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Abstract. Let M be a (n-1)-dimensional  manifold in R" with non-vanishing 
Gaussian curvature. Using an estimate established in the early work of  the author 
[4], we will improve the known result of  Y. Domar  on the weak spectral synthesis 
property by reducing the smoothness assumption upon the manifold M. Also as 
an application of  the method, a uniqueness property for partial differential equa- 
tions with constant coefficients will be proved, which for some specific cases re- 
covers or improves H6rmander's general result. 

1. Introduction 

Let 5r be the space of  Schwartz class functions and Sg'(R") be the dual 
space of  St(R"). Given TESa'(R"), denote its Fourier transform by i". We know 
that LP(R")cSa ' (R ") for l~p-<~o. Also as usual we denote the support of  T in 
the distributional sense by supp (T). 

Let FLP(R")= {f;fELP(R"), IIfilrzp = II filL.}, 1 <-p-<_ oo. 
1 1 l<=p<oo. For  It is well-known that FL ~ is the dual space of  FL p for 3-+~-= 1, 

a closed subset M in R", we denote 

I(M) = {fE FL ~ 01"), f ( M )  = O} 

J(M) = {fE C~ (R"), f ( M )  = 0} 

K(M) = {fE C~ ~ (R"), supp ( f )  n M = 0} 

We know that I(M) is a closed ideal in FL 1 and it is obvious that 

K(M) c= J(M) c= I(M) in FL ~ norm. 

If  K(M)=I(M) ,  we say that M is of  spectral synthesis. If  J(M)=I(M),  we say 
that M is of  weak spectral synthesis. 
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For the sphere S ~-1 in R ~, n~3 ,  L. Schwartz [12] showed that the spectral 
synthesis property does not hold and later C. Herz [5] proved the spectral synthesis 
property for S 1 in R 2. Varopoulos [13] showed that S ~-x in R n, n=>3 has the weak 
spectral synthesis. For a general hypersurface, Y. Domar [2] obtained: 

If  M is a compact C ~ ( n -  1)-dimensional manifold in R ~ (n=>2) with non- 
vanishing Gaussian curvature, then M is of  weak spectral synthesis. 

We refer the reader to Domar's survey paper [3] for more information on the 
spectral synthesis property. 

The following argument will show that for any positive integer m there is no 
hope to prove the weak spectral synthesis property for a general compact C"  ( n -  1)- 
dimensional manifold in R ~ (even with non-vanishing Gaussian curvature). 

For a small ball U in R ~-~ choose ~k(x) such that at any point in U, ~k is only 
differentiable up to a finite order (_~m). Let E={(x,  ~,(x)), xEU} and fix a point 
So=(Xo,~(xo))EE. Using an affine transformation, we may assume V~(x0)= 
(0 . . . . .  0). For  f 6 C o ( R  ~) vanishing on E, that is, f(x,~k(x))=O for xs we let 
H(x)=f(x, ~k(x)). Then H is identically zero in U and hence by the chain rule we 
have for l<=i<-n-1 

0 = H;,(Xo) = f; ,(x0, ~b(Xo))+f;(x0, ~b(x0). O'x,(Xo)) = f~,(Xo, 0(x0)). 

S o l "  vanishes at so for i=1  . . . . .  n - 1 .  If  f'(xQ, 0(xo))e0,  then the implicit func- 
tion theorem implies that ~k is C - smooth at x 0 since f is C** smooth. This contradicts 
our smoothness assumption upon 0 at Xo and hence all the first derivatives o f f  at 
s o must be zero. Since soEE is arbitrary, we see that all the first derivatives o f f  vanish 
on E. By a standard inductive argument we can conclude that for fECg(R~), f 
vanishing on E implies that all the derivatives o f f  vanish on E. Now it follows easily 
from the result in [13] and Schwartz's counter-example for the spectral synthesis 
that there is no hope to prove the weak spectral synthesis property for this manifold. 

Thus it is natural to consider the following property. We let 

jm (M) = {fE Cg'(R'), f(M) = 0}. 

If  Jm(M)=I(M) in FL ~ norm, we say that M is of  m-spectral synthesis. 
As was pointed out by Domar ([2], p. 25, line 1), the method in [2] can also 

give the result for a manifold with differentiability up to a certain order. Indeed, 
Domar's method yields for n=>2 and k ~ 2 n +  1 that i f M  is a compact C ~ ( n -  l)- 
dimensional manifold in R n with non-vanishing Gaussian curvature, then M is of  
k-spectral synthesis. 

The C 2~+~ smoothness assumption in the above result is too strong if we com- 
pare it with Domar's result in the case n = 2  [1]. 

The main purpose of this article is to report the following result, which follows 
directly from the basic estimate obtained by the author in [4]. 
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Theorem 1. Let k~_n+ 2. I f  M is a compact C ~ (n-1)-dimensional manifold 
in R ~ with non-vanishing Gaussian curvature, then M is o f  k-spectral synthesis. 

Then we consider an application of  the method to the uniqueness property of  
some partial differential equations, which is closely related to the unique continua- 
tion property and absence of  positive eigenvalues of  differential operators (see [9]). 
Let  u be a solution of  any partial differential equation with constant coefficients. 
Assume that the support of  ~ is contained in a subset M of  R n with measure zero. 
I f  uEL v, 1-<p<-2, then from the Hausdorff-Young theorem, a is a measurable 
function in R" and hence is zero since M has measure zero. Thus u = 0  in this case. 
When p > 2 ,  we consider the following three cases. 

(i) /xu(x)+u(x)  = 0, xER"; supp(a)  c {~, I l l  = 1};  

Ou O~u O~u O~u 
(ii) i---~--+-~xa + - ~ - +  ... +~Ox~_~ = O; 

s u p p  (•) c {(~1 . . . . .  ~ - 1 ,  ~n), ~n = I ~ 1 ~ +  ... + I~,-~1~}; 

(iii) t~u [O~u ~)~u + ~2u 
0t 2 I, t~x~ + - - ~ 2 2 + ' ' "  ~ ]  = 0; 

supp (a) c ((Ca . . . .  , ~,-1, ~,), I~.l  2 = I~11~+ ... + I~n-llU} �9 

In the cases (i) and (ii), the corresponding hypersurfaces have non-vanishing Gaussian 
curvature while in the case (iii), the hypersurface is a cone which has vanishing 
Gaussian curvature everywhere except the vertex. Combining the basic estimate 
with the Beurling-Pollard technique, we can recover (slightly improve) a general 
uniqueness result of  H6rmander ([7], theorem 2.2) for the first two cases. This is 
done in our theorem 2. Our theorem 3 deals with the third case, the wave equation, 
where a group action on the cone is used to obtain the optimal result, which im- 
proves H6rmander 's  result for this specific equation. 

The organization of  this article is as follows. In section 2, we quote the basic 
estimate obtained in [4] and some facts from the Beurling-Pollard technique. 
Section 3 will contain the proof  of  our theorem I. Theorems 2 and 3 will be stated 
and proved together in section 4 and at the end of  this section an example will be 
given to show that the curvature assumption upon M in the basic estimate cannot 
be removed completely. 
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2. The basic estimate and the Beurling-Pollard technique 

Let M = { ( x ,  d/(x)), xEU}, where Uis  a small open ball in R n-l, ~(x) a real- 
valued function defined on U such that $(x)ECk(U) for a positive integer k (to be 

fixed later), and such that the inverse of  the Hessian determinant [ ( ~ ) 0 2 0  exists 

and is bounded in U. Let TEFL**(R") and vanish on Jk(M). As in [4], for all suffi- 
ciently small h we can convolve T with a family of  nice functions ~oh along M to obtain 
a family of  nice measures T h on M such that the following estimate holds. 

Basic estimate (see [4], p. 510). Let k be a positive integer such that k >=n+ 2, and 
1 ,~1/2 

let 01, ~)ER"-I •  I f  we set M2,,(f')(q, r  sup,>0 m(B, Ol)) lB,(,)IT(u, ~)12duJ , 
then we have 

I~(q. ~)1 -<- CM~.,(f')(q. ~). 

where C is independent o f  FI, 4, and h. 

Let f ( x )  be a measurable complex-valued function on R" and m the Lebesgue 
measure on R". For y > 0 ,  t>0 ,  denote 

2f(y)  = m{x; If(x)[ > y}, f * ( t )  = inf {y; 2 I (y  ) ~ t}. 

f * ( t )  is called the non-increasing rearrangement of f (x) .  
The Lorentz space L(p ,q )  is the collection of  all f such that Ilfll,.q<oo. 

where 

" q t 11" * t v a t  Xlq [ 7 s  f ( ) ] - 7 ) '  I < = P < ~ 1 7 6  l = < q < ~ ' ;  

[If[I,,, = sup tl/pf*(t), 1 ~_ p <- 0% q = oo. 
�9 I ' : ~ 0  

Lemma 1. Let  M be as above, TESa'(R ") such that T vanishes on J"+2(M). 
Then T=0,  provided f'EL(p, q ) f o r  2=P<._-zT,< 2. 1 =~q<_~o. 

Lemma 2. Let M be an (n-1)-dimensional manifold in R" with area. Let  
TE6e'(R") with supp ( T ) c M .  I f  f'E L(p,  q), then T vanishes on J"+~(M) provided 

O) 2 ~ p <=oo, l ~ q ~oo, when n = 2 ;  

(ii) 2 ~_ p <o% 1 ~_ q <=o% when n = 3; 

2n 
(iii) 2 ~_ p < n - 3  ' 1~_ q <=o% when n ~= 4. 

Lemma 3. Given T, Th, M as in the basic estimate, we have 

II~llp.~ ~- C,.~lI:~ll,.~ 
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for 
2n 

< 1 < q ~ o o ,  when n > 3 ,  = P <  n - 3 '  = 
<=p<o% 1 <= q ~_ o% when n = 2 , 3 .  

Proof. From lemma 2 above, we see that T vanishes on J*+~(M) if p and q 
are in the range contained in the condition of this lemma. So the basic estimate 
yields 

But 

Mz,.(~)(r/, ~) <_- C/sup  1 - 2 
~1/~ 

x,>o m(B,(rh r f ..r162 lT"tY)l dy) = CM=(f)Q1, r 

so we have If ' ,(n,  ~)I--<CMz(T)(r/, ~) and hence It~,)I~.,_<--CIIM=(I3}I~.~. 
It is easy to check that the operator Mz is sublinear and for any gELS(R"), 

we have Iln=(g)l(~.<=llgll~, and for any gELZ(R"), we have Ilgz(g)llz.~_llgll,. 
Thus the conclusion of this lemma follows directly from the interpolation between 
Lorentz spaces (see [8]). 

Remark 1. The proofs of lemma 1 and lemma 2 are similar to the proof of 
lemma 1 in [4], but the case p=2 ,  l<=q<_-oo should be treated more carefully. Also 
in the basic estimate and all three lemmas, J"+Z(M) can be replaced by Jr(M) without 
changing the proof. 

3. The proof of theorem 1 

Proof of  theorem 1. We will follow Domar's argument in [1]. The compactness 
of M implies that we can find {E~, j=I  . . . . .  m } c M  such that M=U~=aEj and 
each Ej has the same form as M in the basic estimate. Choose ~jECo(R" ) such 
that supp(~pj)c~McEj and z~'__ltpj=l in M. 

Given TCFL'*(R") vanishing on Jn+~(M), which implies supp(T)~M,  
we have 

m tn  rn 2.  
r = (Zj_-I ~ j ) r  = g j = ,  ~ j r  = Zj=~r 

Here Tj=q~jT. It is easy to see that supp (TJ)cEj  and T'~ = ~ .  ~EL~*(R ") since 
~iEU(R"). Thus TJEFL ~ (R ~) and hence as in the basic estimate we can construct 
{T~} for small h such that I2V~(r/, ~)l=<CMa,,(~J)(t/, ~) and hence 

fl~[l~. ~- Cj ll:~JIl~, j -= l ,  2 . . . . .  m, 

with Cj independent of h. 
By the construction of ThJ as in [4], we have for f~Sr (R"), 

( T [ , f )  = < ~ ' . ~ ,  foB) = (E j, r 
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Using the Lebesgue dominated convergence theorem, we see that 

= a s  h- 0 llq~h*foP--fo~llvL,r ]](~(hr A 

SO (T~,f>~(Z~,fo~>, since Z~EFL~176 
From the construction of  Z i and the assumption T(J"+Z(M))=O, we have 

(ZJ, fo~>=(TJ, f>. This yields (Thi, f>-~(TJ, f>, as h-~0. 
Now if we let Tn=z~=x ~ojThJ, then for fESe(R"), 

(Tn, f ) ~ ( T , f ) ,  as h ~ 0 .  

Recall that St(R") is dense in FLI(R ") and FL ~ is the dual space of  FLI(R"), so 

for fEFLI(R"), from the estimate ll:Phl[ -<_CIl:?ll~, we have 

( T n , f } - ~ ( T , f } ,  as h ~ 0 .  

To prove the theorem, by the Hahn-Banach theorem it is enough to show that 
given TEFL~(R ") vanishing on J"+2(M), we have ( T , f } = 0  for fEFLI(R ") van- 
ishing on M. 

But T n is a measure on M absolutely continuous with respect to the area measure 
of  M. We have an(s)EC(M) such that 

(Tn, f )  = f a,(s)f(s) as = 0 for fE  FL 1 (R"). 

Thus for each FEFLI(R ") vanishing on M, we have (T,f)=limn-.o(Th,f)=O. 
The proof  of  theorem 1 is complete. 
It seems to the author that the C "+2 smoothness assumption in theorem 1 is 

best possible as indicated by the proof  of  the basic estimate, which is based on 
H6rmander's estimate ([6], theorem 1), while Domar  bases his argument on Litt- 
man's well-known estimate [10], and the C 2"+1 smoothness assumption is imperative. 
It should be pointed out that Miiller [11] adopted another idea of  Domar 's  de- 
veloped in [3] to extend our theorem 1 to M with vanishing curvature in a simple 
way (a cone is a standard example), but the C 2"+1 smoothness assumption in his 
argument is still essential. It remains open how to modify H6rmander's estimate 
in order to reduce the smoothness assumption in Mailer's result. 

4. The proof of theorem 2 and theorem 3 

Theorem 2. Let u be a solution o f  the cases (i), (ii) in section 1. Then u = 0  i f  
uEL(p, q) for some (p, q) satisfying < 2" <=q<= oo; 2 = p < - ~ _  1, 1 or P=,~-a, 1-<--q <~~ 

Actually we can prove a stronger result from which theorem 2 follows. 
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Theorem 2'. Let M be a C "+2 (n-1)-dimensional manifoM in R" with non- 
vanishing Gaussian curvature and TESe'(R") with supp ( T ) c M .  I f  ~E L(p, q) for  
some (p, q) satisfying 2 = p <  _--:i- , <  2. l=q_< -< ~ ;  or P=~-l,Z~ 1 <=q< co, then T=O. 

Note that in theorem 2', M need not be compact. Also from Littman's esti- 
2n mate in [10], it is easy to see that given ~ < , , < - ~  l=<q_-<o~; or P = . - 1 ,  

n - 1  / ~ - -  ' 

q = ~ ,  we can find TE6a'(R ") with s u p p ( T ) c M  such that ~EL(p,q) and 
T ~ 0 .  Thus the result in theorem 2' is optimal. Theorem 2 recovers H6rmander 's  
result in [7] for the cases (i) and (ii), and even more, H6rmander 's  method in [7] 
cannot cover the case p = 2 ,  2<q_-<~o, since he assumes 7~EL~oc(R ") and uses the 
Plancherel theorem. 

Proof o f  theorem 2". I f  M is compact, from lemma 2 of  section 2, we see that 
2 _  < < 2. T vanishes on j .+2, so the case - P  ~---:i, 1-<-q -<~176 follows from lemma 1 of  

2" _ q  , for the section 2. In the following we only consider the case P=n--:i" 1<- <r 
compactness argument remains valid for the other cases. 

For  any open set U in  R" with E = U n M  open in M, and any r 
we let T~=~p.T. Then we have supp(T1)cE  and ~ = ~ . T .  Thus " ~n T1EL (._-zi-, q) 
since OELX(R")nL~(R ") and TEL (._--~, q). 

Taking U smaller if necessary, we can choose a coordinate system in R" such 
that E =  (x, ~k (x)), ~ satisfies the properties needed for us to adopt the basic esti- 
mate. 

So for a small h, from lemma 3 of  section 2, we can find a good measure with 
supp(Th)cE such that the corresponding density function ah(S)EC"+I(E) and 

II?hll < Cl l~[I  2 n / n -  l ,  q --~ 2 n / n -  l , q  " 

I f  ah(S ) is not identically zero on E, Littman's asymptotic estimate in [10] yields 

~ (~ )  ~ C(1 +l~l) -t"-~)/2 for large ~ER". 

But the function (1+1~1)-("-1/2)r q) for 1-<_q<~, so we must have 
an(S)=0 identically on E, that is Th=0 for all small h. By Titchmarsh's convolu- 
tion theorem and the definition of  Th, this implies T~=0 and hence T = 0  since 
U and ~o are arbitrary. This is the end of  the proof  of  theorem 2'. 

For  simplicity, we state the following theorem in terms of  L p spaces rather than 
the L(p, q) spaces. Also the case n = 2  is simple as we can see from lemma 1 and 
lemma 2 of  section 2. 

Theorem 3. I f  u is a solution of  (iii) in section 1 such that uELP(R ") (n=>3) 
< _ <  2 ( n - 1 )  for some p satisfying 1 =p_-  . -z  , then u = 0 ;  furthermore, given ~ < p < =  0% 

we can find a non-zero solution up of  (iii) such that upELP(R"). 
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-<: -~z 2n Remark 2. H6rmander's general result only covers the range of p, 1 = p = . _ x  �9 
2, < z(.-1) for n_->3. It is easy to check that .--77 

Proof of theorem 3. For simplicity we only give the proof for the case n=-3. 
The case n->4 can be treated similarly, but the (n-1)-dimensional rotation group 
S0,_1 acting on R "-1 and the Haar measure on SO,_x are needed. For n=3 ,  the 

2 2 hypersurface M is the cone M={(x l ,  x2, xa); x~=x~+~, (xl, x~)ER2}. If  ~ is 
supported at the vertex of the cone M, (0, 0, 0), then the proof is trivial. So we may 
assume by lemma 2 that supp ( f i ) c M \ ( 0 ,  0, 0). To prove fi=0, which implies 
u--0, it is enough to show that for any bounded closed ball BcR"x,(0,  0, 0), and 
any C~'(B) function r we have ~0fi=0. 

But tp~=~.uELV(R 3) since q3ELI(R 3) and u~LV(R3), so we may assume 
supp (z~) is compact. Without loss of generality, we may assume that 

s u p p ( t ~ ) c E =  {(rcos0, r s i n 0 , 1 " ) ; 0 ~ 0 ~ _ 2 1 r ,  0 < c l _ - < r < = c 2 < c ~  

- 5a"R"" Denote ~ by T and let U={(0, r);O<=O<=2n, 1-<r<2}. We define T~ t ) by 

(r., f )  = (7, f sin (q~-0),-~}a(scosO, ssinO, s)dO~), 

fCSe(R"). 

2(,-1) < 2. for Here a is a smooth function in R" with compact support. Note that ~ 
all n_->3. We see that T. is well-defined since (T,f(x, y, z)- f (r  cos 0, r sin 0, r)) =0  
by lemma 2. 

It is not difficult to check again by lemma 2 that T. is a nice measure on the cone 
M with the density function ~EC~(M), 

( [ c o ; 0  sin0 cos0 sin0 s ) )  
~(0, s ) =  Z a  x +  s Y'---S " - 3 ' -  s x, . 

Now our lemma 2, a linear transformation of  (~1, ~z, ~a), and Minkowski's 
inequality for integrals yield 

{fRa[ffma(~)[ p d~} lip ~ eL( L, i d ~ ' )  1/pa(~'  c o s  0, ssinO, s)dO ds 
S 

=<c[f., i/-(r162 1" 

Here C stands for a uniform constant. 
Thus we have proved 

(*)  IIT.I[, <= CIIf'll, for 1 _<- p ~_ 4 = 2 ( 3 -  1) 
3 - 2  



On the spectral synthesis property a n d  its application to partial differential equations 101 

If  the density function ~ of  T~ is not identically zero, we want to show that 
~ELP(R a) if and only if p>-4. This fact together with the inequality ( . )  implies 
both parts of the conclusion in our theorem 3. 

Since we may assume that supp (T,) is very small, we can have small 61 and &_ 
such that 

supp (a) c V 

{( } = 0, r); 01 < 0 -< 02 ,  - i  <: r l  < r < r 2 <: l ,  0 "< 02  - -  01 < :  5 1 ,  0 <: r z - -  r l  < Oz �9 

We now examine the asymptotic behaviour of 

L ( r  = f,.  fo, r)dO dr.  
"] r t ,] Oj r 

Noticing that for r fixed, the integral 

b(~l, ~2, r) = f~162162 r)dO, 
Ox 

is nothing but the Fourier transform of a smooth measure on a small piece of a 
circle (with non-vanishing curvature), if we check the proof in [10] carefully, we see 
that for ~z sufficiently small, the asymptotic behaviour of/ 'a(r  for the fixed r is 
C((1+~+~2)1/2) -1/2, where 0 < C < ~  is is independent of 0, r, Ca, ~., and all the 
small ~3. It follows that for a small ~3, as a function of ~1 and ~2, Ta~LP(R2) iff 
p > 4 .  Thus /'a(r z) only if p > 4 .  The fact that Ta(~)~LP(R 3) for p > 4  is 
a simple consequence of the expression of To(~) and the above argument. This 
finishes the proof of theorem 3. 

Remark 3. Note that in the proof of theorem 3 we only used the rotation and 
the dilation on the cone, so the whole space R n in the condition uELP(R ") can be 
replaced by a solid cone, which is the condition contained in [7]. 

Now we give an example to show that the curvature assumption upon M in 
the basic estimate cannot be removed completely. 

Example5.1. Let x=(xl, x2)~R ~ and x0~R 2 with Ix01--3. Let Ul={x;  Ixl<l}, 
U~={x; Ix-x01<l},  u~={x ;  Ixl<:~} and U2={x; [ x - x 0 [ < l } .  Let U={x;  1x1<5} 
and choose ~(x)~C5(U) such that ~(x)= 1 on U~u ~)~" and ~(x)=0 on U\(Uxw U). 
Define ~h(x)ECS(U) by letting O(x)=(2-1xl~)X/2~(x) forx~ Ux, d/(x)=(~ + x2z)i/%t(x) 
for x~Uz, O(x)=0 for xEU\(UauU~). 
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Let E =  {(x, ~k (x)), x~ U}, then E contains a sphere-piece 

.E 1 = {(x,  (2--lx[2)1/~); xE U'~} 

and a cone-piece Ez={(xl ,  xz, (~+~) , / z ) ;  (x~, x2)EU~}. Choose a nice measure 
T on E with a non-zero smooth density function contained in the piece of  the sphere, 
then from Littman's estimate we have ~ L P ( R  3) for p >3.  Let p =4,  then lemma 2 
yields that T vanishes on j5(E) .  So if the basic estimate is true for E, then we would 
have from lemma 3 that 

I I~l l ,  =< c [ I / ' l l , .  

We can apply lemma 3 several times to make Th a measure on E such that the 
C 4 density function an(s) is not identically zero on the piece of  the cone. Choose 
q~(x)CCo(R a) such that tpTh is contained in the piece of  the cone and non-zero, 
then we have since r 3) 

A 

IkoT~ll, = [I,~* T,,II, ~ C I l~ l l , .  
A 

But from theorem 3, we see that q~T h ~ 0 and cpThE L p (R 3) if and only if p >4,  
so we must have q~Th=0, which contradicts the choice of  q~ and T h. 
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