral of log(1/p/(2cos8))
with respect to the weight

(0.4) 0(e)sin?(0);  o(k)=W(k)?, W(k)= ZO wpk™,

where W (e*) is real-valued and ng is finite. In order to state our main result we
denote by &, the standard Schatten classes of compact operators:

Gp ={T:|T|% =tr(T*T)"/* <oo}.

Theorem 0.1. Let J be a Jacobi matriz, p the corresponding measure (0.3)
and the weight o be given by (0.4) with W(1)W (—1)#0. Assume that the operator
Q=J—Jy satisfies

(0.5) Q€ Gs.
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Let further A(8) and B(6) be the sums of the Fourier series S €™y, and
S €3, respectively. Then

n=—o

(0.6) / i 12¢% A(20)+B(26)|? 0(¢'?) df < oo

—T

if and only if v satisfies the following three properties:
supp p=|—2,2|U{& ;. U B .2, where ~>2 and 0< Ny <oo;
1 2, 2]U{ B} } 32 U{ES Yo, where £EE>2 and 0<N,
(2) (Quasi-Szegd condition)

T 1 )
1 - 10V in2 .
/ Og{u’@cos@)}g(e ) sin“ 6 df < oo;

—T

(3) (Lieb-Thirring bound)

Ny N_
S I 2P 24 By 22 < oo
j=1 j=1

Remark 1. One can generalize this result to the case W(1)=W(—1)=0, where

instead of the Lieb—Thirring bound with the power % we would have the one with

the power 2. In this case condition (3) can simply be omitted.
2

Remark 2. The question whether the condition (0.5) can be substituted by a
weaker assumption is still open. However one can try to work with the class G,
using two trace formulas for Jy+@ and Jy— @ simultaneously.

Although this theorem is a natural generalization of a recent result of Killip—~
Simon, it has some disadvantages. Namely, for a given measure p we are not able
to check in advance whether the condition (0.5) is fulfilled for the corresponding
Jacobi matrix J. However, in the cases o(e*®)=1 [13] and p(e*®)=cos? 0 [17] one is
able to avoid this obstacle and obtain stronger results, where one does not have the
a priori condition (0.5).

It should be mentioned that the proof of (0.6) for our class of Jacobi matrices
is based on a technique developed in [13], namely, on results related to the notion
of entropy. In spite the fact that [12] was written earlier than [13], the ideas of [12]
combined with [13] lead to the local logarithmic integrability of the derivative of the
spectral measure and it might seem that in terms of the “forward spectral problem”
our result is weaker than the results of [12]. However, this is not the case, since
Theorem 0.1 allows us in many situations not only to find the location of exponential
zeros of p', but also to say something about the order of these zeros.



366 Oleg Safronov

Let us remark that some new information about the measure can be obtained
by considering both “forward” and “inverse” directions of the theorem simultane-
ously. However, if one splits the two statements apart, then one gets two statements
whose usefulness without the other part of the theorem would be limited. It is also
interesting to combine Theorem 0.1 with the results of [13]. In particular, for a
given set of finitely many points in [—2,2] it is easy to find a Jacobi matrix whose
spectral measure p’ vanishes at each of these points.

The main idea of this paper is to modify the known trace formulae. For J’s
with Q=.J—Jp of finite rank, the standard trace formulae are due to Case [2], [3].
Recently, Killip~Simon [13] found how to exploit these sum rules as a spectral tool.
In particular, Killip and Simon have shown the importance of extension of sum
rules to a larger class of ’s. In particular they gave a complete characterization
of spectral measures p corresponding to Q’s from the Hilbert—Schmidt class. In
its turn the impressive paper [13] was motivated by work on Schrodinger operators
by Deift—Killip [6] and Denisov [7], [8]. In the paper [6] the authors prove that if
Ve L?(R), then the absolutely continuous spectrum of —d?/dz?+V is “essentially
supported” by (0,+oc), which roughly speaking means that the derivative of the
spectral measure is positive almost everywhere on (0, +c0). Another consequence
of trace formulae has been observed by Denisov [7], who noticed that the singular
component of the spectral measure of the Schrodinger operator with a square in-
tegrable potential can be more or less arbitrary. Finally, the author would like to
mention the paper [26], the results of which are used in this work.

The subject we study here has a long history of results, which would be difficult
to describe in such a short paper. However we would like to mention that it was A.
Kiselev [14] who first started the investigation of the absolutely continuous spectrum
of Schrodinger operators with slowly decaying potentials. We also supply the article
with many relevant references, which can introduce the reader to the theory of
orthogonal polynomials.

1. Preliminaries

For each T€&1, one can define a complex-valued function det(147'), so that
[det(1+T)] < exp | T, .
For T € &3 one defines

(11> det;;(l—}—T):det((1+T)€*T+T2/2)'
Then
(1.2) dety(14+7)| <expe|T[E,, ¢>0.
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Lemma 1.1. Let A and B be of finite rank. There is a constant C such that
one of the conditions

(1.3) Imz|>1 or |Rez|>3+[Q|
imply
(1.4) log et (1+Q(Jo—2)"1) < ClIQIIS, -

Proof. Let z=MA+ie, where A and ¢ are real. One can repeat the arguments of
Proposition 5.2 [12] to show that

% logdets(I+Q(Jo—2z) | =ltr(Jo—2) ' Q(J—2) " —tr Q(Jg—=2) 2

+trQ(Jo—2)"1Q(Jo—2) |
(1.5) =tr((Jo—2)"'Q(Jo—2) ' Q(J—2) " (Jo—2) Q)|
< (Jo—2) " PIIT—2) "M QI

On the other hand,
ILm dets(I+Q(Jo—2)" 1) =1.
€ o

Therefore the estimate (1.2) follows from (1.5) by the fundamental theorem of cal-
culus. [

2. Trace formulae

Let A and B be of finite rank. By Hy we denote the operator on [2(Z) defined
on the standard basis {e, }*° by

H()en:en+1+en—1a nez.

Tt is convenient to replace m,, by

@.1) Mﬂ(k):—m“@(k)):mn<k+k1):/ll%, ki< 1.

It is known (see [22]) that the limit

M(e") =lim M,,(re'?),
1
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exists almost everywhere on the unit circle and

Im M (&%)

™

=p/(2cosf), 6¢cl0,m].

We borrow from [13] one important relation which expresses the spectral mea-
sure in terms of the perturbation determinant

(2.2) |L(€%)2 Tm M (&%) =sin(0) det(1+A)?,
where

L(k)=det(1+Q(Jo— (k+1/k)I)~1).
Therefore for z=2cos 0,

1 sin §

o8 {ImM(ew)

(2.3) —1Retr(Q(Jo—=2)*)*+log |dets(I+Q(Jo—2)"")]
=:g(0)+log |detz(I+Q(Jo—2)"1)|.

} = —log |det(I+A)|+Retr Q(Jo—2)"*

The function ds(k)=dets(I+Q(Jo—2)"") vanishes when k+1/k is an eigenvalue
of J. Let {5,} be the zeros of d3(k) lying in the domain |k|<1. We introduce the
Blaschke product

_H 1— %nk ‘}fn| (30 = 54n).

Clearly |G|=1 when k=¢%. Choose a>0 so small that every point z=k+1/k with
|k|=a satisfies the condition (1.3). Obviously ¢<min, |s,|. Thus, by using the
Cauchy theorem we find

2 [T o i ds(k) (k2—1)2
;/_Wlog}dg(k)[g(ee)smzﬂdOVRe% )kl_alog( 3G >g(k) 5 dk
(2.4 =Reg [ tosyu) 30 S0
where (k2~1)2

w(k) = o(k)—3
and

-k dk
fo)= Re% Jk_alog<—%_—i>u)(k:)?.
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The first identity in (2.4) holds due to the fact that ds(k)/G is an analytic function
which does not have zeros in C\{0}. The latter integral can be computed by the
residue calculus, in particular one can show that f(s¢) is a finite linear combination

of powers »*™ and log |»|. However, instead of calculating it explicitly we prove
that
(2.5) f)y=2o(FD) 1P +o(t£1]?), ast—F1, tf<1.

Indeed, since w(k)=w(1/k) we observe that

1 x—k dk
Qf(%)——Re% ‘M:alog(i_—_){%l_%—l)w(k)?

2.6
(26) »—k dk

i
—Re — log(——————)w k) —.
Now assume that »=1—s, where s—0, and let
E
dz
Plk) = / w(z) Z.
] z

Then integration by parts leads us to the expression

27 »—k 1-xk

1 1 >

Thus, by the residue calculus we obtain

J(5)=Re 3(F ()~ F(1/3))

which proves (2.5) for the case t—1. The other case is similar.
By the inequality (1.4) the first term in (2.4) is bounded by a constant C=
C(a, 0,/|Ql) (depending on a, ¢ and [|Q|) times [|Q|&,:

1 1 x
2f() =Re — it/a (— — ——) F(k)dk

(2.7) | / log(da(k)yw(k) Kl opais,, c=ca o Q).
|k|=a k

Now, since the kernel of the resolvent R(z)=(Hy—zI)"! is of the form

pln—ml

(2.8) Ga(n,m;z) = o ,

z=k+kt 0< k| <1,

we obtain the following result.
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Lemma 2.1. For k—=e*,

Retr R(2)QR(z)Q =— 2¢0 A(20)4 B(20)[? +tr A2

4sin® @
Proof. By using (2.8) we compute

o0

Z cos(2|m—nl8) B Bm

m,n=0

1
Retr R(2)BR(z)B= ————
e tr B(z) (2) 4sin% 6

1 Ny
— Re Z eZz(mfn)Ganﬂm

4sin? 6 <
m,n=0

1 o~
=————|B(20)?,
4sin29| (26)
where z=2cosf. Similarly,
Retr R(z)SAR(z)SA=Retr R(z)AS*R(z)AS*

1 o<

- - +2— o, m
T L Cosmni =m0 o
: <
=——7 Z cos(2(m—n—1)0) 0+ 100m
4sin” 6 ol

+ Z cos(2(m—n71)9)0zn+1am+i COS(%)O%%)

n>m n=0
= *T12—0(1A(29)[2—281n2(0) tr A%),
sin

and, since S and S* commute with Hy,

. . | A(26)[”
Retr R(z)SAR(2)AS™ =Retr R(2)AS*R(2)SA = ———"—.
48in*(4)
Finally
Re tr R(2)SAR(z)B=Re tr R(z)AS* R(2)B = — ZLQZ Re(e™® A(20) B(26))
sin

which completes the proof. [

We will need the following relation, which is valid for k=e*?,

2. B+ 20,6t
2. Ret = = f{r A.
(2.9) etr R(2)Q =Re 3:0 5 5m 0 tr
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The kernel for the resolvent (Jo—zI)~! of Jp is of the form

G(n,m; z) = (k"2 k) = Gy (0, m; 2)+ Ga(n,m; 2).

1-k?
The first term here does not play any role because its contribution involves only
finite number of entries of J. Indeed we can prove the following result.

Proposition 2.1. Let ¢(0) be a boundary value of an analytic function in the
unit disc except for a pole of order j at the point zero. Then the function

2(Q) = | " (QR()=Q(Jo=2)"1)(0) do
(2.10) o

V% r /ﬂ (QR(2))2—(Q(Jo—2)")2)(6) db

s a second order polynomial only of a finite number of elements oy, and G,.

Proof. Let 'y be the operator on {2(N) with the kernel Gy (n, m; 2), z=k-+k~*
and P be the orthogonal projection from [*(Z) onto [2(N). Then T'y=(Jo—2) ' —
PR(z)P. Therefore the integrand in (2.10) can be rewritten in terms of tr QTk,
tr(Ql'g)? and tr QUrQR(2). The functions (k2 —1)tr QT'k, (k2—-1)%tr(QT%)? and
(k*—1)? tr QT QR(z) are analytic in the disc and the coefficients of the Taylor series
about zero depend on finite number of entries «,, and §,,. For example

'S n—1
(k*~1)?tr BT, BR(z) = k> Z k2 (ﬁ3+2ﬁn Z 6m>. O
n=0 m=0

From (2.3), (2.4), (2.7) and (2.9) we obtain

I sin ¢ , 2 ,
i 1 i 10 (32 _“ 0y 2.2
Tr/A,, og[———I M(e“’)]g(e ) sin® 6 df 7r/_ﬂg(O)g(e )sin® 6 df

kg3

where U(Q) is finite even if Q€ &3 and can be estimated by a function of ||Q|e,-
From Lemma 2.1 we see that

(2.11) g(8)=—log |detz(1+A)|+ !

8sin® g
where ®q is the integrand in (2.10) with ¢=1. Thus we obtain the trace formula

Z f(%n)‘f’% / log {—Im—sjt/[i(ee‘T)} g(ew) sin® 6 do

1260 A(20)+ B(20)|* +Re 8y (6),

(2.12) -
_ ﬁ 1219 A(260)+ B(20) 2o(e™) d0+A(Q),

where the absolute value of A(Q) is bounded by a certain function of ||Q||s,-
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3. Perturbations of infinite rank

Given a perturbation of class &3 there is a beautiful technique which enables
one to prove that if one of the sides in (2.12) is finite, then so is the other side. This
technique is due to Killip and Simon [13] and uses the following facts:

T sin @ i . 2
_ 7 3 < =
/ log [I M(ew)}g(e Ysin®8do<C, C=C(p),

and

2

[e@)]
E 2Wn_2j-10+Wn—2;0;
j=0

(3.1) /j 12¢7® A(26)+B(20)|? 0(e') d6 = 2 i

n=0

However, since we are forced to deal with the sums appearing in the right-hand side
of (3.1) a better reference is the one to the paper [17] where the technique is more
adjusted to the special case of the trace formulae (2.12). Below we denote by D the
unit disc in C.

Let J®™) and QW) be operators whose realizations in the standard basis
{en}, are given by

Bn+1 l4+ay4 0

1+aN+1 Bryz 1tanie
(32) 1+04N+2 ﬁN+3 ’

By+1 ang 0

OéN+1 BNz any2

(N) _

(3.3) Q antz PBn+s
and let

A () ::zlg/j 12¢0 A(20)+ B(20)|20(e) db.

We introduce

P o(Q) = A (J) = A (JI).

The “tails” in the sums A,(J) and A,(J™)) cancel each other, so that the elements
of the matrices B and A do not enter in the difference Pn (@) starting from a
certain index. Thus Py ,(Q) is a continuous function of a finite number of elements
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of the matrices B and A and can be extended to arbitrary matrices B and A. Below
Prn »(Q) is extended for any B and A. Let

sin @
ImM,

(3.4) QQ(M):%/W log

o(e?)sin? 0 d0+z I (5en).
It is important for us to find conditions when

(3.5) Dy (1)~ o (JN) = Py o (Q)+A(Q)—A(Q™).

The identity (3.5) is valid if @ is of finite rank. The case when the function M, is
meromorphic in the neighborhood of the unit disc follows from Proposition 4.3 and
Theorem 4.4 in [13] and the fact that

no 2
o= Y v

n=—-—"ngy

is a finite linear combination of powers k™.
Notice that y+— —logy is convex. Assume that

/ o(e®ysin® 0dh=1.

—7

Employing Jensen’s inequality we find that

T sin€ T . o /71' Im]V[M L
- 7 __ 1
/ log{ImMu(ele)}Q(e )sin df ? 0 og{ sin 0 sin” 0o df

> —log [2 / (ImM,,)sin @ d@}
0

2 [ toglo(e) s (0) o0
=— logo[ﬁuac(~2, 2)]
(3.6) -2 /0 i log[o(e™)] sin?(#) o d
>—logn—2 /7r log[o(e™)] sin?(0) 0 dO
=:C(o), 0
where we use that 1,.(—2,2)<1. Formulae (3.5) and (3.6) imply that

Prp(Q) < @p(1)=Clo) + F([ Q5 0),
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where the quantity F(||Q| e, ¢) depends only on ||Q||s, and g. The latter inequality
was obtained for M, meromorphic in the neighborhood of the unit disc. However,
this inequality can also be extended to arbitrary measures u satisfying conditions
(1)—(3) of Theorem 0.1.

Indeed, assume that condition (2) of Theorem 0.1 is fulfilled. According to
Remark 1 following after Theorem 2.1 in [26],

(3.7) ligl / log[Im M (re*)]o(e*) sin? 0 df = /log[lm M(e9)]o(e®) sin? 8 d6.

Now, given any J and M-function M (z) associated to it, there is a natural approx-
imating family of M-functions meromorphic in a neighborhood of the closure of the
unit disc D. The next result is proved in [13], Lemma 8.3.

Lemma 3.1. Let M, be the M-function of a probability measure . obeying
condition (1) of Theorem 0.1. Define
(3.8) MY (2)=r*M,(rz) for 0<r<l1.

Then, there is a family of probability measures p'™ such that M(T):Mﬂm.
The poles of M) are given by

T %j
where we consider only those j for which |s,|<r. Thus if condition (3) of Theo-
rem 0.1 is satisfied then > f(5¢; (1)) is a continuous function of 7 whose limit is
equal to ] f(s;), as 711. Moreover, the convergence M, (z)— M, (z) is uniform
on compact subsets of the upper half of D, which means that the coefficients of the
Jacobi matrices must converge. Thus for any NV,

Py.o(Q) =lim P, (Q(r)) SEgl‘DQ(M(”%C(QHF(HQIIGS,@)
=%, (1) - Cla)+F(IQlles, 0)-
Therefore supy P, o(Q)<oo which guarantees (0.6).

Conversely, suppose that the conditions (0.6) and (0.5) are fulfilled. We would
like to establish that

1/ sin @ . 9
(39) ;[Wlog{m} s (9)Qd9<00
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Definition. Let v and u be finite Borel measures on a compact Hausdorff space
X. The entropy S(v|p) of v relative to u is defined by

(3.10)

d
— / log <—V) dv, if v is absolutely continuous with respect to p,
Swim=4 Jx ®\du

—00, otherwise.

The following result is proved in the paper of Simon and Killip, [13], Corol-
lary 5.3.

Lemma 3.2. The entropy S(v|w) is weakly upper semi-continuous in u, that

i, if o —s 1, then
S| p) > limsup S(v| o).
n—oo

Let us use the fact that the formulae (2.12) are valid at least for finite rank
operators A and B. Suppose now that A and B are arbitrary compact selfadjoint
operators such that (0.5) and (0.6) hold. It is then clear that the right-hand side
of (2.12) is finite. Now let the sequences of operators A,, and B,, converge to A and
B in &3 so that

/ 1260 A,,(20)+ B, (20))?0(e?®) do — [ |27 A(20)+ B(26)0(e™) db,

as n—oo. Let Q,=SA,+A4,5"+B,, J,=5+5*4+Q, and 1,(8)=(E;,_(d)eo, o),
where § is an arbitrary Borel set. Since (J,,—2)~! converges to (J—z)~! uniformly
on compact subsets of the upper half-plane we obtain that u,, is weakly convergent
to 1,

fn —5 11, as n— 00,

Applying Lemma 3.2 we obtain that if dv=p(e*) sin?0df and p is the spectral
measure of J, then

S| p) > —o0.

This is exactly what is needed for (3.9).

In order to complete the proof we only have to show that (0.6) and (0.5) imply
condition (3) of Theorem 0.1. This can be done by a simple trick (see [17]) whose
essence is that one first has to consider a finite sum Z?:l f(5¢;), prove that this
sum can be approximated by the corresponding sum for A, and B, and then let
P—00.
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