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O. Introduction 

The purpose of this paper  is to present a sufficient condition on a linear partial 
differential operator  P with holomorphic coefficients which guarantees that any 
formal power series solution of  the equation P u = O  is convergent. We also show 
that  the obstruction against the solvability of  the equation P u = f  is the same in 
the convergent power series category and in the formal power series category. 
This problem was discussed by Oshima [4] for first order operators. A related prob- 
lem was discussed by Baouendi--Sj6strand [1] for a class of  degenerate elliptic 
equations. I t  is rather surprising that  such a basic problem has rarely been investi- 
gated for partial differential equations in spite of  the fact that  the comparison 
between formal power series solutions and convergent ones has been one of the 
central problems in the theory of ordinary differential equations. 

We hope that  the result in this paper  can be used to obtain a more elementary 
proof  of  the fact that  for holonomic systems with regular singularities, the co- 
homology groups, considered for formal power series and for convergent power 
series, are the same. This was proved by Kash iwara- -Kawai  [3]. 

In this paper  we use the following notation: 

z = (zl . . . .  , z,)EC", c~ = (cq . . . . .  e,)EN", N = {0, 1, 2 . . . .  }, l~l -- = 1 + . . - + ~ , ,  

f__0/. 
z"  = z~'  . . .  z~,', Oz" = tOz l . J  "'" ~.Oz,) " 

Let a , p ( z ) ,  c~,/?CN", ]el=l/~[<=m be holomorphic in a neighborhood of  0EC" 
and let 

0rpJ 
(0.1) P = ~'l~l=l~'l-~m a~p(z )  z~ Oz p �9 
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Throughout  this paper we shall assume that 

(0.2) ,~l,l=l~l=,,a,a(0)z'~'~ # 0, zE C " \ 0 ,  

and we observe that this condition is not invariant under changes of  coordinates 
but  depends on the choice of  the hermitian metric on the tangent vector space 
of  C n at the origin. The object of the paper is to study how P acts on various 
power series. 

Let St, I6N, be the space of  homogeneous polynomials of degree 1 and let 

d~,={u=z~T= 0 u~, uj~ sj} be the ring of  formal power series. Let r be the 
ring of  those power series which converge in some neighborhood of  0. We denote 
by m the maximal ideal of 00, Note that m k (resp. mkO0) consists of  convergent (resp. 
formal) power series of the form U=z~j~k Uj, ujESj. The main result is 

Theorem 0.1. There exists k0EN, such that P induces isomorphisms mk---m k, 

Irtk~o~mk~o for all k>=ko . 

In the next section we prove this result, and in Section 2 we prove several 
comparison theorems by using this theorem. 

1. Proof of  Theorem 0.1. 

As a preliminary we first recall how convergence of  formal power series can 
be expressed in terms of Sobolev norms. Let Hm(S ~n-1) denote the m-th order 
Sobolev space on the unit-sphere S2n-x= {zECn; [z[=l} and let C(S ~"-1) denote 
the space of continuous functions on S 2"-1. We denote by IlUlLm, Ilu[Ic the correspond- 
ing norms. I f  u is holomorphic in a neighborhood of {Iz]<=l}, we write IlUllm, IlUllc 
for the corresponding norms of  Uls~._~. From now on m shall be fixed to be equal 
to the order of  P. 

Lemma 1.1. For every e>0 ,  there exists a constant C , > 0  such that 

(1.1) 

(1.2) 

for all uES~, I~N. 

IlUllm <= c~(1 +~)t}lUHo 

I]UJlc ~ C~(1 +eYllu]lo 

Proof. I f  uESt, then u is harmonic, and we have 

:,.,=1+, ,=,+.., w>. U(2) 
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tbr ] z l < l + e  , if K~ is the Poisson kernel for the ball Iz]<=l+e and d# is the 
standard measure on the sphere [ w l = l + ~ .  Since K~(z, w) is smooth when re- 
stricted to ]zl=l ,  I w l = l + e ,  the inequalities (1.1), (1.2) follow easily. 

Corollary 1.2. Let II 11 denote any of  the norms II [In, II II0, II tic" Then the formal 
power series u = ~ . = o u j , u i E S  j, converges for  Iz[<l i f  and only i f  for  every 
5>0, there exists C~>0 such that 

IFu~ll -<- C , ( l+e)  j, jEN.  

o%al 
Now let Po = ~l~l=lat-~m a~a(O)z~--~ - and put 

z (1.3) L = ~ j = l  J Ozj " 

For  every j6{1 . . . .  , n} we have a unique decomposition at every point of S2"-a: 

0 
(1.4) Ozj = c t i L +  v j,  

where ctj is a smooth function and vj is a smooth holomorphic vector field, tangent 
to S ~"-1. (By "holomorphic vector field" we mean a complex vector field of the 

0 
form ~aj f f~z  ' even if the coefficients aj are not holomorphic.) 

We write L = M - i N ,  where M, N are real vector fields. Then 

1 1 . [x a a )  (1.5) M = -~-(L+E) = - ~ Z i = a  J - ~ i + Y , - ~ - ~  

z=(z  x . . . . .  z,), z~=x i+ iy  j. Moreover, N = I ( ~ , - - L )  is tangent to if $2,-1. 

I f  u is a holomorphic function defined near a point on S ~"-1, then from Eu=O 
2 

we obtain that Lu=- - .Nu  and hence that 

0 2 N u + v j u  on S 2"-1 
(1.6) Oz i u = ~j-{- . 

0 
From Po we obtain a differential operator Qo on S ~"-1 by replacing every ~ by 

[~j 2 N +  vj]. Clearly, 

(1 .7 )  ( e o u ) l s '  "-1 = O o ( u l s , - - 1 )  

for every holomorphic function u. The condition (0.2) means that S 2"-1 is non- 
characteristic with respect to Po and it follows easily that the principal symbol of 



86 Masaki Kashiwara, Takahiro Kawai and Johannes Sj/Sstrand 

Qo is nonvanishing on the (real) characteristic variety of the induced Cauchy--  

Riemann equations 0s2,_~u=0. In other words, the operator u ~-~ (Qou, Os,,-lU) 
is elliptic, So we have the a priori estimate 

(1.8) ]lull~ ~= C(llQoullo+llOs~.-~ull.,-l+llullo), uE Hm(SZ"-x). 

Since N is a first order operator, we get (with a larger constant C) 

(1.9) ,~my=~ ( 2  N)m-Ju j<  C(l]Qou]]o+l]U],o) ' - =  

when uEHm(S gn-1) and Os,._~u=O. Now, if uES k we have 

( 2  Nlm-Ju = L~,-Ju =km-Ju, 

so (1.9) gives 

(1.10) Z~.=okm-Jllullj ~: C(llPoullo+llullo), uE S~. 

(Here we recall that all Sobolev norms are taken over S 2n-I. If k is sufficiently 
large, we can absorb the term IIuIIo to  the left hand side, and we conctude that 
Po: Sk--"Sk is injective. Since Sk is finite-dimensional, Po is also surjective as a map 
from S k to Sk when k is large enough.) 

Summing up, we have the following 

Lemma 1.3. There exist constants ko>=O, C0~l  such that P0: Sk~ Sk is bijective 
for k>=ko and such that 

(1.11) .~.=okm-Jllullj ~ ColIPoulIo, UE Sk, k >- ko. 

Now let a~a(z) be the functions in (0.1) and write c ~ = ~ f = 0 a ~ a ,  a~aESj. 
After a change of  variables of  the form z~-~2z, 2>0,  (which does not change P0) 
we may assume that aLp(z ) are all bounded by some constant, independent of 
a, fl, j when [z I<=1. Let 

�9 0~P~ 
(1.12) PJ = Zl~t=lal~_m a~P(z)Z'~zp : Sk ~ Sk+j. 

Then, if Co is sufficiently large, we have 

(1.13) [IPjulFo<= Co[[Ullm, UE Sk, kEN. 

We first claim that P: mk~o-~m*~)o is injective when k>=ko for ko given by 
Lemma 1.3. In fact, let u=Y~T~_kU j, ujESj, and assume that Pu=O. Then 

PoUk--'O, PoUk+I+PlUk = O, Pouk+2+PlUk+I+P~u, = 0 .... 

and Lemma 1.3 shows that uk=O, U,+I=0 . . . . .  The injectivity of P on m k follows 
trivially. 
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Next  we show tha t  P :  mkt~0~mkr is surjective for  k>=ko . Let 

V:-~j~_kV.iEll"tk~o . The fo rmal  solut ion of  Pu=v is then U=2j~kUj, where 
uj are determined recursively by 

j - -1  (1.14) PoUj'q-,~l=O Pj - lUl  = Vj,j 

so it is clear tha t  P:  mkd~0~mkd o is surjective. 
N o w  let v~mkr SO tha t  I[vjllo<=D j+l for  some constant  D. Let  C > 0  be so 

large tha t  C>=2C~D, C>=4C~. (Recall tha t  C0_>l). Then f rom Pouk=v k we get 

Ilukllm <= CollVkllo <- Co Dk +l <- ck+  l" 
Assume tha t  

Iludlm --< CI+1, k --<-- l < j. 

Then f rom (1.14), (1.13) and  L e m m a  1.3, we get 

IlUjll m Co(DI+I+ j--1 ( C(C j -  1) )  <-- Z t = o  Co C~+1) <= C~ D~+I-+ ( C - - l )  

1 "+1 1 C~(DJ+I+2C j) ~ - ~ C  J +-~C j+~= Cj+L 

By iteration we get Ilujllm~C j+~ for  all j .  Hence  Corol lary  1.2 shows tha t  u 
is convergent .  This completes  the p r o o f  o f  T h e o r e m  0.1. 

2. Some Consequences 

First  note  tha t  P natural ly  induces opera tors  

e k  : 11l k .-~ 1TI. k 

and 
e ; :  ~ 0 / m  ~ -~  ~ 0 / r n  ~ 

Then we have the following commuta t ive  d iagram:  

0 -~  m k -*  0o  ~ 0 0 / m  k -~  0 

0 -~  m k -*  •0 -~  ~ 0 / i n k  -*  0 .  

Here  the hor izontal  lines are exact, We then get the exact sequence 

(2.1) 0 ~ K e r P ~  ~ K e r P  ~ Ker  P;," ~ Coker  P~ ~ Coker  P ~ Coker  P;,' ~ 0. 
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If  k~ko ,  where k o is given in Theorem 0.1, then P~ is bijective. Hence we have 
K e r P ~ = 0 ,  CokerP~=0 .  From (2.1) we then get K e r P ~ K e r P / , ' ,  CokerP-~  

Coker P~'. Let us write t5 when we consider P as an operator on d~ 0. The argument 
above works for formal power series as well and we get the following compar- 
ison theorem. 

Theorem 2.1. Let P be a linear differential operator which satisfies conditions 
(0.1) and (0.2). Let ko be given by Theorem 0.1. Then we have the isomorphisms 

Ker/~ -~ Ker P ~ Ker P;,', Coker/~ -~ Coker P ~- Coker P;," 

for every k >= ko. 

It will be interesting to examine whether such a comparison theorem holds 

for the pair of  0o and the formal completion along Y, ~x/r,o, where Y is a sub- 

variety of  X = C  n. Here ~x/r=li._m_m~)x/J k, where J is the defining Ideal of Y. As 
one of the simplest cases, we now discuss the case where Y is a nonsingular hyper- 
surface. Our argument also works for a nonsingular submanifold Y. The 
needed modification is only that we should deal with some determined systems 
instead of scalar operators in w 1. 

In order to prove such a comparison theorem, we first prepare the following 

Theorem 2.2. Let P be a linear differential operator satisfying the conditions 
(0.1) and (0.2) and let ro be a sufficiently small positive number. Assume that Pu=v, 
where uEOo, VEOo and v converges for [zI<r, 0<r<=r0 . Then uEOo and u converges 
for Izl<r. 

Proof First note that Theorem 0.1 asserts that uEO0. On the other hand, since 
S 2"-1 is noncharacteristic with respect to Po, the spheres {Izi=r} (0<r-<_r0) are 
all noncharacteristic with respect to P for sufficiently small ro. Then by a result 
of  Zerner [5] and Bony--Schapira [2] we find that u extends across all spheres 
{Iz]=r'} ( 0 < r ' < r ) .  Hence u convergeS for Izl<r. Q.E.D. 

Now we denote z=(x ,  y), xEC "-a, yEC, so that Y is defined by y = 0 .  Then, 

~x/~" is nothing but the ring of formal power series in y whose coefficients are 

holomorphic functions in x. More precisely, an element in ~x/r,o, the stalk of  the 

sheaf Cx/r at 0, has the form U=~k=o Uk(X)y k, where Uk(X) are power series which 
converge in some ball {Ix[~=r(u)} independent of k. 

We now assume in addition to (0.2) that 

(2.2) for every uE~0 and kEN, there exists wE~0 such that 

p(yku(x,  y)) = ykw(x, y). 



On a class of linear partial differential equations whose formal solutions always converge 89 

This means that  we can write 

(2.3) P = 2 , , = ,  ,,,-,, x,y,-~ y-ff-~ 

where Am_ , is of  o r d e r ~ _ m - v .  We write 

(2.4) A j (x, Z . o . .  

where (after a change of  variables: z,-~2z) we may assume that (2.4) converges 

[ O} " Am_~k are of the same for Ix[<=l. lyl<_-l. The operators Qk X , ~ x  x =z~,=0 o 

type as (0.1) and satisfy (0.2) if we view them as operators on C n-1. Moreover, the 
principal part  of  Qk is independent of  k. Hence, if we choose Qk as P in Theorem 
2.2, Theorem 2.2 holds with ro independent of  k. 

Lemma 2.3. / f  uE~0, vE~)x/r,o, and Pu=v holds, then uE~x/r,o. 

Proof. I t  follows f rom the definition of  gx/r,o that v has the form z~=0 Vk(X)Y k, 
where Vk(X) converges for Ixl<r, 0< r~ _ r  0. Write u as ~k=oUk(X)y k, where u k 
is a formal power series in (n--1)-variables. Then we get 

so that 

(2.5) 

Xv%o XT=o Z;,=o AJ._, x, -gx u~, (k')v/§ = Y~Lo v,(x)y ~ 

zSLo Z~, +~=~ (k')'A,_~ [x, ~  uk,(x) = ~(x). 

Suppose that  we have already shown that uk, converges for ]x l<r  when k'<k.  
Then (2.5) shows that  QkUk(X)converges for ]xl<r and Theorem 2.2 combined 
with the previous remark on Qk entails that u k also converges for IxI<r. Repeating 

this argument we see that  uE~x/~,,o, Q.E.D. 
Now we find the following 

Theorem 2.4. Assume that a linear differential operator P satisfies conditions 
(0.1), (0.2) and (2.2). Let fix/r: ~x/r,o~x/r,o be given by P. Then there are natural 
isomorphisms 

(2.6) Ker  P -~ Ker  P -~ Ker fix/r, 

(2.7) Coker P-~ Coker fi -~ Coker fix/r. 
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Proof. We have K e r P c K e r _ # x / r ~ K e r l  6 and since K e r / 5 = K e r P ,  (2,6) 
is clear. To prove (2.7) we consider the natural maps 

~o/ pd) ~ ^ . ^ b " .  o/Pgo 

We shall show that b is bijective. By Theorem 2.1 we know that ba is surjective. 
Thus b is surjective. On the other hand, the injectivity of b follows from Lemma 
2.3 and the proof is complete. Q.E.D. 

Remark. The following example shows that (2.7) does not hold in general 
without the condition (2.2) even if P satisfies conditions (0.1) and (0.2). 

Example2.5. Let P=x-ff--~r+(x+y)-~ ' (x, yEC). Then b: Coker.#x/y-~ 

Coker P is not injective. 

Proof. Since P satisfies conditions (0.1) and (0.2), Ker P = K e r / s  holds (The- 
orem 2.1). Therefore, in order to show that b is not injective, it suffices to show that 

there exists uEt~o which does not belong to ~x/r,o such that P u = f  holds for some 

fEdx/r,o. I n  fact, if b is injective, we c~n find vE(gx/r,o such that P v = f  holds for 
such f .  Then P(u--v)=O holds, and hence u - v  is a convergent power series 

in (x, y). Hence u itself must be contained in ~x/r, o. This is a contradiction. Therefore, 
b is not injective. 

We now try to find such u and f.  First choose nonconvergent formal power 
series uo(x ) and ul(x) so that they satisfy 

0 
(2.8) 0--~ u0+ ul = 0. 

Set f0=0.  We define uj (j=>2) and f j  ( j ->l )  successively by setting 3') to be 

the constant term of {x ,-~x+J) uj and u j + l = ( f j - ( x  0 " -b-~-+j) uJl / ( j+ 1)x for 

j ~ l .  Clearly, P u = f  holds in go ~" J dx/r,o and ~ J , z~=0 fjY belongs to ~ = o  uj y 
does not belong to dx/r.o. Thus we have seen that b is not injective. 
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