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Abstract. We prove an addition formula for Jacobi functions r ~' ~) (~17_~-~ )  analogous 
to the known addition formula for Jacobi polynomials. We exploit the positivity of the coefficients 
in the addition formula by giving the following application. We prove that the product of two 
Jacobi functions of the same argument has a nonnegative Fourier-Jacobi transform. This implies 
that the convolution structure associated to the inverse Fourier-Jacobi transform is positive. 

1. Introduction 

For  fixed a, fl Jacobi functions qg] "'a) form a continuous orthogonal system 
on R + with respect to the measure (sh t) 2"+1 (ch t) 2p+1 dr, generalizing the cosines 
~,o(z-a/2'-l/2)(t)=cos2t. In [3], [6], [10] the authors developed harmonic analysis 
for Jacobi function expansions, including a positivity result for the convolution 
product  associated to these expansions. 

The main result of  the present paper is a similar posifivity result for the dual 
case, i.e. the convolution product associated to the inverse Fourier-Jacobi trans- 
form ( a ~ f l ~ - + ) .  Equivalently, we prove that the Fourier-Jacobi transform 
a(21, 22, .)  of  the product t~-~qg~P)(t)q~a)(t), (21,22ER) is nonnegative. By using 
group theoretic considerations FLENSTED-JENSEN [4] and MIZONY [14] proved this 
result for special values of  ct, ft. A similar positivity result of  the dual convolution 
structure associated to Jacobi polynomial expansions was first proved by 
GASPER [8]. 

KOORNWINDER [13] applied the addition formula for Jacobi polynomials in 
order to obtain a new proof  of the just mentioned result of Gasper's. Here we 
follow a similar approach and, therefore, we have first to derive the addition formula 
for Jacobi functions. This addition formula is an expansion of 

cp(x~,P)(Arc ch[ch q .  ch t2 + re ir sh q -  sh t21) 
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in terms of certain orthogonal polynomials Rk, t in the two variables r cos ~0 and 
r 2, with expansion coefficients 

(~, ~) (~, #) (~, #) 7k, t ()o)q~,k,~(tOq~,k,Z(t2), 

where the functions .-~"a) are "associated Jacobi functions" and 7~k~ia)(2)_-->0 for "/*2, k, l 

real 2. The nonnegativity of  the coefficients 7k,~ is of  crucial importance for our 
applications of the addition formula. 

In a companion paper [7] we give another application of the addition formula 
for Jacobi functions. It presents a new approach to certain results of Kostant 's 
dealing with a characterization of  those values of  2 for which a spherical function 
q~z on a given noncompact rank one symmetric space is positive definite. 

In a forthcoming paper we will derive similar results as in the present paper 
for the functions 

(1.1) tp~,~(y, 0 ) :=  (e ~~ ch y)~p~'~)(y), 

which were studied by the first author [4], [5] in the cases e = 0 ,  1, 2 . . . .  by an inter- 
pretation as spherical functions. 

2. The addition formula for Jacobi functions: statement of the result 

The Jacobi function ~p~'P) is given (cf. [6]) by 

(2.1) qg(~='#)(t) := 2Fl (~(~+f l+  1 +i2), { (~q - f l+ l - - i 2 ) ;  a w l ;  - ( s h  t)2), 

On writing 

(2.2) 

we have 

(2.3) 

tER, 2EC, ~ E C ~ { - N } ,  flEC. 

R~'a)(z) := eFI(--p, p+c~+fl+ 1; ~ + 1 ;  1(1 --z)) 

q~"a) (t) = R ('' p) tch 2t). (i~,--~t-- f l--  1 ) /2  k xi 

If  ~, f l > - l ,  nCZ+ then R~.~'P)(x) is a polynomial of  degree n in x satisfying 
R~'P)(1) = 1 and the orthogonality relations 

(2.4) 

F ( ~ + f l + 2 )  
f l  I R~'P)(x)R~.~'P)(x)(1-x)~(l+x)adx = (rc.c~,P))-a6m,. 

2 ~ + p + l r ( ~ + l ) r ( f l + l )  - 

where 

(2.5) 7rr = ( 2 n + ~ + f l +  1)(~+ 1) , (~+f l+2) ,  
(n+c~+fl+ 1)(fl+ 1),n! 
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Here (a), : = a ( a +  1)... ( a + k -  1). Note that P(~',a)(x)=((a+ 1),/n!)R~'O)(x) is the 
classical Jacobi polynomial (of. SZEG6 [16]). 

We shall need a family R,,("a)m of  orthogonal polynomials on 

t2 := {(x, y)~R21x ~ <= y <= 1} 

with respect to the normalized measure 

F(~-I-fl+ (5/2)) ( 1 - y ) ~ ( y - x 2 ) ~ d x d y .  
(2.6) am,,~(x, y) = r(~+l)r(~+l)r(1/2) 

These polynomials can be defined in terms of  Jacobi polynomials by 

(2.7) Rt~'t~)(x y) := R(m~'~+n-m+(~/~))(2y--1)y(n-m)/2Rt~'~m)(y-~/2X), 
n,  m ,~ ~ 

n, rn~Z, n >= m >= O and ~ , f l > - l .  

The orthogonality relations are given by 

(2.8) f f  Rt"~) tx  y)R~k~'~')(x, y) dm~,~(x, y) = r=(,,,)~-ax ~ .~ 'n ,m  7 t"n,  k U ' m , l ~  n , m  x , 

where 

(2.9) 

n(~,~) = ( 2 n - - 2 m + 2 f l +  1 ) ( n + m + ~ t + f l + ( 3 / 2 ) ) ( ~ +  1)~(2fl+ 2) ,_m(~+fl+(5/2)) ,  
(n- -  m + 2fl + l )(n + ~ + fl + ( 3/2)) m ! (n - -m) !  (/~+(3/2)). 

of. [12, w 3] and [13, w 2]. 
If  ~ l - 1  or i l l - 1  then the measure dm~,p(x,y)  weakly tends to a measure 

with support on one of  the edges of the orthogonality region. An easy calculation 
shows: 
(2.10) ~r~-I'P) Rt-I'~)tX 1) = 6 ntP'~)R~P'~tX~ 

J~2n l~2n ~,-~J 

0 if m ~ n--2. 

The associated Jacobi functions ~o (',a) are defined in terms of  Jacobi functions by 2, k, l 

(2.12) "("~)tt~ ---- (sh t)k+l(ch t)k-lgo?+k+l'~+k'l)(t), ' 41 ,~ . , k , l k  / 

k, l E Z ,  k>=l>=O. 

Now we can state the addition theorem: 

Theorem 2.1. Let  ~ > f l >  1 ----s then 

(2.13) q~[~, p~ (A ( -  q ,  t2, r, ~)) = 

x, ~ x'k ~,(~,~)r2~,~(~,~)r t ~(~,p)r  t ~ ( ~ - p - ~  t~-(u2))R(~-/~-lp-t~/~,rrcos,/, r~), 
= . ~ . ' k = O ~ l = O  ~ 'k , l  \ ) ~ t ~ A , k ,  l k  l } ~ l ~ , ~ , k , l k  2J  k , l  ' k , l  " ~, t y ~  
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where tER, 2EC, rE[0, 1], q~E[0, ~], 

(2.14) A(q, t2, r, ~) := Arcch (]ch q ch t~+rd ~ sh q sh td), 

(2.15) 7k~iP)(2) = 

_ (1 /2(~+f l+  1 + i2))k(1/2(~+fl+ 1 -- i2))k(1/2(~--fl+ 1 + i2)), (1/2(~--fl+ 1 -- i2))Z 
(~+ 1)k+l(e+ 1)k+Z 

Furthermore, the double series in (2.13) converges absolutely, uniformly for (q, t2, r, ~b) 
in compact subsets of R2• 1]• re]. 

Remark2.2. If e = f l > - + ,  r = l  or ~ > f l = - ~ ,  q~=0, n then (2.13) still 
holds. In view of (2.10), (2.11) it then degenerates to a single series. The two cases 
are related by the quadratic transformation 

(2.16) @a~, -(1/2))(2t) = rp~' =)(t), 

cf. [10, (2.8)]. A further degeneracy in the addition formula occurs if e = f l =  1 
2 '  

r = l ,  q~=0 or n. Then (2.13) has only two terms at the right hand side. 
Our addition formula was earlier proved by WHITTAKER & WATSON [18, w 15.71] 

in the case e = f l = 0  and by HENRICI [9, (80)] in the case e=fl .  A group theoretic 
derivation in the case e=flE{0,  1 T . . . .  } was given by VILENKIN [17, Chap. 10, w 3.5]. 

Corollary 2.3. Let 2EC, ~ > f l >  1 Then ,,(,,P)_>o for all k , l  iff - - ' ~ "  I k ,  l - - ~  

2ERui[--So, SolVa {d=i(e+fl+ l)}, where So:=min { e + f l + l ,  ~ - f l + l } .  

Proof Use that 

({(O~+fl+l+i2))k('~(Ct+fl+l i2))k k - - l l  _ = / / j = o  ~ ((~t +fl  + j  + 1)2 + 2=), 

and similarly with fl, k replaced by - f l ,  I. [] 

3. Proof of the addition formula for Jacobi functions 

The proof we will give below is analogous to the proof  of  the addition formula 
for Jacobi polynomials in [12]. The main difficulty compared to the Jacobi poly- 
nomial case is the convergence proof  of  the series in (2.13). 

Fix ~, fl such that e > f l >  - +  and let dffl,,p(r, tp) be the measure on [0, 1] • n] 
such that 

(3.1) f 2 f 2 f ( r c o s  O, r2)dr~,.p(r, O) = f f a f ( x ,  Y) dm,-B-,.~-(,12)(x, Y) 
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for all continuous functions f on f2 (cf. (2.6)). For /~EC and tl, t2ER we have 
the product formula (cf. [6, (4.1)]): 

(3.2) R~t~,P)(ch 2tl)R(~'a)(ch 2t~) = f 2  f oR(~,P)(ch 2A(fi, tz, r, ~k)) drh~,p(r, ~k). 

Lemma 3.1. Let k>=l>=O, k, 1EZ. Then 

(3.3) f2 fo P' (ch 2A (tx, t~, r, ~k)) R(k~,F a-1,/~--(1/2)) ( r  COS ~,  r 2) dF~/ct ' fl (r ,  ~/) 

(-- 1)k+'(--#)k(-- p--//),(#+C~+//+ 1)k(#+~Z+ 1), 
(c~+ 1)k+l(c~+ 1)k+l 

• (sh ta sh tz) k+z (ch q ch ' ~k-to(,+k+l,a+k--O (ch 2q) 

X R~ +k+l'#+k-l) (ch 2tz). 

Proof Apply Lemma 4.1 in [12] and observe that formula (4.7) in [12] can 
immediately be generalized to the case of noninteger n. Finally apply the product 
formula (3.2). [] 

The functions (r, ~l)--~R(k~,tB--l'lJ-(ll~))(rcos ~1, r 2) (k, IEZ, k>=l>=O) form a com- 
plete orthogonal basis of the Hilbert space L2([0, 1]• zt],drh,,a). The lemma 
gives the "Fourier" coefficients of (~,a) c Ru ( h 2A(q,  t2, r, $)) with respect to this 
basis. The corresponding expansion with t 1 replaced by - q ,  and # by 1 ( i 2 _  ~ - / / -  1) 
and with substitution of  (2.3) and (2.12) shows that, for fixed ta, t2, 2, ~,//, (2.13) 
holds in L~-sense with respect to the measure drh,, a. 

The absolute and uniform convergence of (2.13) will follow from a general 
result for expansions of C=-functions f ( x ,  y) in terms of the polynomials 

~ , P )  (x, y) R("P)(x y) (see Theorem 3.6 below). First we need estimates for --n,m 
n , m  " .  , 

as n--- oo. 

L e m m a  3.2 .  I f  > 1 > n>_m>_O xZ<=y<=l g=f l+- f f=0 ,  n, mE Z, and then 
R ('' P) (x v~ -< 1 

n , m  ~ , . r ]  - -  �9 

Proof For fixedn, m, ~, / /with we have 

(3.4) R(m a'll+n-m+(t/2)) (2y-- 1) : ~ '=0  clR(t ~ . . . .  )(2y-- 1) 

with q=>0, cf. ASKEY & GASPER [1, Theorems ! and 2]. Now using that 

(3.5) Rn_ m(B'*g)(y-(l/2)x)[ <R(a'a)tD:-n-m , , =  1 if //__->--{, x 2<=y 

(cf. SZEG6 [16, Theorem 7.32.1]), and 

[Rt (~ (2y-- l)y("-m)/2[ <- IRt (~ . . . .  )(2.1 - 1) l("-m)/~[ ---- 1 
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(cf. SZEG6 [16, Theorem 7.2]), we obtain for c~=>fl+~-_->0 and x2~=y<=l that 

IR~,~,;J)(x, Y)I = I~'~n=0 c, R} ~ . . . .  )(2y-- 1) y("-m)/2R~a_'~)(y-O/2) x)[ 

.< ~,m C R (~ = /-.~l=0 t t (2y--1)y~"-mj/21 <= ~'l=0-m Ct = 1, 

where the last equality is obtained by putting y = l  in (3.4), [] 
The inequality proved above was already announced in [11, (5.2)], however 

with slightly incorrect conditions on ~ and ft. 

Lemma3.3. For each ~ , f l > - I  there exists x>=O such that 

(3.6) R(~,P)r y )= d ) (n  ~) as n ~ o o  ~ n ~ m  \ , 

uniformly for  m E {0, 1 . . . . .  n} and (x, y) C I2. 

Proof  For c~=>fl+~-=>0 the result follows from the previous lemma. In the 
1 case ~_-> Ifl+-~ 1, f l< - T  we reproduce the proof  of Lemma 3.2 with (3.5) replaced by 

R(a'a)(v-(1/2)'~a,-m ,., ~j = r as n - - m  ~oo, 

uniformly on (2 (cf. SZEG6 [16, Theorem 7.32.1]). In order to handle the case 
~<[ f l++[  we use the recurrence relation 

(c~+ 1 ) ( n + m + ~ + f l +  3-~R(~'~)r y) 

---- ( m + ~ + l ) ( n + ~ + f l +  3-]Rt'+a,a)r y ) - - m ( n + f l +  gllhR('+l'a)n-l,m - l~ - ' n ' '  r Y), 

which follows from ERD~LYI [2, 10.8(35)]. Iteration of  this identity reduces the 
problem to the case and the desired estimate follows. [] 

Next we introduce the partial differential operator 

D (~'r := (1--x 3) +4x(1 - -y )  OxOy 
(3.7) 

0 3 
+4y(1 --y) -~y2 -- (2~ +2 f l+  4)x ~ -  +(2- -  (4~ + 4fl + 10)y) ~ y .  

Lemma 3.4. For f ,  gs  we have 

(3.8) f f  ~ (D(~,a)f)g dm,,p = f r o  T(D(~,P)g) dm,,p. 

Proof  Use integration by parts. If  ~, fl are not too small then the vanishing 
of  the stock terms is clear and (3.8) follows. The case of general ~, f l : ~ - I  then 
follows by analytic continuation of (3.8) with respect to ~ and ft. [] 

Lemma 3.5. 

(3,9) D~'a)R~,~,'~a)(x, y) = --(n+m)(n+m+2c~+2fl+3)R~,~,~)(x, y). 
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Proof. It is clear from (2.7) and (2.8) that R(~,P)t~- y) is the polynomial with. ~ n ,  m ~-~ '  

"highest" term const,  x n - m y  m which is obtained by orthogonalization of  the se- 
quence 1, x, y, x 2, xy, y2, x a, x2y . . . .  with respect to the measure dm~, # (x, y). Formula 
(3.7) implies that 

(3.10) D(~'a~(xk-ly t) = - ( k + l ) ( k + l + 2 ~ + 2 f l + 3 ) x k - t y Z + " l o w e r  '' terms. 

Application of (3.8) and (3.10) yields: 

f f a D  ',#)R(', mx  .,,. ~ , y ) xk - t y  I dm~,p(x, y) 

= R'.:,.")(x, y)D t'p) (xk- ty  l) dm,,p (x, y) = 0 

if k < n  or k=n ,  l<m.  Formula (3.10) also implies that 

D (~' P)R~,~,'m p) (x,y) = - (n + m) (n + m + 2~ + 2fl + 3) R,t;;, p) (x, y) +" lower"  terms. 

Now (3.9) follows by orthogonality. [] 

For  fELl( f2 ,  dm~,a) let 

(3.11) f ^ (n ,  m) := f f ~  f ( x ,  y)R(.~,d)(x, y) dm~, a (x, y). 

As a consequence of  Lemmas 3.3, 3.4 and 3.5 and the estimate xt~,a)= " 'B j / / I  

d~(n 2t'l+ztaJ+2) as n-~oo, uniformly in m, we conclude: 

Theorem 3.6. Let fEC~(K2). Then for  each z > 0  we have 

(3.12) f ^ (n ,  m) = O(n -~) as n ~oo,  

uniformly in m. Furthermore, the series 

(3.13) .~~ 0 .~ ,=  0 f ^ (n ,  ,,,~,,(~' P)P(~, ~ ) r  ,~,, m ~ "n, m ,",  Y) 

converges absolutely, uniformly on I2, and its sum equals f (x, y). I f  f depends on an 
additional parameter s E S  such that, for  each kEZ+,  (D("a))kf is uniformly bounded 
on f 2 X S  then the estimate (3.12) and the absolute convergence o f  (3.13) are also 
uniform on S. 

Application of  this theorem to the series (2.13) completes the proof  of Theorem 
2.1. The cases c t = f l > - { ,  r = l  and ~ > f l =  1 - - f ,  q~=0, 7r can be proved in an 
analogous but more simple way. 
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4. Positivity of the convolution structure associated with the inverse 
Fourier-Jacobi transform 

The Fourier-Jacobi t ransform J~,p of order (~, fl), ~ > - 1 ,  is defined by 

(4.1) (~r a f )  (2) = f ^ (2) :-= f Z  f ( t )  go(a ",l*) (t) dye, ~ (t), 
where 
(4.2) d/t,, p (t) := (2n)- (1/~) 2a,  + p + 1) (sh t) 2~ + 1 (ch t) ~p + 1 dt 

and f belongs to the class C O of  even C=-functions of  compact  support on R. 
1 Then the inverse Fourier transform ~ - 1  is given by We now assume that  c ~ f l _  -> --~. ~.p 

(4.3) f(t) = fo  f ^ (2) g0(a "' a) (t) dv,,p (2), 

where 
(4.4) dv~,~()0 := (27~) -(1/2~/c~,~()01-zd;~, and 

2~+a+ l-iZ F(i2)F(o~ + 1) 
(4.5) % a (2) := F((a  + fl + 1 + i2)/2) F ((~-- fl + 1 + i2)/2) " 

Then J~,a extends to an isomorphism of  

L~([0, oo), d#,,a ) onto L~([0, o~), dv~,e). 

See [3] or [10] for a proof  of  these facts. 
In [6] we calculated the kernel g~,a(tl, t~, ta) such that  

(4.6) f2fof(A(q,t~,r,~,))dr~,a(r,O)= fo f(tz)K,,a(tl ,  t2, ta)dlG, a(ta) 

for all f~L~o ~ ([0, co), dye, a), cf. (2.14), (3.1) and (4.2) for the definitions of A, 
drh~,a, d/z~,a, respectively. Using this we defined the convolution of  two functions 

f ,  g C L ~ frO, ~),  a ~ ,  a) by 

(4.7) ( f*  g)(tl) := fof  f(t~)g(ta) K='a(q' t2, ta) dl4,a(t2)dY,,lj(ta). 

Notice that  we can also write this in the form 

(4.8) (f* g)(tl)= So fo ) f2 fo r, O))dr~,,,(r, ~) d/~,,(t2). 

F rom now on let e and ~ be fixed such that  a > ] ? > - ~ .  For  convenience, 
in subsequent formulas all indices ~, fl will be dropped. 

Remember (cf. [3, Lemma 14]) that  there exists K > 0  such that  

(4.9) [(p~(t)I <_-- K ( l + t ) e  (llm;tl-(~+l~+l))t for all 2 ( C ,  tE[O, oo). 
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Also, if l< -p<2  and FELP([0, co), d#) then F ^ exists and is continuous on [0, ~) 
(cf. [6, Lemma 3.1]) and 

(4.10) ][F*g[12 -<- const. Ilglle for all gELZ([0, r162 dp), 

cf. [6, Theorem 5.5]. 
Let ( f ig)  denote the inner product of  f,  g~L2([0, ~), dp). 

Lemma4.1. Let l< -p<2  and FELP([O,~),d#). Then F^(2)=>0 Jbr all 
2~[0, co) iff 
(4.11) (F*glg)>-O for all gEC~. 

Proof. Since or is a L2-isomorphism and (F .g )  ̂  = F  ̂  .g^ we have 

(4.12) ( F .  gig) = f o F^(2) lg^(2)[2 dv(2) 

for all gEL2([0, ~), dp). If F ^ =>0 then (4.11) follows. On the other hand assume 
(4.11) for all gEC o. By continuity, (4.11) holds for all g~LZ([0, ~), dp). Hence, 
in view of (4.12), F ^ ~0. [] 

In the proof of Lemma 4.3 we need an approximate identity with the following 
properties: 

Lemma 4.2. There is a family {w, le>0} of functions on R such that 
(i) w~CC o, supp (w~)=[--e, e], w~=>O; 
0i) fo w~(t)dl~( t ) = l ;  
(iii) w~" =>0; 
(iv) lim~0 w~ (2)= 1, uniformly for 2 in compact subsets of R. 

Proof. Choose vEC o suchthat  supp ( v ) c [ - 1 ,  1], v_->0 and fo v(t)dlt(t)-=l. 
Just as in [3, Lemma 16] define 

(she- l t l2 ,+l(che- l t ]Z ,+l  
v~(t) := e -1 [ ~ )  I . ~ )  v(e-lt)" 

Then v~ECo, supp (v~)c[-e ,  e], v~@O, f7 v~(t) d#( t )=l  and v[ is real-valued. 
Also v~" (2)-~ 1 as e;0, uniformly for 2 in compact subsets of R (cf. [3, Lemma 
160)]). Now let w,:=v~/2.v~/2. Then (i) follows from (4.8) (observe that 
s u p p ( f . g ) c s u p p ( f ) + s u p p ( g ) )  and (ii), (iii), (iv) are immediately obtained 
from ws 2. (Put 2=i (c~+f l+ l )  for the proof of (ii).) [] 

Lemma 4.3. Let 1 <=p<2. Let FCLP([0, ~), dp) such that F is essentially 
bounded in some neighbourhood of 0 and F ^ >=0. Then F ^ ELl([0, ~), dr) and 

(4.13) r( t )  = f o r  ^ (2) ~0~ (t) dv (2) 

almost everywhere on [0, ~). 
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Proof. For some e0>0 we have A:=ess  suP0~_t~_~ ~ [F(t)l<oo. Let w~ be as 
in Lemma4.2. Then }(F[w~)[<=A fo w ~ ( t ) d g ( t ) = A  if e<=e0. It follows from the 
proof of [6, Theorem 3.2] that ( F I w 3 = f o  F ^ (4)w~ (4) dr(4).  Hence, since F ^ _->0 
and w~'=>0, we have for each M > 0  and e~e0: 

fo ~ F^(,~) ~'(4) (4) f~~ (4) ~'(4) d (4) (F{ w dv = < F ^ w v = w~) <-_ A. 

It follows from condition (iv) in Lemma4.2 that fMoF^(4)dv(4)<=A for each 
M > 0 .  Hence F ^ (La([0, ~), dr). Finally, formula (4.13) is implied by the fact that 

f o  E(t)g(t)d.(t)= f0 = F^(4)g^(4)dv(4)= f ?  (f~ F^(4)q~a( t )dv(4) )g( t )d#( t )  

foral l  gCC o �9 [] 
See STEIN • WEISS [15, f o r .  1.26] for an analogous result for Fourier trans- 

forms. 
Let 41, 42ER. By (4.9) the function t~-,-~o~l(t)q~a~(t ) is in L p for a l l p > l .  Let 

(4.14) a0-x, 4., ~.) := (~1~o~) ~(4~) ~- f o  q&~(t)~Pa~(t)~Pa3(t) d#(t) .  

Theorem 4.4. The function a is nonnegative on R 3. 

Proof. In view of Lemma 4.1 we have to prove that for all g E C  o 

(~Pz:~Px2 * gig) ~ 0. 

The left hand side of the above inequality equals 

(4.15) fo ~fo ~fo ~ g(tl)g(t2)f~21(ts)~0).2(t3)K(tl, tg~, t3)d~l(tl)d~l(t2)d~l(t3). 
We first compute, using (4.6), 

f o  w~ (ta) cp;~2 (ta) K(tl ,  t2, t3) d# (ta) 

= f~ fo  ~o~(A(q, t~, r, r t~, r, r ~). 

We can now use the addition formula (2.13) for cpx~ and cpx~, and the orthogonality 
relations (2.8) for j~(~-#-1,#-(1/2)) to find that this is equal to k,l 

Z k =  0 Zk=O ~lk, I (41) ]?k,l (42) q~21 ,k .l (-- tl) ~021, k,l (t2) ~022. k,l (-- tl) r ~,l (t2), 

with absolute convergence, uniformly on compact subsets of (tl, t2)ER ~. Now 
inserting in (4.15) and using that q~,k, t ( - - t )=(--1)k+tq&,k, t ( t )  is real-valued we 
find that 

Zk=0 ZI=0 ~k,l(41)~k,l( 4 g(s)~oal, k,t(s)q&,.k,t(s)dlt( s 2 >= O, 

since yk,~(4)~0 if 4ER. [] 
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Corollary 4.5.. For real 21, 22 the function 23~-~a(21, 22, 23) is in LI([O, co), dv) 
and 

(4.16) ~0al (t) ~P~2 (t) = f o  a (2:, 23, 23) (t) dv (25). 

Proof. Use Lemma 4.3. [] 

Putting t = 0 in (4.16) we get 
s 

(4.17) a (21,22, 23) dv (23) = 1. 

For X, ~kEL:([0, ~), dr) define the dual convolution product 

(4.18) (zo0)(20 :=  fofo 22, 

Application of  (4.17) and (4.16) yields 

Corollary 4.6. I f  Z, ~kEL:([0, ~), dv) then Z o I~ELI([0, oo), dv), 

(4.19) Ilzo~01l: -<- I lzl l : l l0h 
and 
(4.20) J , . J  (zo ~0) = J,7~ (Z) J , . J  ($). 

Furthermore, i f  Z, $>=0 then ZO$=>0. 

By standard arguments (cf. for instance [6, Theor. 5.4]), we get 

Corollary 4.7. I f  l<-p, q, r<= o~ and p - : + q - a - l = r - : ,  then for zELP(dv), 
$ ELq(dv), the function Z ~ ~k is well-defined and satisfies 

Ilzo ~ll, <= Ilzll~ ll0ll q. 

Remark 4.8. The previous results also hold if ~ = f l > - - {  or a > f l =  : 2 '  

They can be derived in the same way. 

Remark 4.9. There is a striking contrast between the convolution product (4.7) 
and the dual convolution product (4.18). It follows from (4.9) and (4.14) that the 
kernel a(2:,  22, 23) is analytic on 

{(2:, 22,23) E C3 [ Jim 2:1 + IIm 221+ IIm 231 < ~ + 13 + 1 }. 

In particular, for fixed 2:, 2~ER, the function 2 3 ~ a ( 2 : ,  22,23) is analytic for 
Jim 231<~+fl+1.  Hence, the restriction of  this function to R has no compact 
support, in contrast with the function t3~-~K(q, t2, t3). Also, if X, ~EL:([0, co), dr) 
then Xo~k is analytic on the strip {2EC I I I m 2 l < ~ + f l + l } .  

Remark 4.10. The kernel a(r, s, t) was explicitly calculated by MmONY [14] 
1 and ~ = 0  or -~. It would be of interest to generalize his results to for f l = - - r  

the case of general c~ (fl= - ~ ) ,  or even to general (~, fl). 
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Remark 4.11. By using a group theoretic interpretation of  the functions (1.1) 
the following extension of our results was proved in [4, w 12]: 

Let ~EZ +, fl>=O. Let D~,p denote the finite set {2=iqEiRl5mEZ + such that 
ty/I = f l - a - 1 - 2 r e > O } .  Then 

(4.21) ~o[]' t~)(t) q0(~ ' a)(t) = f ]  a (21, 22, 23) ,,(t) dr(23) 

+ Z~.CD.,, a (2z, 2z, 2,) q~'  a)(t)II ~0~, a)[l~-2 
with 

a (21,22, 2s) ~ 0 for 2z, 22,23E R w D,.a. 

In a forthcoming paper we will prove this result by analytic methods, also for non- 
integer a. 

Remark 4.12. Let ~ f l ~  -T,1 7 ~ 6 ~  -Tz and Y + 6 < ~ + f l .  Then 
@z',P)ELP([0, ~o),dpr, a ) for somep,  l<=p<2 (cf. (4.9))and 

(4,22) b~,p; ~,~ (20, 2) :_ f o  (p[~' a)(t) ~o?,~)(t) dpr, o (t) 

is well-defined for 2, 20ER. As another application of  the addition formula it is 
possible to prove the nonnegativity of  b,,a;~,~(20, 2) under certain conditions for 
a, fl, ;~, 6 (cf. the analogous results in Theorem 4.2 and Corollary 6.1 of [13]). In 
particular, we obtain that 

(4.23) = f o  b,,o;r,~(20, 2)qo?'~)(t)dr(2) 

with nonnegative b for ~ > v - > 3 ~  - Z  and - "  t - - - - - -  g ~  

(4.24) ~p]~, B)(t ) = 23/2 ~- (1/~) b,, e, - - (1/'2) (20, 2) COS 2t dt 

with nonnegative b for a~fl>= 2, -~). However, much stronger 
results on the nonnegativity of b (as conjectured in [4, w 12]) can be obtained by using 
the addition formula for the functions (1.1). Therefore, we postpone a more detailed 
discussion of this problem to our subsequent paper. 
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