Multidimensional extensions of the Grothendieck
inequality and applications
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1. Introduction — Statement of the main theorem

In this paper we develop and study a multidimensional formulation of the
Grothendieck inequality. The present work is a continuation and expansion of a
line begun in [3], where the Grothendeick theorem was proved by exploiting the
notion of A(2)-uniformizability. The presentation here, however, is entirely self-
contained and familiarity with [3] is not required.

We employ basic notation and facts of commutative harmonic analysis as
they are presented and followed in [10]. I', as usual, will be a discrete abelian group
and G=TI" will denote its compact dual group. For the sake of simplicity, most
of our work will be performed in the framework of ®Z,=Q, the (compact) direct
product of Z,, and ©Z,=Q, its (discrete) dual group, the direct sum of Z,.
Throughout, E={r,};>,cQ will denote the system of Rademacher functions
realized as characters in Q: The #'® Rademacher function 7, is defined by

ra(@) = e,

for all W€®Z, (={(0(N)i,=: ©(/)=0 or 1)}. @V and OV will denote the
N-fold cartesian products of Q and @, respectively. The characters in EV, the N-fold
cartesian product of E={r,}, will be designated as (r;, ..o )forall iy, ..., iy€Z".
For FcrI, B(F) will denote the Banach algebra of restrictions of Fourier—Stieltjes
transforms to F, and A(F) will be the Banach algebra of restrictions of Fourier
transforms to F. That is,

B(F) = M(G)" (€ M(G): =0 on F},
and

A(F) = LNG)" [{fe L\(G): f=0 on F}.

* Author was supported partially by NSF Grant MCS 76—07 135, and enjoyed also the
hospitality and financial support of the Department of Mathematics at Uppsala University.
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Cr(G) and LZ(G), 1=p=-o, will be the spaces of functions in C(G) and L?(G),
respectively, whose spectra lie in F. That is,

Cr(G) = {f€C(G): f=0 on ~F},
and i

PG) = {feL?(G): f=0 on ~F}.

We now state the classical Grothendieck inequality that was formulated and
proved first by A. Grothendieck in [8].

Grothendieck’s inequality.

There is a constant K;=0 with the following property. Let A be any bounded
bilinear form on a Hilbert space H, and let (x;); and (y;); be arbitrary sequences
in the unit ball of H. Let f€C..(Q% be any trigonometric polynomial given by

floy, w,) = Zi,j a;j ri(wy) "j(wz)-
Then,
|3 a;A(x;, y)| = Kllflll Al

(14l =S 144G, pI/IxIYN)-

Equivalently, let p€/* ((Z+)2) be defined by ¢ (i, j)=A(x;,y;). Then
lollaeey = Kell4].
We are led to the following:
Definition 1.1. Let N=2, and A be an N-linear form on a Hilbert space H.
A is said to be projectively bounded if there is a constant n, with the following pro-

perty. Let (x}),, ..., (x{" ); be arbitrary sequences in the unit ball of H. Let f€ Cpn(2")
be any trigonometric polynomial given by

flog, ..., 08 = Zil,..., iy Fir.in Fi(@9) ... 7y (@n).
Then,
| i Fis e A s X = 14l f 14

Equivalently, define ¢ €/~ ((Z*)") by

@iy, .y iy) = AL, .., xN),

for all iy, ..., iy€Z". Then
lolsery = n4ll4l.

Our main purpose here is to characterize within a natural class of bounded
multilinear forms on a Hilbert space those which are projectively bounded.
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Let J=K=0 and N=1 be arbitrary integers. Let
F={,..,7}
and (S,)I_, be a sequence of K-subsets (sets containing K elements) of & with the
following properties:
(1) Us. =

(1.2) for each I=a=N,
Sam(U Sk)zsa'

Also, each S, is enumerated as
S, = (o, ..., 0g).

Each S, gives rise to P,, a projection from (Z*)’ onto (Z*)X: For ic(Z*Y,
Pa(i) = (iav seey iaK)‘
Next, let 9 €/=((Z")’) and define an N-linear form on /2((Z*)X) by

(1.3) Ao (X1, s XN) = Ziczey @D (Pu(®) ... xv(Pr (i),
where X, ..., xy€/2((Z*)¥). In the sequel that follows, whenever (S,)Y_, is under-
stood, we shall write Ay, for Ay~ ,; when @=1, we shall write 4y. Observe

that the boundedness of 4, , follows from (1.2) and the Schwartz inequality. We
state it formally and leave the details of the straightforward proof (by induction
on J) to the reader.

Lemma 1.2. For any xq, ..., Xy€I2((Z)¥),

IAN,tp(xl’ ) xN)l = oflelx4lls - ”xNHZ'

Next, we define a new breed of spectral sets that will play a prominent role
in the characterization of projectively bounded multilinear forms. Let

E={r, % ...ix=1CQ
be a K-fold enumeration of the Rademacher system, and define
(1.4) Esyr, = 0@ s Tey@}ic@y C EN.

Again, whenever (S,)Y_, is given and understood from the context, we shall write
Ey for Esyy_,. cl=((Z*) is said to be in B(E,) if there is u€ M(Q") so that
for all ic(Z1y

(1.5) @) = f((rpyiys > Teaia))-

As usual, the norm of ¢ in B(Fy) is given by

| @lacryy = inf {flul: p satisfics (1.5)},
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We now state the main result.

Theorem 1.3. A, , is projectively bounded if and only if ¢ € B(Fy). Moreover,
for all p€l=((Z*)),
Nan, o = 10l aEny Nay-

The key to the ‘only if’ direction of Theorem 1.3 is the projective boundedness
of A,. This is proved in Section 2 where a crucial use is made of the A(2)-uni-
formizability of EXc QX. We also obtain estimates for 5 ay in terms of N, J and
A(2) uniformizing constants of EX. The full proof of 1.3 is given in Section 3. An
important consequence of the characterization of projectively bounded forms is
the abundance of projectively unbounded multilinear forms which is displayed
via the proposition that Es,~ | is a Sidon set if and ornly if J=K.

Some applications are given in the remaining parts of the paper. In Section 5
we consider a special instance of Th. 1.3 and place in a broader perspective
Varopoulos’ results regarding the failure of multidimensional polynomial inequalities
for operators on a Hilbert space (see [12] and [13]): The failure of a general multi-
dimensional Von Neumann inequality follows from the (=) direction of Th. 1.3.
whereas the other direction of 1.3 yields polynomial inequalities for operators in
the Hilbert—Schmidt class. In Section 6, Th. 1.3 is used to produce absolutely
summing and non absolutely summing operators from Cz» (V) into a Hilbert space.

We are grateful to Professors N. Varopoulos for stimulating conversations,
and A. Pelczynski and G. Pisier for useful communications on topics related to
this work.

2. Ay is projectively bounded

The key ingredient in the proof of the projective boundedness of A4, is the
A(2) uniformizability of EXc QX. First, recall that FcI is a A(p) set for
l<p<o if

L} (G) = LE(G).

Definition 2.1. FC T is said to be a uniformizable A(2) set if for every 0<d<1
there is f(8)=pf so that whenever @ €/2(F) there is f€L™(G) with the following
properties:

@) f=¢ on F;
(i) [flle = Bllolls;
(i) 1f1~ell = Slloll,

fl.  denotes the restriction of f to ~F). 0<d<1 and B (0) are said to be 4(2)
uniformizing constants of F.
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Recall now that EX is a A(p) set for all 1<p<eo and, in particular, it is a
A(2) set (see Appendix D in [11], for example). To establish the A (2) uniformizability
of EX, we observe that we can find a measure p€ M(QX) so that A=1 on EX and
[4].gx)ll. =0, for any given 0<dé<1 (see Lemma 3.1 in [3] or p. 311 of [2]).
The best result in this direction, however, was communicated to us by G. Pisier,
with whose kind permission it is reproduced here.

Lemma 2.2. (Pisier). Let F={y;},cI' be a A(p) set for some p=2. Then
F is a uniformizable A(2) set.

Proof. Let 0<dé=<1 be arbitrary and ¢€/2 Since F is A(p), there is C,=0
so that

2.1 12,0y, = Cyliols.
Let

. {2,- e(Ny; if |3 ey =273 0()yill,
1710 otherwise,

and h,=2;¢(j)y;—h. A routine estimate yields

2.2.2) laolle = 8|3 0 (/)75
Next, write
hy = 2 Y (j)y;+P,

where spectrum (P)C ~F. Clearly, [[y[,=6-C,lol. ((2.2.1) and (2.2.2)), and
since F is (a fortiori) a A(2) set we can find g€ L%(G) so that

N Zw()y+8lle =6-Co- Cpllolle
(C, is the A(2) constant of F). Finally, let

f= h1+2 'ﬁ(j)')’j*‘g-
16D = o),

2
Ifle = ol (C,6G=P+ C, - Cy9),

Observe that

and
1/ ~ellz = 81l@I(C,+Cp - Co). O
Corollary 2.3.

Theorem 2.4. Ay=As )y, is projectively bounded. Moreover,

Nax = 2Bex O )2~ (145Y),
where 0<d satisfying (1+6) <2 and Bgx(5) are uniformizing constants of EX,
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Let H be a non-empty subset of {l,...,J}. Let Ay, h,¢ L=(2"), and define
h1§h2 to be the convolution of %4, and %, with respect to the coordinates indexed

by members of H. If H=0, we let hli‘i hy=h, + hy, (ordinary pointwise multiplica-
tion). We illustrate: Let J=3, and H={l,3}; hyxhy€ L™ (Q% is defined by

h1;§hz(w1a Wy, W) = fm hi(wy—1;, @y, w3—1t3) hy(ty, @y, t5) dt, dts.
Let l1<a=N, and
a1
Ha - Sdﬁ(U Sk]'
k<1

We define an N-linear form on L~ (2X), denoted as /f(s,)gj: 1=/f ~» in the following
way: Let fi, ..., fy€L=(QF) be arbitrary, and consider f,, I=a=N, as a function
in L=(Q’) that depends only on the o, ..., o coordinates (recall that S,=
(o, ..., ag)). For example, f; is thought to be the function in L= (€’) whose value
at (@, ..., 0,)cQ" is A(@y, ..., ®, ). Define

A\N(fla afN) = f1ﬁz-~g";f1v(o, ey O)
The key observation (whose easy verification is left to the reader) is that

(21) A‘N(fl"--’fN):AN(f‘l"-"fN)

(feL=(Q%)" is thought of as an element in 12((Z*)¥) in the canonical way: Let
(w5, be an enumeration of Q. f is the element in I2((Z*)*) whose value at

(iys s i) E(ZHE is f((wl y ees wK)))

We now state and prove an integral representation of 4y which will subsequently
be used for the proof of Theorem 2.4. In what follows 0<4§ satisfying (1 +68)" <2
and f(6)=f will be A(2) uniformizing constants for EX,

Lemma 2.5. For each 1=a=N there is a map from I*(Z%)X) into
[T L=@%) = {(f)rza: fu€ L=(R5)}

given by I*((Z+))3x~((fZH% Y )i, so that the following holds:
(1) For any x,, ..., xNelz((Z““)K)

AN(xla'--axN) Zk 1(—1)k 12(2J v IAN(ka >t fNN)
(2) For each k=1

TV sup{I1 Wit 20, oo, Xy dn it ball of P((Z+YF))
= B8y -1
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Proof. We agree on a one-one correspondence between E and ~E,

ESr, ~ y,€~E.
Let
G ={o=0():o()=1o0r0,1=j=J}= {0},

and adopt the convention that w,s(j)=0 for all 1=j=J. Also, for each wcQ,,
define

oo} = 3, 0()-

We construct the promised maps by induction. Let x€/2((Z*)¥) be arbitrary. For
each 1=a=N, choose f**€L”(QX) so that

i (R S ) T ¢ A
for all 4, ...,ix=1,2,...,

If5t e = Blxll2s

1L ey le = Slixl
Next, for each 1=j=2"—1 define xJ ,€/2((Z")*) by

XG0, s i) = ORI, L R0,

and

where

©;(i) —
n

{rn if w;(i)=0
6 i o;()=1

We make the following observations. Let By be the unit ball of /2((Z*)*) and
X1, ..., Xy be arbitrary elements in Bg. Observe that

Q5.1 Ay(fEgh s 7N = AnGrs s X+ 350 Ay Gy, s oo X))
(As above, le,jélz((Z"*)K), I=a=N, is defined by

x:l,j(i]_, v ig) = ((.},wj(au) s fy;l;‘(j(dx))).)'

That is, by applying 4, to S l’fllv’N we obtain A4y(x,, ..., Xy) with an error
that can be estimated as follows:
For each 1=;=27—1,

sup {JT 0, IIx%4, jlla: Xy, ... xyE€By} = 814,
Therefore,

(2.5.2) St sup {JT0_ 1% lla: xps o, Xy EB) = (146 —1.
From (2.5.2) and Lemma 1.2 it follows that

(2.5.3) 2’ Ay Gy oo XN DL = (LES) — 1.
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Motivated by (2.5.1) and (2.5.3), the strategy of the induction is to ‘feed’ the error
back to EX and correct its effect.
Let k=1, 1=j=Q2’-1)*"", and write

j=0Q"=Dn+v,
where 1=v=2'—1. Define xj_, ,€/*((Z)¥) by
X, (s ooy ig) = fEL,00@, ., ypeeo),
Next, let fi7*€L=(Q%) be so that
) fk, ((Figs s 1)) = X1 (g oo i),
) 1l = ﬁ”x‘fc—l,j“z,

and
(iii) kax,’ﬂ~(EK)H2 = 5“%—1,;”2'

The induction is complete.
We now observe by induction on k (the inductive step is similar to the step
leading to (2.5.2)) that for all k=1

(2.5.49) P sup {12 x5 slle: %1 oo xy€Bx) = [(140) — 11
Therefore it follows from (ii) that for all k=1
STV sup {0 5wt X, s Xy € B = FYIA+8) — 11

Part (2) in the statement of the lemma is now proved. To verify (1), note that for
each M=1 (see (2.5.1), for example),

[, CDF ZETV T AN (s o 9™ = An o, ooy x0)
[Z(ZJ v Ax(Xing, js -es x%M,j)[,
where xy, ..., xy€I2((Z*)¥) are arbitrary. It follows from (2.5.4) that
| STV AnOargs o xR )l = [A+8Y = 1M [T0 Ix -
Since [(1+6)' —11M >0 as M- the assertion follows. O

Remark. The proof of 2.5 can be modified and expanded to yield the following
more concise statement.

Lemma 2.5". There are maps, @, ..., By, from I2((Z*)X) into L= (QX) with
the following properties:

(1) Ay(xy, -oos X)) =AN(B1(x1); ..., Py(xy)), for all xq, ..., xy€12((ZH)F).
(2) There is 0<C=<oo so that for each 1=a=N and all x<I*((Z*)¥)

9. = Clix]lo.-
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For our purposes here, we prefer the statement in 2.5 since part (2) of 2.5
offers precision that appears to be lost in part (2) of 2.5.

Proof of Theorem 2.4. In order to simplify the notation, we proceed to prove
a special case of Theorem 2.4. The argument in the general case is identical. Let
J=N=2 be arbitrary and K=2. Let

{(oz,oz-i—l) for T=a=N-1
R VO A )) for o= N.

Let (x}){,, ..., (xM);>, be arbitrary sequences of elements in the unit ball of
12((Z*)?). Suppose that g€Cn(2V) is a trigonometric polynomial given by

g0y, s 0n) = 2y G in T (@) - i (0R)-
We require the following elementary fact whose proof is left to the reader.
Sublemma. Let s'=(s});,, ..., sV =(sN);>, be arbitrary elements in 1. Then,
| i VizcigShy - S| = 2V Mgl [T 7)o

By (1) of Lemma 2.5, we write

‘Zil:---;iz\r ail...iNAN(xllla tees xﬁv)!
T x},l xf;,N
—IZ' Lin Biy. iy Dher (CDFT 12(2N v lf_Qka,} (s 1) - fic 2 (tNatl)dtl‘-'dtNl

N 1 11 xN N
= 2 12(2 vE N ‘Zil,...,izv Qjy...iy f:} (tis 1) - fiF (ty, f1)| dt, ... dty
o

Applying the sublemma for (almost) all (¢, ..., ty)€ QY and integrating over QV,
we obtain

[Zil,..., in a... AN(xtl’ (RN xa{,)!
= (S, ZE ‘2” sup. T 15 1) gl

= (S, CHMA+Y—1F Y gl (by (2) of Lemma 2.5)

= [lglle B2~ (1 +)"]. O
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3. Proof of Theorem 1.3.
(=)

Lemma 3.1. Let ¢ be a pointwise limit of a sequence (@,)I<((Z%Y). If
sup,,nAN,%_S_C<oo, then 14, ,=C.

Lemma 3.2. Let ACI and ACB(A). Then, for every >0 there is (4,);,C
A(A) so that (A,) converges pointwise on A to A and sup,|| i, 44y =5up, | 4,ll3ay=
(1+) [ Allgay -

The proof of 3.1 follows a standard line and is based on the fact that if ¢ is a
pointwise limit of ()., B(E") so that sup, [Vl gewy=C=oo, then Y[ gpw=C.
The proof of 3.2 is also standard and is based on the existence of approximate
identities in M(G) whose transforms have finite support in I

We now observe that if @€/~ ((Z")’) is given by

(i) = (01(P1(i)) (pN(PN(i))
for all i€(Z*), where @, ..., oy€I=((Z*)X), then (by Theorem 2.4)
Ma,p = MAX [@yllcott-
Therefore, if p€l~((Z")) is given by
(3.1) ¢() = ;;1 )"j(Plj(Pl(i)) (PNj(PN(i)),

where ¢,,€1”((Z*)*), loll.=1 forall a=1,..., N and j=1, ..., and 3, |3;]<,
then
Nay, o = (2 1) May-

In view of the preceding remark, Lemmas 3.1 and 3.2, to prove the ‘only if” direc-
tion of Th. 1.3, it suffices to prove that every ¢ € A (Ey) can be written, for a given
£=>0, in the form of (3.1) where

A+l aeyy = 2 1441

To this end, we recall a general (and not difficult to prove) result from [1]. Let
Dc G be a dense and countable subgroup of (metrizable) G. Let

TD=T:F—*ﬁ

be the canonical injective map given by (t(y),d)=(y,d). For AcT, denote
by B,(A) the restrictions of Fourier Stieltjes transforms of discrete measures to A.

Theorem (Corollary 1 in [1]). Let D and t be as above. Let ACI be so that
1(A)~ is a countable set (closure in D) so that

(D) )nt(A) =0
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O )=t(A)\1(4)). Then, A(A) is (canonically and isometrically) a closed
subalgebra of B,(A). That is, for every o€ A(A) and =0 there is a discrete measure
HEM(G) so that

() =2k
Sor all yeA and

A+l s = llulp-

We apply the above theorem to our current setting. Let D,=@Z,C QZ,
(=9Q). Clearly, D, is dense in ®Z,. Furthermore, observe that 7, (E) in D,=Q
is a countable set with 0 in Dy as its only accumulation point (recall that the topology
on € is that of coordinate-wise convergence and note that the »™ Rademacher
function is carried by 7, to the point (0,...,1,0,..) in D).

+
ntbslot

Next, let D=(D)c Q" and observe, by virtue of the preceding remark,
that Ey=FE,~_ CE"Y has the property that 7,(E,)~ is countable and that

Hrp(Ex) ") N 1p(Ey) = 0.

Therefore, given any @€ A(Ey) and &>0, there is a discrete measure

U= Z‘;ll ljé),jéM(QN)
so that
ﬂ((rPl(i)a cees "PN(i))) = @)

(I+e¢) “‘P”A(FN) = 2 |)~j|'

But, 7;=(7y;, ...,yNj), where y,,€Q, 1=a=N. Therefore,

for all i€(Z*)X, and

(i) = 2;021 ’lj’ylj(rPl(i)) ?Nj("PN(i))-

Therefore, ¢ € A(Ey) can be written in the form of (3.1); the proof of the ‘only if’
direction of Theorem 1.3 is complete.

(=): The idea for the argument that follows was indicated to us by N. Varo-
poulos. Fix a one-one onto mapping

0: (ZHK - 7+,
and define (x,)c/2((Z1)¥) by
1 if 0()=n
%0 =

0 otherwise.

Let o€/~ ((Z")’) be so that A4y , is projectively bounded. Then, there is u<M(QV)
with the property

(3.2) A(js s 7)) = Ay o (Xjps ooos X))
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for all ji, ..., jy€Z*. But, by the definition of A4y, and (x,);., above, (3.2)
implies that
ﬁ((rpl(i), cees TPN(i))) = ¢(i)

for all i€(Z*)’. This completes the proof of the theorem. a

4. The existence of projectively unbounded N-linear forms, N=>2

To display projectively unbounded multilinear forms on a Hilbert space, we
appeal to the notion of Sidonicity. We recall

Definition 4.1. AcT is said to be a Sidon set if
I=(4) = B(A),
i.e., there is C=1 so that for all p¢i~(A)

Cllole = lollauy-

The ‘smallest’” C for which the above holds is the Sidon constant of A.

The archetypical example of a Sidon set is {r,}> ,=EcQ.

In view of the (=) direction of Theorem 1.3 (the easy direction), to check for
existence of projectively unbounded forms we test for Sidonicity of Esyv ,=
Eyc OQN. We do this through the following.

Theorem (Th. 5.7.7 in [11]). Let AC T’ be a Sidon set with a Sidon constant C.
Then, for all gcL%(G) and 2<p<e
@1 CVplgls = lgl,-

Proposition 4.2. Ey is a Sidon set if and only if J=K.

Proof. (<=): If J=K, Ey can be written as

Ey={r;, ..., 7)}=1
which is a Sidon set.
(=): Let n=0 be arbitrary. Let

Ve={i=C(iy, ..., i) € @*Y: 1=1iy,...,iy =nh

Define g€Li (Q") by

g= ZiEV" (rPl(i)a e rPN(i))'
Clearly,
(4.2.1) lgle = n'
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Next, let
Un = {.] = (j1> ’JK)é(Z+)K L éjl’ AR ] ]K = n}’

and # be the Riesz product in M(QV) defined by
h(wy, ..., ox) = [”jévn (1+r;(w)] -.. [Hjeu,, (1+r;(op)}
As usual, ||Al;=A0)=1, and an easy estimate yields
Ik = [l = 2%
Therefore, for any 1<p<2 we have
4.2.2) A, = 2N"*/
(% +%=1). Also, observe that the spectral analysis of A yields
(4.2.3) }Al = 1 on {(rpl(i), cery I‘PN(i))}ie Viar
Combining (4.2.2) and (4.2.3), we obtain
n = hxg(©0) = |, lgl, = 2| gl,.
Recalling (4.2.1) and letting ¢g=n%, we deduce
4.2.4) nKRpUR-KD| |, = 2V| g| x.

Since n was arbitrary, (4.2.4) implies that unless J=K (4.1) is violated. The proof
of the proposition is complete. 0

The estimates in (4.1) and (4.2.4) yield the following.
Corollary 4.3. For every n=0, the Sidon constant of
{("Pl(i), e rPN(i))}ie v, = 27NV -Rr),
Combining Proposition 4.2 and the (=) direction of Theorem 1.3, we deduce

Corollary 4.4. For every N=3, there are bounded N-linear forms on a Hilbert
space which are projectively unbounded.

5. Extensions of the Von Neumann inequality

A classical inequality due to J. Von Neumann (1951) states that if 7 is a con-
traction on a Hilbert space, and p is any complex polynomial, then

lp(D] = Iglusp1 ip(2)|.

(Throughout this section, || - || will denote the usual Hilbert space operator norm.)
The extension of this inequality to two variables, due to T. Ando (1963) asserts
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that if 7, and T, are commuting contractions on a Hilbert space and p is any
complex polynomial in two variables, then

Ip(Ty, Tyl = sup  [p(z1, 2)|

124, [zgl=1

(for proofs of these inequalities, see Ch. 1 of [8]).

The question whether the Von Neumann inequality could be extended to the
case of n=3 commuting contractions on a Hilbert space was answered in the
negative by N. Varopoulos.

Theorem (Th. 1. in [14]). For every K=0 there exist Ty, ..., T, (n=3) commut-
ing contractions on a Hilbert space, and p a complex polynomial homogeneous of
degree 3 in n variables so that

lp(Ty, ... TH = K sup |p(zq, -..s Z)l-

lz;l=1
i=1,...,n

The crucial part in Varopoulos’ proof of the above theorem was an intricate
argument based on the probabilistic Kahane—Salem—Zygmund estimates (see
Prop. 4.1 and Prop. 4.2 in [13]) showing the existence of projectively unbounded
3-linear forms on a Hilbert space. The existence of such forms is a direct con-
sequences of Proposition 4.2 (Corollary 4.4). Estimates on the deterioration to
infinity of || p(T}, ..., T,)| are carried out in [5] where, as in [13], use is made of
the Kahane—Salem—Zygmund inequalities (Lemma 3.1 in [5]). The same estimates
can be obtained by making use of estimates on Sidon constants of finite subsets
in Egs,yv_, (Corollary 4.3). For a complete discussion, we refer the reader to [13]
and [5].

In the other direction, we give an application of a particular instance of
Theorem 2.4, and deduce polynomial inequalities for operators in the Hilbert—
Schmidt class. Consider =I%((Z")?) as the algebra of Hilbert—Schmidt operators
on a Hilbert space, where the algebra norm of T¢% is given by

“T”Y = (Zi,j iT(ia j)]2)1/2,

and the algebra multiplication is given by operator composition. Let J=N=2
be arbitrary and K=2. For 1=a=N-1 let

S,=(,a+1) and Sy=(N,1).
Observe that for T,..., Ty and Uc ¥,
(Tl TNa U) = A(S¢)5=1(T1’ ena TN'U)

((-, ») denotes the scalar product in &).
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Theorem 5.1. There is C=0 with the following property: Let L=0 be arbitrary
and Ty, ..., T, be commuting operators in &%, |Tilly, ..., |TL|,=1. Then, for all
complex polynomials in L variables that are homogeneous of degree N

Ip(Ty, ..., Tolly = CV™Y sup p(zy, ..., z1)l.

lz)=1

i=1,..,L
Proof. First, observe that a given polynomial p in L variables and homogeneous
of degree N can be written as
L
P2y s 2) = 20 1 Gnin By e Zige

Next, recall (2.1 in [4]) that
(.12 15l.=@e)Y sup |p(z1, ..., 20,

lz;l=1
i=1,...,L

where f€Cn(QN) is given by

P, ..., 08) = Zﬁ,,,_,izv:l i, ..in "il(ah) riN(wN)'

Let T3, ..., T, be arbitrary elements in the unit ball of &, and let U in the unit ball
of & be so that

(5.13) IP(Tas ooy Tl = | 2, iy @i T e T U]
By the remark preceding the statement of the theorem, (5.1.3) can be rewritten as
(T s Ty = | 21y Y in Ay T s Tig 2 U],
Therefore, by Theorem 2.4,

(5.1.4) Ip(Tys oo s TNy = 11 Bl [2Be2 (OI/(2— (14 8)¥).
Let C,=0 be so that
(5.1.5) B (0) = G,/

(Corollary 2.3). Choosing 5:%, we have 2—(1+6)V>% and by combining
(5.1.4) and (5.1.5) we obtain
Ip(T1, .., Ty = | Pl 2[4C, - NIV
Finally, by (5.1.2), there is C=0 so that
Ip(Ty, ..., T = C¥*N sup |p(zy, ..., z)|. O

lz;l=1
i=1,..,L

Remark. Suppose that the growth (in N) of the constants in Theorem 5.1 were

bounded by CV for some fixed C>0. Then, we would conclude that there is §=0
and M=0 so that for all L=0 whenever Ty, ..., T} are commuting elements
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in &, |Tl,, ..., | Tl ,=5, then
“p(Tl’$TL)”Y§M sup ’p(zl9"'1ZL)l

z,1=1

i=

where p is any polynomial in L variables without a constant term (see 3.1 and
3.3 in [4]).

Problem. Can the (factorial) growth of constants in 5.1 be improved?

6. Absolutely summing operators from C.~(2") into a Hilbert space

The notion of one-absolutely summing operators was introduced by 4. Grothen-
dieck (e.g., [8]). An accessible introduction and development of the subject can be
found in [9].

Definition 6.1. Let X and Y be Banach spaces. An operator 7: X—Y is said
to be one-absolutely summing if there is 0<C<o so that whenever (x)CX
satisfies

as)‘elg HZ, xiri(w)HX =1

3 Txly = C.

In this context, Grothendieck’s classical inequality (the instance N=2 in
Theorem 2.4) is equivalent to the fact that every bounded operator from Cg(£)
(=1Y) into ]2 is one-absolutely summing (see Th. 4.1 in [9], for example). We are
thus led to the natural problem of determining all the one-absolutely summing
operators from Cg(Q") into a Hilbert space. The aim of this section is to exploit
Theorem 1.3 and display classes of operators from Cp~(QV) into /2 which are and
which are not one-absolutely summing.

The fact that there are bounded operators from Cp.(Q? into /*> which are not
one-absolutely summing was pointed out to us (private communication) by A.
Pelczynski whose demonstration relied on Dvoretzky’s theorem ([6]). Below, we
prove this fact by employing arguments different from Pelczynski’s and appealing
to the ‘necessity” direction of 1.3.

then

Proposition 6.2. There is a bounded operator
T: Cpa(Q2) — I?
which is not onme-absolutely summing.
Proof. Let J=N=3 and K=2. Let
S;=(,2), S;=(2,3), and S;=(3,1).
By Prop. 4.2, there is @€/~ ((Z*)°)\B(E,) (as usual, E;=Fgs,_). Therefore,
4s,, is not projectively bounded and we can find (x);2,, (P )rey, (2,) in the

oo
m=1
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unit ball of /2((Z*)?) so that for no measure ucM(Q%

ﬁ((rk > rn ’ rm)) = A3, L4 (xk ’ yn ’ Zm)'
Therefore, there is g€ Cp(Q°), given by

(621) g~ Zk,n,m aknm(rk, Ty, rm)
and | g|l.=1 so that
(62.2) ’Zk,n,m aknmA3,¢(xks Vas Zm)l =

Define an operator
T: Cpa (%) ~ P((Z7)?)
T(("k, rn))(il’ iy) = 2i2 @ (i, i, i3) X (i1, 12) Yu (P2, i3)

for all i; and i;€Z*. We now verify that 7 is a bounded operator. Let A€ Cp(Q?
be given by

by

h ~ Zk,n bi(rics 1)

Let z be in the unit ball of /2((Z*)?) so that
ITWe = [(T®), 2)| = | D, biads, o (s Vs D).

But, 4; (-, -, 2) is a bounded bilinear form on I3((Z*)?). Therefore, it is projectively
bounded (Grothendieck’s inequality) and there is C=0 so that

1T = Clhlw.
Finally, to show that T is not one-absolutely summing, define (f,),,_,C Cg(Q%
by

fm ~ Zk,n aknm(rk, rn)’

B 2.1
v (2D sup 12 fntm(@)]] =1,

and by (6.2.2)

12Z=1(T(fm)’ Zm)[ = (Zﬁ=12k,"aknmA3,¢(xka Yns Zm)l e
as N-— oo, |

We proceed now to construct classes of one-absolutely summing operators
from Cp~(2") into a Hilbert space. Let J=K, N>0 and (S,)Y_, be given. Let
@EB(Ey)CI=((Z™Y).

Let (xDi2, ..., (x);2; be arbitrary but fixed sequences of elements in the
unit ball of 2((Z*)¥). Define

T,: Cen(QV) — B((ZH)X)
in the following way: Let (Y7!S,={m,, ..., my}. Write
(6.1) To((Fiys -5 i) Uimgs o5 Jvg)

= 37 et ®@Un e )5 Gty o i oo X Gy s i)

Jmgr
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for all jy, ...,jy €Z* (recall that §,=(, ...ax)). The projective boundedness
of Ay, yields the following theorem the details of whose proof are left to the reader
(it follows the outline of 4.1 in [9]).

Theorem 6.3. T, (defined by (6.1)) is one-absolutely summing.

Addendum

S. Kaijser at Uppsala University solved affirmatively the problem in Section 5:
The constants’ growth in Theorem 5.1 is @(C¥). A Tonge independently gave the
same solution to the problem (A. Tonge, “The Von Neumann inequality for poly-
nomials in several Hilbert—Schmidt operators,” preprint.).
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