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The highest smoothness of the Green
function implies the highest density of a set

Vladimir V. Andrievskii

Abstract. We investigate local properties of the Green function of the complement of a
compact set EC0,1] with respect to the extended complex plane. We demonstrate that if the
Green function satisfies the %—H(’jlder condition locally at the origin, then the density of E at 0,
in terms of logarithmic capacity, is the same as that of the whole interval [0, 1].

1. Definitions and main results

Let EC[0,1] be a compact set with positive (logarithmic) capacity cap(E)>0.
We consider F as a set in the complex plane C and use notions of potential theory
in the plane (see [4] and [5}).

Let Q:=C\E, where C:={co}UC is the extended complex plane. Denote by
ga(z)=ga(z,0), 24, the Green function of @ with pole at co. In what follows
we assume that 0 is a regular point of F, i.e., go(2) extends continuously to 0 and

go (0) =0.
The monotonicity of the Green function yields

90(z) = ge\p,y(2), z€C\[0,1],

that is, if £ has the “highest density” at 0, then gq has the “highest smoothness”
at the origin. In particular

go(—1) = ge\j0, (=) > %\/F, 0<r<l.

In this regard, we would like to explore properties of E whose Green function has
the “highest smoothness” at 0, that is, of F conforming to the following condition

golz) <clz|'?, c¢=const>0, z€C,
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which is known to be the same as

(1.1) lim sup gal~r) < oo

r—0 \/7—“

(cf. [5, Corollary I11.1.10]). Various sufficient conditions for (1.1) in terms of metric
properties of E are stated in [6], where the reader can also find further references.

There are compact sets EC[0,1] of linear Lebesgue measure 0 with property
(1.1) (see e.g. [6, Corollary 5.2]), hence (1.1) may hold, though the set E is not
dense at 0 in terms of linear measure. On the contrary, our first result states that if
E satisfies (1.1) then its density in a small neighborhood of 0, measured in terms of
logarithmic capacity, is arbitrary close to the density of [0, 1] in that neighborhood.

Theorem 1. The condition (1.1) implies

- cap(EN[0,7]) _ 1

1.2 i .
(1.2) P»O r 4

Recall that cap([0,7])=1r for any r>0.

The converse of Theorem 1 is slightly weaker.

Theorem 2. If E satisfies (1.2), then

(1.3) lim 927)

1
Jim =0, O<e<y.

2

The connection between properties (1.1), (1.2) and (1.3) is quite delicate. For
example, even a slight alteration of (1.1) can lead to the violation of (1.2). As an
illustration of this phenomenon we formulate

Theorem 3. There exists a reqular compact set EC|0,1] such that (1.3) holds
and

(1.4) lin inf S22E00.7D

r—0 T

=0.

The next two sections contain preliminaries for the proofs. Then come the
proofs of Theorems 1-3.

2. Notation

We shall use ¢, ¢y, cg,..., and di,ds,..., to denote positive constants. These
constants may be either absolute or they may depend on E depending on the con-
text. We may use the same symbol for different constants if this does not lead to
confusion.
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By |F| we denote the linear Lebesgue measure of a measurable subset F'CR of
the real line R.
The set D:={z:]z|<1} is the unit disk, T=0D is the unit circle and for 2, zp €
C, z1#£29, let
[21, 22] == {tza+(1—1)z1: 0 <t <1}

be the interval between these points.
For the notions of logarithmic potential theory see e.g. [4] or [5]. In what follows
wr denotes the equilibrium measure of E. We shall frequently use the relation

1 1
(2.1) gg(z):logm—/falogmdug(t), ze.

We define a generalized curve to be a union of finitely many locally rectifiable
Jordan curves. A Borel measurable function p>0 on C is called a metric if

0<ae)= [ /C 0(2)? dm., < oo,

where dm, stands for the 2-dimensional Lebesgue measure on C. For a family
I'={v} of some generalized curves let

L,(T'):=inf / o(2) |dz|

yel

{if the latter integral does not exist for some y€I', then we define the integral to be
infinity}. The quantity

(2.2) m(T) :=inf

where the infimum is taken with respect to all metrics g, is called the module of
the family I'. We use the properties of m(I') such as conformal invariance and
comparison principle discussed in [2]. When applying results of [2] recall also that
the module of a ring domain is 27 times the module of the family of curves separating
its boundary components.

3. Preliminaries and auxiliary conformal mappings

In this section we carry out some auxiliary constructions for the direct proof of
Theorem 1 and the proof of Theorem 2. We are interested in the behavior of go(2)
for small |z|, which depends on the geometry of E in a neighborhood of 0. In order
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to avoid complications outside 0, we simplify E by constructing a regular compact
set E such that ECEC|0,1] and

tim i PPN g aPEO0 1)),

r—0 r r—0 r

This construction is done as follows. We use the well-known inequality

o0 (immm) < (i) (o)

which holds for any compact sets £'C[0,1] and E”C[0,1] (see [4, p. 130]). Let
l=ri>re>..., lim, o 7 =0, be a sequence of positive numbers such that

fim ing CPEO0D) - cap(EN[0, 7))
r—+0 r n—>00 T

Without loss of generality we may assume that the inequality

—1 —1
(log 1 ) <&} g,i= (log —L——>
Tay1) 0 cap(EN[0,7,])

holds for all neN:={1,2,...}. Next, for any n€N we construct a compact set En
which consists of a finite number of intervals and satisfies the following conditions:
rn€E,,

(3.2) (i1, 7] D En D EN[ragt, ),
(3.3) cap(Eyn) < cap(EN[rpy1, rn])l/(1+€i).
Let

E:={0}U (,Q En)

The monotonicity of the capacity and (3.1) yield

(1o m) < (1o *a> (10, )‘1

<(1+e2)epted =(1+262)e,.

We thus get
cap(ENI[0,7,]) <eap(ENI0, rn])HQsi.
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Since
2
lim cap(EN[0,r,]) " =1,
7—>00

we obtain
EN E
(34)  limips SREDOT) g cap(BO0 W) g, cap(BOO, 7))
r—0 r n—00 Tn n—o00 Tn

Since
9o, 5(—1) Sgal-1), >0,
as a consequence of all these we can see that in the proof of Theorem 1 we may
assume

(3.5) E—E:{o}u(U aj,b; )

where 1=b1 >a1>bs>a2>..., and

(3.6) lim a, = hm b, =0.

n—r0o0 — 00

Let either E consist of a finite number of intervals or conform to the conditions
(3.5)—(3.6). In both cases we write

U la;,0;], 1=b >a;>by>..>an=0,

where N is either finite or oo.
Denote by H:={z:Im z>0} the upper half-plane and consider the function

(3.7 ryi=osp [ 1o6e=0) dusl0)-ogcan() ), seT
Tt is analytic in H and has the following obvious properties (cf. (2.1)):
() =em > 1, zeH,
Im f(z) = e%a(®) sin/Earg(z—C) dup(()>0, zeH.

Moreover, f can be extended from H continuously to H such that

lf(z)|=1, z€eE,
f(z)=e92() > 1, zeR, z>1,
f(z)=—e99® <1, zeR, z<-1.
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Next, for any 1<n<N -1 and b,1 <z <x3<a,, we have

flx2)
f(z1)

—arg eXp/ log 2t dur(¢)=0,
E 1’1*(

arg

that is,
arg f(x1) =arg f(z2), bny1 <z <22 <ap.

Our next objective is to prove that f is univalent in H. We shall use the
following result. Let v22—1, 2€C\[-1, 1], be the analytic function defined in a
neighborhood of infinity as

V21 :z(l—iJr...).

222

Lemma 1. For any —1<z<1 and z€H,

(3.8) uz(z) :=Re

=X

Proof. First, we consider the particular case when z=0. For z€H, let h{z):=
vVz22—1 /z. Then h(z)?=1—1/2%. Thus, the image of the upper half-plane under h*
is disjoint from (—oo, 1]. Thus the image of H under h lies entirely in the left half-
plane or entirely in the right half-plane. On taking account of the determination of
the square root for large z, it follows that the real part of A is always positive.

In the general case, —1<z <1, a continuity argument allows us to restrict our
proof of (3.8) to the case z2#1. Consider a linear fractional transformation of H
onto itself given by

(= . and z= Ci
—zz+1 z(+1
A straightforward calculation shows that
Uy (Z) = ———UD(C) s
Vi-z?

from which (3.8} follows. [

Using the reflection principle we can extend f to a function analytic in C\[0, 1]
by the formula o
f(z):=f(2), z€C\H,

and consider the function

hw):=———=, weD,
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where J is a linear transformation of the Joukowski mapping, namely

Tw) = (% (w%) +1),

which maps the unit disk D onto C\[0, 1]. Note that the inverse mapping is defined
as follows
w=J"12)=(22—1)—/(2z—-1)2—-1, 2eC\[0,1].

Therefore, for 26 H and w=J"'(2)€D, we obtain

wh'(w) :
) w(log h(w))

- ( /E log(J () —C) duE«))I

e [ 2©
- J()/E —

e

L W
-/ ”22_” *1>duE<<).

B (22—1)—(2( -1

According to (3.8) for w under consideration we obtain

wh’/(w)

Re )

>0.

Because of the symmetry and the maximum principle for harmonic functions we
have

wh’(w)
h(w)
It means that A is a conformal mapping of D onto a starlike domain (cf. [3, p. 42]).
Hence, f is univalent and maps C\[0,1] onto a (with respect to co) starlike
domain C\ K (see Figure 1) with the following properties: C\ K is symmetric with
respect to the real line R and coincides with the exterior of the unit disk with 2N —2
slits, i.e.,

Re

>0, weD.

N-1
HNK = (ﬁmf))u( U [ewj,rjewj]),

J=1
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K

Figure 1. The set K.
where 7;>1, 0<6 <02 <...<7, and in the case N =c0,

lim ¢; =7 and lim r;=1
j—o0 j—oo

Note that

F(yrna) = | <hmf(z)> 6", 7jet%]

bjr1<z<a; \z—zx

and any point of [e? ,r;€"%) has exactly two preimages. Besides,

B = <£€n}11f(z)> ~TNH.

TeE \z—>zx

There is a close connection between the capacities of the compact sets K and
E, namely

1

(3.9) cap(E) = Teap(K)"

Indeed, let we C\D, z=J(1/w) and £=f(z). Now

cap(EF) = lim

z%oo‘ E‘ W—00 ’

and cap(K)= lim 1£
w

where the first relation follows from the definition (3.7) of f, and the second one
follows from the fact that w+¢ is the canonical conformal map w—®(w) of C\D
onto C\ K (note that log |®~!(w)]| is the Green function of C\ K with pole at infinity
and apply (2.1)). Thus,

1
cap(E) cap(K) = lim i‘ =71

w—o0 | W
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X-f‘.‘
.|J|Ih ‘l

Figure 2. The domain Xg.

For r>1 we have
(1+7)?
4r
(see [4, Section 5.2, p. 135]), therefore, (3.9), the equality cap(rD)=r and the
monotonicity of the capacity imply

cap(DU[1,7]) =

sup
1<j<N-1

(3.10) <cap(F) <

4 sup 7y 2
J i
1<§<N-1 (1+1<J$3]I\),_1”"3)

In addition to the conformal map f we introduce the conformal map
F(z):=n+ilog f(z), =z€H,

which maps H onto X g bounded by the set (see Figure 2)
N-1
0Xg ={€=’L"UI’020}U{<:TF+7:’U2U20}U[0,7T]U( U {uj,uj+ivj]>,
j=1
where
u;=m—0;, wv;=logr;,

and in the case N=00,
lim u; = lim v; =0.
J—o0 Jj—oo
If we extend F continuously to the real line, we obtain the following boundary
correspondence:
(3.11) F(O) ZO, F([bj+1, (lj]) = [Uj, ’le+’L"Uj] and gQ(Z) :ImF(z), z€ ﬁ\E,

where the last equality is a consequence of (2.1).
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4. Proof of Theorem 1

We assume (cf. (3.5)—(3.6)) that E consists of countably many closed intervals
accumulating at the origin, i.e.,

E={0}u <Q[aj,bj]>.

Let F:H—Xg be the conformal mapping defined in the previous section. The
regularity of 0€ E implies

(4.1) jli’rgo u; :jl_iglo v; =0.

We divide the proof of Theorem 1 into several steps.

Step 1. First we prove that much more can be established than (4.1) if the
Green function satisfies the ;-Hélder condition: if (1.1) is true then

(4.2) lim 2 =0,

We carry out the proof by contradiction. Assume that (4.2) is false, i.e., there
exists a constant 0<c<1 and a (monotone) sequence of natural numbers {jx}3> ;
such that

Uy, 2 Uy, 2ug,,, <uj, and  wy <1

Let the domain X* 2% be bounded by the set

0" ={({=iv:v>0}U{{=n+iv:v>0}U[0, W]U(U [ujk,ujk(1+ic)]>.
k=1

Consider the auxiliary conformal mapping F*: H— >* normalized by the conditions
F*(o0)=00, F*(0)=0 and F*(1)=m.
Comparing modules of the quadrilaterals
Yr(0,7m,00, F(—r)) and X*(0,7, 00, F(—r)),
for r>0 we have

(1.3) [P (=) < |F(=r)| = ga(—r) <ei/r
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Figure 3.

Let T'(t,£*), t>0, be the family of all cross-cuts of %* which join in X* its
boundary intervals [0, it] and {{=m+iv:v>0}. Let

Fip=T(ug, 57, T y= (F) 7 (T = (v F*(3) €T, o), 1= —(F) (i, ).

For k large enough we have r7 <1. Therefore, for such k by (4.3) and [2, Chapter 11,

(1.2) and (2.10)] the module of the family T} , satisfies the inequalities

16{1+7* )\ ! 4 —1
(4.4) (T} ) > (log M) Sl <log V2 ) .
» Tjk Uy,

Our next objective is to estimate (for large k) the quantity m(I'1 x) from above.
For meN let

Smi={C €T {C—uj,, | <uy,, (V14c® —1) and 0<arg(C—wuy,, ) < 37}

Consider the metric (see Figure 3, where the shaded area is the support of g1y for
k=3)

k:
01.5(¢):= [ if(ez*\<g15m) and uj, <[{| <,

0, elsewhere.
We claim that for any ye€I'y g,
™
(4.5) / 01,1(¢) |d¢| > log o
Y Tk
Indeed, let
R(a,b):={C:a<|¢|<b}, O0<a<b<oco.
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For v€TI'y denote by v(a,b)CyNR(a,b), uj, <a<b<m, a subarc of v joining in
R(a, b) its boundary circular components. Note that in Figure 3, each y€I'y ; must
make at least one crossing of each ring within the shaded area (even after removing
the quarter-disks). Taking into account the obvious inequalities

fonic®
v(a,b) lC! N

with wuj,:=7 we have (cf. Figure 3)

/ d—C] >log é,
vap) € a

k

¢ )
el > o p— I
/yQLk(OI d‘mzzjl(/y(ujmmjmm) K| +/y(uﬂ'm 1+c2 ug,, ;) ‘C\
k
2 ___u;j& = —ﬂ-‘
2;<10gm o ¢1+—c2ujm> O

which proves (4.5).
Recalling the definition of the module of a family of curves (2.2), we have

i< (e, [ enai@iact) [f ma(crime

(4.6) Y
T T T
<[log —) (—log———Ak>,
< Uy, 2 Ty,
where
k k 2
dmy m(V1+c? —1)
. = —_— > —_ 7 — i
(4.7) Ay, mz_:l//m i _m; T cok

Comparing (4.4) and (4.6), we obtain Ag<cs, which contradicts (4.7). This contra-
diction proves (4.2).

Step I1. We can rewrite (4.2) as follows: for

(4.8) Wy, = 8Sup ﬁ, keN,
Jzk Uj
we have
(4.9 lim wy=0 and v; <wgug, j>k.

k—o0
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Let
l=ry>ry>.., lim r,=0,
n—ro0

be the sequence of real numbers from the definition of the set E in (3.2)-(3.3).
Recall that we assume that F=F. By splitting some of the intervals [a;,b;] into
two subintervals we may assume without loss of generality that r,=b;_ with some
JIn’s. For neN let

B, = EN[0,7,] :{o}u(@ [aj,bj])

Denote by F,,: H—X g _ the corresponding conformal mapping from Section 3, where

g, :{C:in:nEO}U{C:Hin:nZO}U[O,W]U( U [£j7£j+inj]>

J=in

and
r>& >&6>..., lim fj:O, 1; > 0.
j‘—}OO

Note that £; and n; depend also on n. The mapping F,, adheres to the following
boundary correspondence:

F(0)=0, Fu(ra)=n, Fp(oo)=00 and F,(bj;1)=F,(a;)=¢; for j> jn.

Step II. Our next aim is to prove that if go satisfies (1.1), then

(4.10) lim sup n; =0.

n0 > g,
To this end for any fixed n and j>j, consider the set
V=Yg, Nlin,&+in), 0<n<n;,

consisting of a finite number of open intervals. Denote by T's ; the family of all
these sets, i.e.,

Do g = {vn}to<n<n,

By the comparison principle for the module of I'; ; we have

(4.11) m(Ta,;) = m{{[in, §+inlto<y<y,) = Z_J = 7;_]
J
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U

v

Figure 4. A typical element of I'j ;.

Next we estimate from above the module of the family T ;:=FoF 71 (T'y ;) (see
Figure 4). Without loss of generality we may assume w; < %, and consider the metric

02.5(1) = lw—u;|7t, if weXg and wiu; <|w—u;| <u; 1+w?,
NACHR
0, elsewhere,

where w; are the numbers from (4.8)—(4.9). We claim that for any ye€T% ,

1 1
(412) /y QQJ‘(’U}) {dw| Z § log —’IE

To demonstrate the validity of (4.12), for w;u; <r<R<u; we define (see Figure 5)

B(r,R):=ZgnN <{w:u+iv:uj—R§u§uj—r and 0 <v <wju;}

U{w:uj+gel9:r2+w]2-u]2-§92§R2+wj2-u?, 0<0<7w—arcsin —/ })
o
For vel'y ; and R<2r we have

R—r R—r
[ onswldul> >
YN B(r,R) w?u? + R? \/57“

>11 R
30gr,
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B(r.R)

IR T N
NI )

. + =
uj—R [} u T

H'J e

Figure 5. The domain B(r, R).

from which (4.12) immediately follows.
Recalling the definition of module (2.2), we obtain

) 1\ 2 S 1\? 1+w]
(4.13) m(I'y;) <9{ log o 02 (w)* dm,, =97 | log — ) log —.
J C j

W wj

Comparing (4.11) and (4.13) we get for large n
1\
sup 7; < 1072 <log —) .
JZin Wiy,
Therefore, (4.10) follows directly from (4.9).
Step IV. According to (3.10) we have

cap(EN[0, 1)) N 1

T ~ dsup;s, €W

Hence, by (4.10),
1
lim cap(EN[0,r,])

00 Tn 4’

This and (3.4) yield (1.2), and that concludes the proof of Theorem 1

231
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5. Proof of Theorem 2

hg(r):= sup (i_ca—piE_t)

0<t<r

), 0<r<l,

where Ey:=FEN[0,¢].
Note that hg(r) is a nonnegative, monotonically increasing (with respect to r)
function which satisfies

(5.1) 713{}1(1) hg(r)=0.
Below we derive estimates for g in terms of hg in the case of a “simple” £ and
then extend this estimate to the arbitrary E under consideration. It is important to
emphasize that it is the uniformity of these estimates with respect to the function
hg which makes it possible to deduce the result for arbitrary E.

Let E consist of a finite number (greater than one} of intervals, i.e.,

N
E:U[aj7bj]a O=ay <bn<..<a1<by=1.
j=1

Let ap<r=rp<bg, k=1,...,N—1, be an arbitrary but fixed number. Denote by
F,:H—Xg, the appropriate conformal mapping from Section 3, where

N-1
0Xg, ={(=1in:n>0}U{{=m+in:n>0}U[0, W]U< U [ﬁj,€j+im}>-
j=k

Note that £; and 7; depend on r. Taking r sufficiently close to ax we can ensure
sm<&<m. Let
* e .
= ST
According to (3.10) we have

"

1 cap(E,) el
- < <
1 helns = (lremi)?
which implies
4
(5.2) 7 < 1og(A(T)+ A(r)?2—1 ), A(r):= L+ 4hp(r)

T 1—4hE(7“).
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Since hg (1)<}, inequality (5.2) yields

(5.3) ne <log(A(1)++/A(1)2—1) =:d, = d1 (E).

The set
Yo i =XpNiv,ugtiv], 0<v <y,

consists of a finite number of open intervals. Let I's 3, denote the family of all these
sets, i.e.,

U's k= {7 }o<v<u,-
By the comparison principle for the module of I's ; we have

) ) v
(5.4) m(Is ) > m{[iv, ug +iv] ocv<o, ) = u—’;
Let Ty . :=F,oF~!(T'33). Consider the metric

1, if(eXp, and 0<Im{<ni+1,

03.0(C) = {

0, elsewhere.

Since for any vel'y
[ ear©1ac =1,
.

we have

(55) miT50) < [ ean(e) ame = (ot
Combining (5.3)-(5.5) we obtain

(5.6) Z—ZSW(d1+1)=1d2=d2(E)~

For small 7}, (5.6) can be improved in the following manner. If 77} < i’ﬂ’, then

—1
Vk ™
5.7 — <277| lo .
(57) u (gM)
Indeed, setting

05.0(C) 1= { C—&[", if C€Sp, and nf <[C~&| < /E (ML),

g, elsewhere,
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and repeating word for word the proof of (4.13), we obtain

-1
m( ék)<971'<10g €k> ——fk—n:—) <277r(10g o ) )

The above inequality and (5.4) yield (5.7).
Let 'y 5, O<az <1, z€E, be the family of all cross-cuts of H which join (—o0, 0]
with [z,1]. Then

1
(5.8) mTye) < log —6

(see [2, Chapter II, (1.2) and (2.10)]). For the module of the family T} ,:=F(T'4,;)
we have
7r

VITE F(z)

Indeed, in the nontrivial case when \/14ds F(z)<m, we compare I’y , with the
family I' of all circular cross-cuts of the domain

2
(5.9) () > = log

{wzgewl 1+d2 F(z) < p<w and 0<6<%7r}

to obtain
m(Fil,x) 2 m(r) =

2 T
og —F/————.
& It d F(x)

Comparison of (5.8) and (5.9) gives

1
(5.10) 2 <dyF(2)?, ds=ds(E) ::7?—2(1+d§).

Let xp€ E be any point satisfying 0<xp<1 and

1 w/8 _ —7/8\2
he(zo) < Z<e—~——e—>~

e7r/8+ev7r/8

Such an z( exists because of (5.1). For any k such that ap<xzp we can choose
r=r,<zo in the above discussion. Hence, by (5.2), nf <}
(5.2), (5.7) and (5.10), for such k we have

-1 -1
(5.11) Yk <ot <log 2—7T—) <2 <10g %) ,
n

Uk k k

w. Taking into account



The highest smoothness of the Green function implies the highest density of a set 235

where
By, ::log<Ak+\/Aﬁ—1), Ak::A(2d3ui)

and where we have used that
r=r< d3F(’I“k)2 < 2d3ui,

since for r sufficiently close to ap we obtain F(ry)}<2F(ax)=2uy.
Let

o Zo 1/2

w=(22)"
A*(u) == A(2d3u?), 0 <u <wy,
B*(u) :=log(A* (u)++/A* (u)>—1), 0<u<up,

0 <u<ug,

C™ (u) —277r<10g2B*( )> ,
vo :=max{C" (ugp), da},
C(u)::{ C*(u), U 0<u<ug,

Vo, fu<u<m.

The function C(u) is monotonically increasing and it satisfies

lim C(u)=0 and —%<C(u), k=1,...,N—1.

u—0 Uk

For an arbitrary but fixed 0<€<% denote by u. any point such that 0<w,. <ug
and

§=0,:= 1 arctan C'(u, ) < <%
i 2’

Fix any 0<r. <1 such that F(—r.)<e "u.. Let I's ., 0<r<1, be the family of all
cross-cuts of H which join (—oo, —r] with [0, 1]. Comparing I's , with the family I'™*
of all circular cross-cuts of the domain

{w=0e:r<p<land 0<O<7}
we have

(5.12) m(Ts.,) = m(") = > log *,

™ r
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Next we estimate from above the module of the family T :=F(T'5,). Let
tR:=F(~r), 0<r<r.. Consider the metrics

: T
e, if Re”™/2 <w| <ue and 78 Cargw < 3,
0t (w):={ w|(1-20)x < fw] <ue guw<?
0, elsewhere,
eﬂ/2
Q;:‘;(’Uj): ma lfU]eEE and 0<Imw§voyr+us COS(S?{'/eﬂ/2’
0, elsewhere,

05, (w) :=max{eg . (w), 657 (w)}.

By a straightforward calculation we obtain that for any y€I'y

/ 05+ (w) [dw| > 1.

Therefore,

i) < [[ o< ([ g @Pdmat [[ o002 dm,
C JC ’ JC
2

(5.13)
1
~ o (es )

where

T
— . /2 e o Ue €08 6\ 1—26
di=da(B,2):=loge u5+u§cosz<§7r7r (Uo’fH— e /2 5 -

Comparing (5.12) and (5.13) we get
(5.14) R<efar(1=9)/2,

and in view of (3.11) this proves (1.3) for E consisting of a finite number of intervals.
Let now £ be an arbitrary compact set in the statement of Theorem 2, and let

0o E, DEyD...,

be a sequence of sets each of which consists of a finite number of intervals, 1€ F,,,
ECE,,

{(5.15) T}E&Q(‘:\Eﬂ(”’) =go(-r), r>0.
Note that ge\ g, satisfies (5.14). Since
he(r) > hg, (r),
careful analysis of constants and (5.15) show that, as before, we have
(5.16) ga(—r)<ehr(=9/2  q<r<r,
with d4 and 7. which depend only on ¢ and E. Thus, (1.3) follows from (5.16). [
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6. Proof of Theorem 3

By [6, Chapter II, Theorem 2.2] (see also [1, Corollary 1]), for any compact set
ECJ0,1] with positive capacity we have

0<r<l,

1 2
6 gﬂ(_r)gclﬁexp(@ / te(o) dw) 1ogcap2(E),

where 0z (z):=[[0, 2]\ E|, 0<z<1, is the linear measure of [0, z]\ E.
In order to prove Theorem 3, it is enough to find two monotonic sequences of
positive numbers {a;}52, and {b;}32, converging to 0 such that for the set

E::{O}u(@[aj,bjo

=1

the following properties hold

—1 sl 2
(6.2) }1_1’)1’(1) <log ;) /r 5 dz =0,
(6.3) lim bir1 g,
J—eo Gy

Indeed, in this case (1.3) follows from (6.2) and (6.1). Moreover, since

cap(EN[0, a5]) _ bjia
a; - 4aj ’

(6.3) implies (1.4).
With the choice

291

bj:=2"% ", a;:=bj11log(j+1), jEN,

both properties (6.2) and (6.3) hold. (3
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