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1. In troduct ion  - -  S t a t e m e n t  o f  the  ma in  t h e o r e m  

In this paper we develop and study a multidimensional formulation of the 
Grothendieck inequality. The present work is a continuation and expansion of  a 
line begun in [3], where the Grothendeick theorem was proved by exploiting the 
notion of A(2)-uniformizability. The presentation here, however, is entirely self- 
contained and familiarity with [3] is not  required. 

We employ basic notation and facts of  commutative harmonic analysis as 
they are presented and followed in [10]. F, as usual, will be a discrete abelian group 
and G = F  ^ will denote its compact dual group. For  the sake of  simplicity, most 
of  our work will be performed in the framework of | Z2 = ~, the (compact) direct 
product of  Z2, and O Z 2 = ~ ,  its (discrete) dual group, the direct sum of  Z2. 
Throughout,  E={rn}~~ will denote the system of Rademacher functions 
realized as characters in ~ :  The n th Rademacher function r, is defined by 

t'n((.O ) = e ~ ( . ) ,  

for all toE| (={(co(./))7=1=co: c o ( j ) = 0  or 1)}. ~ and ~ will denote the 
N-fold cartesian products of  ~ and ~, respectively. The characters in E 2v, the N-fold 
cartesian product of E =  {r,}, will be designated as (rq . . . . .  ri~,) for all ix, ..., iNEZ +. 
For  F c F ,  B(F)  will denote the Banach algebra of restrictions of  Fourier--Stieltjes 
transforms to F, and A(F)  will be the Banach algebra of restrictions of  Fourier 
transforms to F. That is, 

B(F)  = M(G)^/{I~EM(G): /~ = 0 on F}, 
and 

A(F)  = LI(G)^/{fE La(G): f =  0 on F}. 

* Author was supported partially by NSF Grant MCS 76--07 135, and enjoyed also the 
hospitality and financial support of the Department of Mathematics at Uppsala University. 
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Cv(G) and L~(G), l < = p ~ ,  will be the spaces of functions in C(G) and LP(G), 
respectively, whose spectra lie in F. That is, 

Cv(G) = { fEC(G):  f =  0 on ~ F } ,  
and 

L~.(6) = { fELP(G):  f =  0 on ~ r } .  

We now state the classical Grothendieck inequality that was formulated and 
proved first by A. Grothendieck in [8]. 

Grothendieck's inequality. 

There is a constant K 6 > 0  with the following property. Let A be any bounded 
bilinear form on a Hilbert space H, and let (xl)i and (yj)j be arbitrary sequences 
in the unit ball of H. Let fE  CE,(f22) be any trigonometric polynomial given by 

f (~ l ,  003) = Z i , j  aij ri((oO r j(oo2). 
Then, 

IZ a,jA(x,, yj)[ <= KGIIfII~tIAt[ 

(IIAII --  sup IA(x,y)l/llxllllyl[). 
O#x,  y E H  

Equivalently, let q~EI=((Z+) z) be defined by q~(i, j ) = A ( x ~ ,  y~). Then 

IIq~ll~(E~) <---- K~IIAII. 

We are led to the following: 

Definition 1.1. Let N=>2, and A be an N-linear form on a Hilbert space H. 
A is said to be projectively bounded if there is a constant qa with the following pro- 
perty. Let (x~)i, ..., (X~)i be arbitrary sequences in the unit ball of H. Let fE  Ce~, (O N) 
be any trigonometric polynomial given by 

f (O) l  . . . . .  O)N) = ~ i l  ..... iN a 5  ... iN ril((D1) "-" riN(CON)" 

Then, 

1~,1 ..... iN ai, ...iuA (x~ . . . . .  x/UN)] ~ ~allfll~llAII- 

Equivalently, define ~o E l ~ ((Z + ) N) by 

r (il . . . . .  iN) = A (xll . . . . .  x~,), 

for all /1 . . . .  , iNEZ +. Then 
I[~OIIB(EN) <= r lal lAII .  

Our main purpose here is to characterize within a natural class of  bounded 
multilinear forms on a Hilbert space those which are projectively bounded. 
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Let J>=K>O and N > I  be arbitrary integers. Let 

= {1 . . . . .  J } ,  

and N (S,)~=~ be a sequence of K-subsets (sets containing K elements) of ~ with the 
following properties: 

N 

(1.1) I J S~ = i f ;  
a = l  

(1.2) for each I=<~<-N, 

Also, each S, is enumerated as 

s, (u 
k#cx 

S~ -- (~1, . . . ,  aK)- 

Each S, gives rise to P, ,  a projection from (Z+) J onto (Z+)K: For  i~(Z+)  J, 

P~(i) = (i~ . . . .  , i~K ). 

Next, let q~EI~((Z+) I) and define an N-linear form on 12((z+)K) by 

(1.3)  A~so~z~l,,(xl . . . . .  xN)  = Z , ~ z + ~ ,  ~(i)xl(e,(i))... xN(eN(i)), 
where xl ,  .. . .  XNCI2((z+)K). In the sequel that follows, whenever (S,),= xN is under- 
stood, we shall write A~v,~ for A~s,)g=~,, ; when q~-- 1, we shall write A N. Observe 
that the boundedness of AN, ~ follows from (1.2) and the Schwartz inequality. We 
state it formally and leave the details of  the straightforward proof  (by induction 
on J)  to the reader. 

Lemma 1.2. For any X 1 . . . . .  XNElZ((Z+)r),  

IAN,~(Xa,  . . . ,  xN)]-<-[l~oll~ Ilxl[Im . . .  IIxNIl~. 

Next, we define a new breed of  spectral sets that will play a prominent role 
in the characterization of projectively bounded multilinear forms. Let 

~" = {r,... J ~ ,  ...~,,=~c b 

be a K-fold enumeration of the Rademacher system, and define 

(1.4) E(s,)y= ~ ~--- {(rpl(i ) . . . . .  rPr~(i))}i E (Z +)s C E N. 

Again, whenever ~v (S~),= 1 is given and understood from the context, we shall write 
EN for E~s,)y=~. q~ /=( (Z+)  s is said to be in B(EN) if there is # ~ M ( O  u) so that 
for all iE(Z+) s 

(1.5) ~o (i) = #((re~d) . . . . .  rpN,o)). 

As usual, the norm of  9 in B(FN) is given by 

II~01IB~F~ = inf{[I/~]l:/~ satisfies (1.5)}. 
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We now state the main result. 

Theorem 1.3. AN, ~ is projectively bounded i f  and only i f  (p EB(FN). Moreover, 
for all (pEI=((Z+)J), 

~a,,,~ <--I[~0IIB(E~,)tlaN �9 

The key to the 'only if' direction of Theorem 1.3 is the projective boundedness 
of A N. This is proved in Section 2 where a crucial use is made of the A (2)-uni- 
formizability of E X c  ~K. We also obtain estimates for r/A,, in terms of N, J and 
A(2) uniformizing constants of E zc. The full proof of 1.3 is given in Section 3. An 
important consequence of the characterization of projectively bounded forms is 
the abundance of projectively unbounded multilinear forms which is displayed 
via the proposition that E~s,ly=l is a Sidon set if and only if J=K. 

Some applications are given in the remaining parts of the paper. In Section 5 
we consider a special instance of Th. 1.3 and place in a broader perspective 
Varopoulos' results regarding the failure of multidimensional polynomial inequalities 
for operators on a Hilbert space (see [12] and [13]): The failure of a general multi- 
dimensional Von Neumann inequality follows from the (=,) direction of Th. 1.3. 
whereas the other direction of 1.3 yields polynomial inequalities for operators in 
the Hilbert--Schmidt class. In Section 6, Th. 1.3 is used to produce absolutely 
summing and non absolutely summing operators from CE~, (f2 N) into a Hilbert space. 

We are grateful to Professors N. Varopoulos for stimulating conversations, 
and A. Pelczynski and G. Pisier for useful communications on topics related to 
this work. 

2. A N is projectively bounded 

The key ingredient in the proof of the projective boundedness of A~v is the 
A(2) uniformizability of E1Cc ~K. First, recall that F c F  is a A(p) set for 
l < p < ~ o  if 

L~(G) .= L~.(G). 

Definition 2.1. F c F  is said to be a uniformizable A(2) set if for every 0 < 3 <  1 
there is flF(6)=fl so that whenever ~o~12(F) there is fEL=(G) with the following 
properties: 

(i) f =  ~p on F; 

(ii) [Ifll~ ~/~ll~plh; 

(iii) Ilfl~~ll2 <-- 0il~olh 

(fl~r denotes the restriction of f to ~ F ) .  0 < 6 <  1 and fir(6) are said to be A(2) 
uniformizing constants of F. 
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Recall now that E r is a A(p) set for all l < p < o o  and, in particular, it is a 
A (2) set (see Appendix D in [11], for example). To establish the A (2) uniformizability 
of E x, we observe that we can find a measure pEM(f2 K) so that t1=1 on E K and 
II/~l~(e,,)ll~<=& for any given 0 < 6 < 1  (see Lemma 3.1 in [3] or p. 311 of [2]). 
The best result in this direction, however, was communicated to us by G. Pisier, 
with whose kind permission it is reproduced here. 

Lemma 2.2. (Pisier). Let F={2j} jcF  be a A(p) set for some p > 2 .  Then 
F is a uniformizable A (2) set. 

Proof. Let 0 < 6 < 1  be arbitrary and ~oEl 2. Since F is A(p), there is C,>O 
so that 

(2.2.1) 
Let 

I[Zj ~(J)~'J[I. ~= GIl~oll~. 

hl = { ~O j~O(j)yj 
2 

if 12 6<=--112 
otherwise, 

and h2=~j~o( j )7 j -h l .  A routine estimate yields 

(2.2.2.) [[h2[[= <= a IIz 
Next, write 

h2 = Z ~(J)2j+ P, 

where spectrum ( P ) c  ~ F .  Clearly, 11~l[2<=a. Cpll~ollm ((2.2.1) 
since F is (afort iori)  a A(2) set we can find gEL=r(G) so that 

I lz ~'(J)~J+gl]= <-- a. c~. Cpll~olh 

(6'2 is the A (2) constant of  F). Finally, let 

f = h 1 + ~  ~k(j)Tj+g. 
Observe that 

f(rj) = ~(J), 
2 

Ilfll~ <= I[~oll=(Cp6(m-p)+ Cp. C26), 
and 

where O< 6 

and (2.2.2)), and 

Ill I-~lh ~ a ll~oll (cp+ cp. G )  [] 
Corollary 2.3. 

flEK(6) is 0 ( 1 ) .  

Theorem 2.4. AN=A(s~)L1 is projectively bounded. Moreover, 

qA,, ~ [2fl~K(6)lN/(2--( 1 +6)S), 

satisfying (1+6)J<2 and flEg(6) are uniformizing constants of  E K. 
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Let H be a non-empty subset of {1, . . . ,J}.  Let h~, h2EL~(~'2~), and define 
h ~ h z  to be the convolution of  h~ and ha with respect to the coordinates indexed 

by members of H. If  H = 0 ,  we let h l ~ h a = h l . h  a (ordinary pointwise multiplica- 

tion). We illustrate: Let J = 3 ,  and H = { 1 , 3 } ;  hx~ha~L=(f2 ~) is defined by 

hi n* ha ((01, o2, (0~) = f e2 hi ( (01-  tl , toe, (0~ - t3) ha ( q , (02 , ta) d q d ta . 

Let I<~<=N, and 

k = l  

We define an N-linear form on L = (OK), denoted as A(s,)L~ =AN, in the following 
way: Let f~, ..., fN~L=(f2  K) be arbitrary, and consider f , ,  l<_-aNN, as a function 
in L~(s s) that depends only on the glth, ..., aKth coordinates (recall that S , =  
(al . . . . .  ~:)). For example, f~ is thought to be the function in L = (f2 s) whose value 
at ((01, . . , ,  % )  ~ O ar is fx ((OI 1 . . . . .  (01K). Define 

AN (fl  . . . . .  fN) = f l  * . . .  * fN (0, . 0). 
H~ H N "" ' 

The key observation (whose easy verification is left to the reader) is that 

(2.1) A N ( f 1 ,  - . . ,  fN) = AN(f~ . . . . .  fN) 

( f ~ L ~ ( 1 2 r )  ^ is thought of  as an element in P((Z+) r) in the canonical way: Let 
(wj)~= x be an enumeration of  ~. f is the element in P((Z+)  K) whose value at 
(i~ . . . . .  iK)~(Z+) K is f ( (wq,  ..., w~K)). ). 

We now state and prove an integral representation of As which will subsequently 
be used for the proof of Theorem 2.4. In what follows 0 < 6  satisfying (1 + 3 ) s < 2  
and fl(6)=fl will be A(2) uniformizing constants for E K. 

Lemma 2.5. For each 1 <--~<=N there is a map f rom P((Z+)  K) into 

/ ~  L ~ (~QK) = { ( fn )n=  1 : .t., E L ~ (g?K)} 

given by la((Z+)K))X-*((fk~,)')}~i-1)k-1)~__ ~ SO that the following holds: 
(1) For any xl . . . .  , xN~la((Z+)~), 

AN(X1 . . . .  , xN) = Z L 1  (-- 1) *-1 z ~ i  1)k-1 " ~ N ( f ~ , j  1 . . . . .  f~5'N) �9 

(2) For each k => 1 

~( ' ) J - -  I)  k-1 Sl ln N x~,~t . 
J . . t j= l  --1-" {/-/~=1 IIf~,,j I1~. x l ,  . . . ,  x• in unit ball o f  /a((z+)K)} 

f iN[(1 -~- ~ ) J - -  1]k-L 
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Proof  We agree on a one-one correspondence between E and ~ E ,  

E ) r ,  "~+ Z , E ~ E .  
Let 

f2 s = {09 = co(j): co(j) = 1 or 0, 1 <=j<= S}={col}~J=l, 

and  adopt  the convent ion that  co2~( j )=0 for  all l<=j<=J. Also, for  each coEf2s, 
define 

= Z j = I  coO). 

We construct  the promised maps by induction. Let  xC/2((Z+) K) be arbitrary.  Fo r  
each 1-<_~-<_N, choose y~, '~'~L=(fff) so that  

/ ; ,~((r ,  . . . . .  , r,,:)) = x(i~ . . . .  , iK) 

x 

IIf~,TI II < 611xll (E K) 2 = 2" 

Next,  for  each 1-<_j<=2s-1 define x~,jEI2((Z+) K) by 

_ r  �9 r , , o ~ l )  . . . .  ? ~ c ~ , , ) ) ,  X~, j (i1 . . . . .  iK) - -  J 1,1 ku ' 

where 
r,  if  COj(i) : 0 

y~,A0 = Z, if COj(i)= 1. 

We make  the following observations. Let  BK be the unit ball o f  12((Z+)K) and 
xl ,  . . . ,  xu be arbi t rary elements in Brr Observe that  

= 4- ~ "72J -- 1 ( 2 . 5 . 1 )  A [ r X l ' l  r x N ' N ]  A N ( X  1 X N ) _ ~ , j =  1 AN(X111,j, xNI. j). 

(As above, x~l, jEl2((Z+)r),  I<=~<=N, is defined by 

X~l,j(il . . . . .  iK) : J l , 1  I , \ / i l  , . . - ,  y ~ ( ~ K ) ) ) . ) .  

That  is, by applying ~f~v t o  Jlx,~ 1 . . . . .  Ax,~ r'N we obtain AN(x~ . . . . .  xN) with an error  
tha t  can be estimated as follows: 
F o r  each 1 <-j<=2 J -  1, 

{//~=xllx,a, jll2" X1, " ' ,  sup n ~ . . xN~ BK} .< t ~ l , o j l "  

Therefore,  

(2.5.2) ~yJ=~l sup {]]~=1 Ilx~l,jfl2: xl . . . .  , xNEBr} <= (1 +6) s -  1. 

F r o m  (2.5.2) and Lemma 1.2 it follows that  

(2.5.3) -72~-1 1 < .d.aj=l [AN(x11, j . . . . .  xNI, j)I = (1 +6)  " t -  1. 

for  all il . . . . .  iK = 1, 2 . . . . .  

and 
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Motivated by (2.5.1) and (2.5.3), the strategy of the induction is to 'feed' the error 
back to E r and correct its effect. 

Let k > l ,  l<=j<=(2s-1)k -1, and write 

j = ( 2 s - 1 ) n + v ,  

l = v = 2  - 1 .  Define x~,_i,j~l~((Z+) K) by where < < s 

X ~ _ I , j  ( i  1 . . . . .  iK ) ~x,~ /~,ov(~l) ~9o(~K) ] ~ J k - l , n k g i l  ~ ' ' ' ,  i t  K i" 

Next, let fkx)'CL=(~ff) be so that 

,~x, ~ (t" r . . . ,  ( i)  J k , j  t t  ix, fir)) -'~ X ~ - I , j ( i l  . . . . .  iK), 

(ii) Ilf~,,j I[~ = 311x~-l,A~, 
and 

(iii) IIf~,,]I~(E,,)ll~ <_-- ~ ][X~_l,][]2, 
The induction is complete. 

We now observe by induction on k (the inductive step is similar to the step 
leading to (2.5.2)) that for all k =  ~ 1 

(2.5.4) ,~-aj=l~'V(2J--1)k sup {//etN= 1 HX:k, jI[2: X I ,  . . .  , X N ~ B K }  <= [(1 -{-O)J-- 13 k. 

Therefore it follows from (ii) that  for all k ~ l  

Z (2J-1)k-lj=l sup {/-/=N=I [If~,7"[I =: xx, ..., x~CBK} <= /~N[(1 +6) s -  1] ~-1. 

Part (2) in the statement of the lemma is now proved. To verify (1), note that for 
each M=>I (see (2.5.1), for example), 

u ( 1)k_1 I [ Z k = l -  ~.s=15"(~"-"<- :' ~+ --~,,s k, s ,-rx,,, ,  . . . ,  f~<5,N)] _ AN ( x l ,  . . . ,  XN)I 

-- ~-~ ('a J-- 1)M" XNM, j)[, 
- ~ s = ~  A N ( x ~ u , S  . . . . .  

where x~ . . . . .  xNEI2((Z+) K) are arbitrary. It follows from (2.5.4) that 

Z (2~-~)'x=x AN(XIu,x, ... , X~U,j) I _<--_ [(1 +6) s - 1] M//~= 111x, lh. 

Since [ ( l+6) s -1 ]u -~0  as M - ~  the assertion follows. [] 

Remark. The proof of 2.5 can be modified and expanded to yield the following 
more concise statement. 

Lemma 2.5'. There are maps, ~)1 . . . . .  ~N, f rom l~((Z+) K) into L ~ ( f f f )  with 
the following properties: 

(1) AN(xt . . . . .  XU)=-4N(~I(Xl) . . . .  , ~N(XN)), for all Xl . . . . .  XNEP((Z+)K). 
(2) There is 0 < C < ~ o  so that for  each I ~ < = N  and allx~12((Z+) x) 

114',<(x)ll~ ~ C l l x th .  
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For our purposes here, we prefer the statement in 2.5 since part (2) of 2.5 
offers precision that appears to be lost in part (2) of 2.5'. 

P r o o f  o f  Theorem 2.4. In order to simplify the notation, we proceed to prove 
a special case of Theorem 2.4. The argument in the general case is identical. Let 
J = N > = 2  be arbitrary and K = 2 .  Let 

~(~ ,~+1)  for I<-~-<_N--1 
&= 

/ (N ,  1) for a = N .  

Let ( ~)i=1,---, (xN)~=, be arbitrary sequences of  elements in the unit ball of  
12((Z+)2). Suppose that gC CE~,(f2 N) is a trigonometric polynomial given by 

g (091 . . . .  ' 09N) = • i l  ..... iz~ ail . . . i~ri ,(ah) "'" riN(~ON)" 

We require the following elementary fact whose proof is left to the reader. 

Sublemma. Le t  sl=(s~)T=l . . . . .  sN=(sNi)7= 1 be arbitrary elements  in l ~. Then, 

[ Y , l  ..... iz,.ail...i~si 1 "'" s~NI ~ 2Nllg[] ~ //j=IN [[sj[[=. 

By (1) of Lemma 2.5, we write 

= I Z / ,  . . . . .  i~v a ix . . . iN  Z L 1  ( - - 1 )  k-1 Zs *)~-' LN fff,~' l(tl' t2)'"f~,~'N(tN' t l )  d t l " ' "  d tNI  

< Z T = v  (2~-~)~-~ f Lv x'~'~ -~'%~ 
= ~.aj=l j a~ ,~ .~ , ,  ..... i~a i , . . . i~ f i , }  ( t l ,  t=) . . ' Jk . j  (tN, t l ) l d q ' " d t N "  

Applying the sublemma for (almost) all (q, ..., tN)E O N and integrating over f2 N, 
we obtain 

a i 
[ z i ,  . . . . .  . . . .  , 

~:: ( Y ~  ~ ( 2 N - - 1 ) k - l  v N  sup N ~ , "  
//==111fk,j I[=)llgll : \ ~ , a k = l  . ~ d j = l  ~ . 

t 1, ..., i N 

=< (.~_-~ (2fl)N[(l + 6 )  s -  I] ~-~) IIglI~ (by (2) of Lemma 2.5) 

=< [[gll~ (2fl)N/[2--(1 "q-f)N]  �9 [ ]  
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3. Proof  of  Theorem 1.3. 

Lemma3.1. Let go be a pointwise limit of  a sequence (go,)cl~((Z+)S). I f  
sup, tlAN,~ <=C<~o, then ~laN, <=C. 

Lemma3.2. Let A c F  and 2CB(A). Then, for every 5>0 there is (2n)n= lC  

A(A) so that (2,) converges pointwise on A to 2 and sup, ]I2n[IA(A)=sup, HA, lIB(A)<= 

(1 +e)ll2llB(A) �9 

The proof of 3.1 follows a standard line and is based on the fact that if $ is a 
pointwise limit of (~k,)~~ N) so that SUPn [I$,[[B(E~)<=C< co, then I[$[fB(~N)<=C. 
The proof of 3.2 is also standard and is based on the existence of approximate 
identities in M(G) whose transforms have finite support in F. 

We now observe that if ~0El~((Z+) J) is given by 

go(i) = go](Pl(i)).., goN(PN(i)) 

for all iE(Z+) z, where go1 . . . . .  goN~I~((z+)K), then (by Theorem 2.4) 

t/A~,,~ <---- max I l g o ~ l l ~ / a ~ -  
I~_~_N 

Therefore, if goEI~((Z+) J) is given by 

(3.1) go (i) : Z ; = I  )~j golj(Pl(i))  "'" goNj(PN (i)), 

where go~j~I~((z+)K), II(p~j[] <_-1 forall ~=1,  .. . ,  N and j = l ,  ..., and ~ ' ;  12j]<~, 
then 

In view of the preceding remark, Lemmas 3.1 and 3.2, to prove the 'only if '  direc- 
tion of Th. 1.3, it suffices to prove that every go~A(EN) can be written, for a given 
e >0, in the form of (3.1) where 

To this end, we recall a general (and not difficult t o  prove) result from [1]. Let 
D c G  be a dense and countable subgroup of (metrizable) G. Let 

~ o = ~ :  r - ~ / 5  

be the canonical injective map given by ( r (v ) ,d )=(  T, d). For A c F ,  denote 
by Bd(A) the restrictions of  Fourier Stieltjes transforms of  discrete measures to A. 

Theorem (Corollary 1 in [1]). Let D and z be as above. Let A c F  be so that 
r (A ) -  & a countable set (closure in D) so that 

O ( , ( A ) - ) n  ,(A) = o 
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( O ( z ( A ) - ) ~ z ( A ) - \ , ( A ) ) .  Then, A(A)  is (canonically and isometrically) a dosed 
subalgebra o f  Bd(A ). That is, for  every q~E A ( A) and ~>0 there is a discrete measure 
#EM(G) so that 

for aH ?E A and 
(1 +a) li~olla(A) ~ II~IIM. 

We apply the above theorem to our current setting. Let D I = @ Z 2 c @ Z  2 

( =  Q). Clearly, D1 is dense in |  Furthermore, observe that %1 (E) in /51= Q 
is a countable set with 0 in b l  as its only accumulation point (recall that the topology 
on f2 is that of  coordinate-wise convergence and note that the n th Rademacher 
function is carried by ~o~ to the point (0 . . . . .  1, 0 . . . .  ) in /51). 

n th slot 
Next, let D=(Da)Nc (2 N and observe, by virtue of the preceding remark, 

that EN=E(s.)y=~cE iv has the property that % ( E ~ ) -  is countable and that 

O(,o(E~)-) ~ ~o(E~) = O. 

Therefore, given any 9EA(EN) and ~>0, there is a discrete measure 

so that 

for  all iE(Z+) K, and 

But, ?j=(]~lj, " " ,  ]INj), 

# = Z f = l  2JJ~,jEM(~2N) 

~((rp l ( i  ) . . . .  , rPN(i)) ) -~ ~O(J) 

(I +~)I@l[a<~) --> Z I;ql 

where ?,j E .(2, 1 <= ~ <= N. Therefore, 

(p ( i )  ~-~ Z ; =  1 ~'J ]/lj  (rpl(1)) . . .  TNj (rp~(1)). 

Therefore, q~EA(EN) can be written in the form of  (3.1); the proof  of  the 'only if' 
direction of  Theorem 1.3 is complete. 

(=~): The idea for the argument that follows was indicated to us by N. Varo- 
poulos. Fix a one-one onto mapping 

0: (Z+) K -* Z +, 
and define (x,)cl2((Z+) K) by 

, 1  if O( i )=n  
x.(i) = ~ 0 otherwise. 

Let cpEI=((Z+) s) be so that AN, ~ is projectively bounded. Then, there is [AEM(Q N) 
with the property 

(3.2) fi((rj, . . . . .  rj~)) = AN,~(Xjl, ..., x j,,) 
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for all Jl . . . . .  jN~Z +. But, by the definition of  AN, ~ and (x,)~= 1 above, (3.2) 
implies that 

~ ( ( r ~ , ) ,  . . . ,  r ~ , ) ) )  = ~o(i) 

for all i~(Z+) s. This completes the proof  of the theorem. [] 

4. The existence of projectively unbounded N-linear forms, N >  2 

To display projectively unbounded multilinear forms on a Hilbert space, we 
appeal to the notion of  Sidonicity, We recall 

Definition 4.1. A c F  is said to be a Sidon set if 

l ~ (a)  = B (A), 

i.e., there is C ~ I  so that for all q~El=(A) 

The 'smallest' C for which the above holds is the Sidon constant of A. 
The archetypical example of a Sidon set is {rn}~=l=Ec ~. 
In view of  the (=,) direction of  Theorem 1.3 (the easy direction), to check for 

existence of projectively unbounded forms we test for Sidonicity of E(s , )~ l=  
E s c  f2 N. We do this through the following. 

Theorem (Th. 5.7.7 in [11]). Let  A c F  be a Sidon set with a Sidon constant C. 
Then, for  all g E L2a (G) and 2 < p  < o~ 

(4.1) C 1/pllgll2 -~ [Igllp. 

Proposition 4.2. E N is a Sidon set i f  and only i f  J = K .  

Proof. (~=): If  J = K ,  EN can be written as 

Es = { r j , . . . ,  rj)}7= x 
which is a Sidon set. 

(=~): Let n > 0  be arbitrary. Let 

v ,  = {i ~- (i l  . . . .  , i j ) c  ( z + ) s :  1 <= q ,  . . . ,  is <- n}. 

Define gE L~,,(f2 ~v) by 

g = .~aiEv. (rPa(1) . . . .  , rPz~(i))" 
Clearly, 

(4.2.1) IlglL= = n sly. 
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Next, let 
Un : {J : ( J l ,  " " ,  J K ) E ( Z + )  K" 1 ~ J l  . . . .  , JK ~ n}, 

and h be the Riesz product in M(f2 ~r) defined by 

h (CO 1 . . . .  ' (DN) = [ H j E  U n (1 -~ Tj ((.D1))] ... [ H j C  U n (1 -'}- r j  (ON))].  

As usual, Ilhl[x=h(0)--1, and an easy estimate yields 

Ilhl[~ <-- Ilhl[~ --< 2 ~n'. 

Therefore, for any l < p < 2  we have 

(4.2.2) Ilhllp <--- 2 N"'/q 

(~ +~ i=  1). Also, observe that the spectral analysis of h yields 

(4.2.3) • = 1 on {(rel~o . . . . .  reN~o)}~cv,. 

Combining (4.2.2) and (4.2.3), we obtain 

n s = h . g ( 0 )  <= Ilhllpllgllq <-- 2N~"/qllgllq. 
Recalling (4.2.1) and letting q- -n  r, we deduce 

(4.2.4) nX/~ n~S/2-K/m)l[ gll 2 --<- 2N II gll,". 

Since n was arbitrary, (4.2.4) implies that unless J = K  (4.1) is violated. The proof 
of the proposition is complete. [] 

The estimates in (4.1) and (4.2.4) yield the following. 

Corollary 4.3. For every n:>0, the Sidon constant o f  

{(rp1.) . . . . .  rp~0)}~Ev" _-> 2-N(n~J-K)/~). 

Combining Proposition 4.2 and the (=*) direction of Theorem 1.3, we deduce 

Corollary 4.4. For every N>=3, there are bounded N-linear forms on a Hilbert 
space which are projectively unbounded. 

5. Extensions of the Von Neumann inequality 

A classical inequality due to J. Von Neumann (1951) states that if T is a con- 
traction on a Hilbert space, and p is any complex polynomial, then 

I I p ( T ) I I  <-- sup lp(z)]. 
Izl_~l 

(Throughout this section, ][. [] will denote the usual Hilbert space operator norm.) 
The extension of this inequality to two variables, due to T. Ando (1963) asserts 
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that if Ti and T2 are commuting contractions on a Hilbert space and p is any 
complex polynomial in two variables, then 

lip(T1, re)l[ ~ sup [P(Zl, z2)] 
[zi[, Izz[~- 1 

(for proofs of these inequalities, see Ch. 1 of [8]). 
The question whether the Von Neumann inequality could be extended to the 

case of n ~ 3  commuting contractions on a Hilbert space was answered in the 
negative by N. Varopoulos. 

Theorem (Th. 1. in [14]). For every K > 0  there exist Ti ,  . . . ,  Tn (n=>3) commut- 
ing contractions on a Hilbert space, and p a complex polynomial homogeneous o f  
degree 3 in n variables so that 

I[P(rx . . . . .  7".)[I ~ K sup [p(zl, . . . ,  z,)[. 
Izi[_~l 

i=l,. . . ,n 

The crucial part in Varopoulos' proof of the above theorem was an intricate 
argument based on the probabilistic Kahane--Salem--Zygmund estimates (see 
Prop. 4.1 and Prop. 4.2 in [13]) showing the existence of projectively unbounded 
3-linear forms on a Hilbert space. The existence of such forms is a direct con- 
sequences of Proposition 4.2 (Corollary 4.4). Estimates on the deterioration to 
infinity of liP(T1 . . . . .  7",)11 are carried out in [5] where, as in [13], use is made of 
the Kahane--Salem--Zygmund inequalities (Lemma 3.1 in [5]). The same estimates 
can be obtained by making use of estimates on Sidon constants of finite subsets 
in E(s,)L1 (Corollary 4.3). For a complete discussion, we refer the reader to [13] 
and [5]. 

In the other direction, we give an application of a particular instance of 
Theorem 2.4, and deduce polynomial inequalities for operators in the Hilbert--  
Schmidt class. Consider 5e=I~((Z+) ~) as the algebra of Hilbert Schmidt operators 
on a Hilbert space, where the algebra norm of TESt is given by 

Ilrll~ = (Zi , ]  IT( i, J)l~) 11~, 

and the algebra multiplication is given by operator composition. Let J = N ~ 2  
be arbitrary and K=2.  For l < = a ~ N - 1  let 

S ~ = ( e , c ~ + l )  and S N = ( N ,  1). 

Observe that for T1 . . . . .  T N and U 6 ~  

(T1... TN, U) = A(s~)g=l (T1 . . . .  , T~-U) 

(( . ,  .) denotes the scalar product in Sa). 
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Theorem 5.1. There is C > 0  with the Jbllowing property: Le t  L > 0  be arbitrary 

and 7"1 . . . .  , T L be commuting operators in 5 a, IlZall~, . . . ,  I I T L I I ~ I .  Then, f o r  all 
complex polynomials in L variables that are homogeneous o f  degree N 

lip(T1 . . . . .  Z,)lls~ <- C NlnN sup [p(zx, . . . ,  ZL) [. 
Izil~-I 

i = l ,  . . . ,L  

Proof. First, observe that  a given polynomial  p in L variables and homogeneous  
of  degree N can be written as 

p ( Z l ,  Z L  ) L " "" ' ~ Z i  1 . . . . .  i2v=1 aix . . .  i N  Z i l  " " " Z i2v  �9 

Next,  recall (2.1 in [4]) that  

(5.1.2) [I/311= <= (2e) N 

where /3 C CE,, (O N) is given by 

sup [p(zl . . . . .  Zz)[, 
]ztl~_l 

i = l , . . . , L  

p (o~l , o)N) L . . . .  = Z h  ..... iN=lail . . . iNril(COl) . . .  riN(fON). 

Let  7"1 . . . .  , TL be arbi t rary elements in the unit ball of  5 e, and let U in the unit ball 
of  5~ be so that  

(5.1.3) lip(T1 . . . .  , TL)[[~ ---- ] Z i l  . . . . .  iN a a . . . ~ ( T  a ... T~,, U)[. 

By the remark  preceding the statement o f  the theorem, (5.1.3) can be rewrit ten as 

lip(T1, . . . ,  TL)[Is~ = [~ i l  ..... ,N aa...~NA(s~)g=~(Za . . . . .  T/~,-U)]. 

Therefore,  by Theorem 2.4, 

(5.1.4) II p (7"1 . . . . .  T~)II ~ <= II/311 = [2fl~, (6)]N/(2-  (1 + 6)N). 

Let  C2>0  be so that  

(5.1.5) flE~(6) <-- C~I 6 

1 
(Corollary 2.3). Choosing d i = ~ - ,  we have 2 - - ( 1 + 6 ) N > ~  and by combining 

(5.1.4) and (5.1.5) we obtain 

Ilp(Z~ . . . .  , TL)[]~ ~ [IPll~.2[4Cz-N] u. 

Finally, by (5.1.2), there is C > 0  so that  

Ilp(Zx . . . . .  Zz)]] <= C ul"N sup ]p(z l ,  . . . ,  ZL) 1. [] 
Izfl~l 

i = 1 ,  . . . ,L  

Remark .  Suppose that  the growth (in N)  of  the constants in Theorem 5. i were 
bounded  by C N for  some fixed C > 0 .  Then, we would conclude that  there is 6 > 0  
and M:>0  so that  for  all L > 0  whenever T1 . . . . .  T z are commuting elements 
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in 5e, IlTlIISe,-.., I]TL]]:<=6, then 

IIP(T~, ..., TL)I[s" <= M sup [p(z x, ..., ZL)[ 
Iztl~--I 

i=I , . . . ,L  

where p is any polynomial in L variables without a constant term (see 3.1 and 
3.3 in [4]). 

Problem. Can the (factorial) growth of constants in 5.1 be improved? 

6. Absolutely summing operators from CE~ (~2 N) into a Hilbert space 

The notion of one-absolutely summing operators was introduced by A. Grothcn- 
dicck (e.g., [8]). An accessible introduction and development of the subject can be 
found in [9]. 

Definition 6.1. Let X and Y be Banach spaces. An operator T: Z-~ Y is said 
to be one-absolutely summing if there is 0 < C < ~ o  so that whenever ( x i ) cX  
satisfies 

sup IIZ, x,r,( )llx <: 1 
then ~e~ 

Z~ [Irxillr <: C. 

In this context, Grothendieck's classical inequality (the instance N = 2  in 
Theorem 2.4) is equivalent to the fact that every bounded operator from CE(f2 ) 
(=l l )  into 12 is one-absolutely summing (see Th. 4.1 in [9], for example). We are 
thus led to the natural problem of determining all the one-absolutely summing 
operators from CeN(f2 N) into a Hilbert space. The aim of this section is to exploit 
Theorem 1.3 and display classes of operators from Ce~(O N) into l 2 which are and 
which are not one-absolutely summing. 

The fact that there are bounded operators from CE,([2 2) into l ~ which are not 
one-absolutely summing was pointed out to us (private communication) by A. 
Pelczynski whose demonstration relied on Dvoretzky's theorem ([6]). Below, we 
prove this fact by employing arguments different from Pelczynski's and appealing 
to the 'necessity' direction of 1.3. 

Proposition 6.2. There is a bounded operator 

T: CE2(f2 2) ~ 12 

which is not one-absolutely summing. 

Proof. Let J=N---3 and K=2.  Let 

$ 1 = ( 1 , 2 ) ,  S~=(2 ,3 ) ,  and $3=(3 ,1 ) .  

By Prop. 4.2, there is q~EI~((Z+)Z)\B(Ez) (as usual, Es=E(s,)~=I). Therefore, 
A3,~ is not projecfively bounded and we can find (Xk)k= 1, (y~)~=~, (Zm)m= l in the 
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unit ball of F((Z+) 2) so that for no measure #CM(f2 ~) 

ft((rk, r., rm) ) ~- Aa, o(Xk, y., Zm)" 

Therefore, there is gCCe~(03),  given by 

g ~ ~k,..m ak.m (rk, r . ,  rm) (6.2.1) 

and IIg[l~ = 1 so that 

(6.2.2) 

Define an operator 

I Z k  . . . .  ak.,.A3,~(Xk, y , ,  z~)[ = ~o. 

T: c ~ ( n ~ )  - l~((z+) ~) 
by 

T((rk, r , ) ) ( i l ,  i3) = ~ i ~  ~o(il, i~, i3)x~(q,  i2)y,(i~, i~) 

for all h and i3EZ § We now verify that T is a bounded operator. Let h s  ~) 
be given by 

h ~ .~k,. bk. (rk, r.). 

Let z be in the unit ball of I~((Z+) 2) so that 

IIT(h)lh = I(T(h), z)l = [Z~k,. bk.A3,r Yn, Z)l" 

But, A3, ~ ( ' ,  ", z) is a bounded bilinear form on 12((Z+)2). Therefore, it is projectively 
bounded (Grothendieck's inequality) and there is C > 0  so that 

IlT(h)lh -<- Cllhlt~. 

Finally, to show that T is not one-absolutely summing, define (fm)m=lCCE~((2 ~) 
by 

fm ~ X k , .  ak.m (rk, rn). 
By (;.2.1) 

sup ll2mf,.rm(og)ll~ ~ l ,  

and by (6.2.2) 

Z.=~(T(fm),Z~)[ l u = Z . = , Z k , .  ak.mAa.e(Xt~, Y . ,  zm)l -~oo 
as N-~ co. [] 

We proceed now to construct classes of one-absolutely summing operators 
from CE~(12 y)  into a Hilbert space. Let J ~ K ,  N > 0  and N (S,),= 1 be given. Let 
~CB(E~)c#~((Z+) O. 

Let (x~)~'=l, ..., (x~)~'= 1 be arbitrary but fixed sequences of elements in the 
unit ball of P ( ( z + ) K ) .  Define 

T~: CE.(~2 N) -- 12((Z+) K) 

in the following way: Let L) N-~ S.={ma mM}. Write 

(6.1) T, ((ra, ..., ro,)) (JN, . . . .  , J~x) 

. . . . . .  xiN (JN, .. . .  , J~K) = ZT,,,, ..... Jm= = 1 q) (Jl ,  , jx)  xi~ (Jll  . . . .  , Jax) N - 
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for  all  j &  . . . .  , j ~ E Z  + (recall  tha t  S~=(~1 . . . .  c~:)). The  project ive  boundedness  

o f  AN, ~ yields the  fo l lowing theo rem the details  o f  whose p r o o f  are  left  to  the r eade r  

(it fol lows the ou t l i ne  o f  4.1 in [9]). 

Theorem 6.3, T~ (defined by (6.1)) is one-absolutely summing. 

Addendum 

S. Ka i j se r  a t  U p p s a l a  Univers i ty  solved aff irmatively the  p r o b l e m  in Sect ion 5: 

The  cons tan ts '  g rowth  in T h e o r e m  5.1 is d~(CN). A Tonge  independen t ly  gave the 

same so lu t ion  to  the  p r o b l e m  (A. Tonge ,  " T h e  Von  N e u m a n n  inequal i ty  for  po ly-  

nomia l s  in several  H i l b e r t - - S c h m i d t  ope ra to r s , "  prepr int . ) .  
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