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Introduction 

Part of the classical Schwarz lemma states that if f :  D--D is a holomorphie 
mapping of the open unit disc D in the complex plane C to itself, and if 
f(0)-- 0, then 

(i) If'(0)l<_- 1, 
(ii) [ f ' (0) [=l  if and only i f f  has the form f ( z )=2z  for some constant 2 

with 141= 1. 
There are now many extensions of this result to higher dimensions (see 

Dineen [5]). An early result was the following one due to Carath6odory [3] and 
Cartan [4]. 

Theorem 0.1. I f  ~ is a bounded domain in C", i f  f :  ~ ~ is holomorphic and 
i f  f (a)=a (a, a point in ~) ,  then 
(i) Idetf'(a)l<_- 1, 

(ii) the following are equivalent: 
(a) Idetf'(a)l-- I; 
(b) the eigenvalues o f  f ' (a)  have modulus 1; 
(c) f is a biholomorphic automorphisrn o f  ~ .  

A similar result has been obtained for holomorphic mappings from bounded 
symmetric domains into the (Euclidean) ball by Kubota [10, 12] and Travaglini [18]. 
Our purpose is to generalize these results as well as results of Alexander [1] and Lem- 
pert [13]. Our methods lead us to connections with ideas in the geometry of (finite 
dimensional) Banach spaces, such as the Banach--Mazur distance and minimal 
volume ellipsoids. A central r61e is played by the existence of a unique invariant 
inner product on the spaces we consider. 
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1. Invariant Inner Products 

All Banach spaces we consider will be over the complex field C, unless other- 
wise stated. The open unit ball of  a Banach space X will be denoted by Bx. 

Definition 1.1. An inner product ( . , . )  on a Banach space X is called invariant 
if  (Sz, Sw)=(z,  w) for every isometric isomorphism S: X--X.  

Proposition 1.2. Every finite dimensional Banach space X admits an invariant 
inner product. 

Proof. We denote by I(X) the (compact Lie) group of  linear isometrics of  X 
and by # normalized Haar measure on I(X). Let { . , .  ) denote some inner product  
on X and define 

(1.1) <x, y>, = f . x , < s x ,  sy> du(S) (x, y X) 

It is easy to check that ( . , . ) i  is an invariant inner product on X. II 

Definition 1.3. A Banach space X is said to have the unique invariant inner 
product property i f  there exists an invariant inner product  ( . , . )  on X such that 
(i) ( . , . )  generates the topology of  X, and 

(ii) if  ( . , . ) x  is any invariant inner product  on X with property (i), then there is 
a constant c > 0  such that 

<x, yh = c<x, y>. 

(Of course condition (i) is automatically satisfied if  X is finite-dimensional.) 

Example 1.4. ([6]) If  X is a finite rank JB*-triple (finite- or infinite-dimensional) 
which is irreducible (that is not expressible as a nontrivial direct sum X~ ~** X~), 
then every invariant inner product  on X is a multiple of  the algebraic inner product 
of  Harris. 

Definition 1.5. Let el,  e2 . . . . .  en be a basis for a finite-dimensional normed 
space E. The basis is called 1-unconditional i f  

n B 

holds for all choices of  scalars aj and 2j satisfying 12ii= 1 (l<_-j<_--n). 
Given a norm II-lie on C ~ for which the standard basis is 1-unconditional 

and normed spaces Xj (1 <=j~=n) we can define a norm on X =  ~ = x  Xj by 

H(xl,x  . . . . .  x )H = . . . . .  Hx.n)ll . 

We refer to this as an absolute norm on the direct sum and say that X has an ab- 
solutely normed direct sum decomposition. 
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Proposition 1.6. Suppose a Banach space X has an absolutely normed direct sum 
decomposition G T=I Xj such that each X~ has the unique invariant inner product prop- 
erty. Let  ( . , .  )j denote an invariant inner product on Xj.  Then every invariant inner 
product on X has the form 

n 

(1.2) ((xl, x2 . . . .  , xn), (Yl, Yz . . . . .  Yn)) = Z j = l  Cj (Xj, yj>j 

for some cj>0 ( l ~ j ~ n ) .  

Proof. Fix 1 <=j<=n. Let To denote the isometry of X which multiplies the j th  
coordinate by e '~ Invariance of the inner product implies that, for k # j ,  

( x j+  xk, x l +  xk ) = (e'~ x , ,  e '~ x,)  

from which (xi ,  xk)=O follows easily. 
Because the norm on X is absolute, every isometry S of Xj extends to an isometry 

T o f X b y  
T(xl ,  xz . . . .  , x.)  = (xl . . . . .  x j -x ,  S(xj), x i+1, ..., x.). 

From this and the unique invariant inner product property of Xj, it follows that 

for some cj>O. 
The result follows by combining these two observations. II 

Proposition 1.7. Let X be a finite-dimensional Banach space with a symmetric 
basis (ei)~= 1 - -  that is one satisfying 

n n IIz =  ajen(j)ll = IIzj=  aj eAI 
for all permutations z of  the inz~ces 1, 2 . . . . .  n and all scalars aj, 2 i with 12 A = 1 
(1 ~_j<=n). Then X has the unique invariant inner product property and 

( j=xaje.l, Zj=~bjej> = , ~ = l a j ~ l  

is an invariant inner product on X. 

Proof. The same argument as that used for the proof of proposition 1.6 shows 
that an invariant inner product on a space with an unconditional basis must have 
the form 

t l  t l  / I  

( Z  j=l aj e j, Z j=l bj e j> = Zj=x ci aj ~j. 

Invariance of the inner product under permutations of the indices forces c~= 
c~ . . . . .  c . .  II 
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Examples 1.8. 
I f  a Banach space X has the unique invariant inner product property, then X 
is necessarily reflexive and it is not hard to check that its dual space X" must 
also have the same property. 
Let X denote the space of  all nXm complex matrices with a norm satisfying 
ItZll=llUZVll for all nXn unitary matrices U and all mXm unitary V. 
Such a norm is called an ideal norm and the normed space is called an opera- 
tor ideal. 
Then X has the unique invariant inner product property and an invariant inner 
product is given by 

<Z, W> = X j ,  k zjk %~. 

2. The B a n a c h - - M a z u r  Distance 

The Banach--Mazur  distance between two isomorphic Banach spaces X and 
Y is defined to be 

d(X, Y) = inf{]lTl] [[T-1[[: T: X ~ Y a linear isomorphism}. 

A more geometric description follows from the observation that if  T: X ~  Y is a 
linear isomorphism between Banach spaces X and Y (and Q >0), then the follow- 
ing are equivalent: 

(2.1) ]]T]] _~ 1 and lIT-l]] ~ Q 

(2.2) T(Bx) c Br c QT(Bx) 

1 
(2.3) - -Br  c T(Bx) c B r 

Q 

1 
(2.4) --Ilxll ~ IITxII ~ IIxll. 

0 

Hence 

d(X, Y) = inf{Q ~ 1: (1/0)B r c T(Bx) c Br,  T: X ~ Y a linear isomorphism}. 

From the definition, it is clear that d(X, Y)=d(Y,  X). The infimum (in the 
definition) is certainly attained by some T when X and Y are finite-dimensional. 
We use the notation e(X) to denote the Banach--Mazur  distance from X to an 
isomorphic Hilbert space (e for eccentricity). We let e (X)=  ~o if  X is not isomorphic 
to a Hilbert space. 
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Proposition 2.1. I f  1, is a finite-dimensional Banach space, then there exists an 
invariant inner product ( . , . )  on X which satisfies 

1 
(2.5) e(X) 2 Ilxll ~ ~_ (x,  x )  _-< tlxll "~ (x~X). 

Proof. Let T: X--,H be an isomorphism from I" to a Hilbert space H (with 
the same dimension as X) which satisfies ][TII=I and []T-~II=e(X). The inner 
product ( . , . )  defined on X by 

(x, y) = (T(x), T(y))H 
satisfies 

1 I 
I[xll= = e "v'---'-~taj IIr-l~ e (Jr-') 2 

e (X)2  liT-111 ~ IITxll~ : IITxll~ (x,  x)  ~ [Ix/l 2. 

Now the averaging process (1.1) produces an invariant inner product ( . , . ) i  
on X and it is not hard to check that 

1 
e (X)  z []xl[ 2 ~_ (x ,  x) ,  _~ [[xll 2. | 

Corollary 2.2. I f  X is a finite-dimensional Banach space with the unique invariant 
inner product property and ( . , . )  is any invariant inner product on X, then 

e (X)~  = sup (x ,  x)/ inf (x,  x) ,  
[Ixll = 1  Ilxll = 1  

and there is a unique im'ariant inner product on X satisfying (2.5). 

Examples 2.3. 
(i) For 1 ,=f ;  (that is C" with the norm II(xj)jllp=(~'j IxjlP) l/p, l<-p< co and 

II(xj)ill~--sup J Ixil ) proposition 1.7. and corollary2.2 easily imply the well- 
known result that 

e(:~) = nll/2-1/pl (1 ~_ p ~_ oo). 

(ii) Let E denote C" with a symmetric norm and let X be a finite-dimensional Banach 
space with the unique invariant inner product property. Let E(X)  denote the 
direct sum of n copies of  X, absolutely normed by E. From proposition 1.6 and 
the fact that permutations of  the coordinates give isometries of  E(X),  it follows 
that E(X)  has the unique invariant inner product property. Then we can cal- 
culate (using corollary 2.2) that 

e(E(X))  ~ e(E)e(X).  
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(iii) Let X1, )(2 . . . .  , X, denote finite-dimensional Banach spaces with the unique 
invariant inner product property and suppose 1 ~ p <  oo. Using propositions 1.6 
and 2.1 and Lagrange multipliers, one can show that 

e ( X 1 0 p X z O p . . .  OpX,)  2 = [](e(XO z, e(Xz) ~" . . . .  , e(X,)')llr 

where 1 / r=l l -2 /p  I. In particular, if p ~ 2 ,  

e (e~ Op f~)z = (nP/q" [q-2[/[p-2[ Ar nlp/s. [s-mI/IP-2[)I~-2t/P. 

Example 2.4. If  X is a JB*-triple of  rank r, then the algebraic inner product 
(see [6] and example 1.4) satisfies 

tlxtl ~" <- ( x ,  a )o  <- r tlxl] ~" 

and equality occurs in both inequalities for nonzero values of  x. A rescaling of  (2.4) 

shows that e(X)<-}/r. Since X contains f 2  isometrically (see [6]) we have, by ex- 

ample2.3(i), e(X)>=e(g2)>-_l/r. Hence e ( X ) = ( r .  

3. Determinants and Ellipsoids 

Let X and Y be Banach spaces of  the same finite dimension n. Let (ej)~.= 1 and 
r n ( f , ) j = l  denote fixed bases for X and Y'. Then the determinant of  a linear operator 

T: X-~Y is defined as the determinant of  the n• matrix (fk'(Tej))jk. Changing 
the bases changes the value of  the determinant det (T) by a multiplicative factor 
independent of  T. 

Remarks 3.1. 
(i) Let (ej)j be the biorthogonal basis for X'  (that is, ej(ek)=0 i f . / r  and e~(ej)= 1). 

I f  S: X ~ X  is an operator and its determinant is taken with respect to (ei) j 
t and (ej)j, then 

det TS = det Tdet  S. 

(ii) I f S  is an isometry of  X, then IIS"ll =1 for all n~Z. Since the unit ball of  the 
space of  operators on X is compact and the determinant is a continuous func- 
tion, we can conclude 

sup [det (S")[ = sup Idet (S)]" < ~o. 
n E Z  n C Z  

Hence [det (S)[ = 1. 
(iii) For  mappings T: H ~  Y with domain a Hilbert space, we will generally choose 

an orthonormal basis for H when taking determinants. Using a different ortho- 
normal basis would not  affect the absolute value Jdet (T)[. Similar remarks 
apply when the range is a Hilbert space. 
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The following proposition is due to John [9]. Generalizations are given by 
Lewis [14] (see also [16]). 

Proposition 3.2. Let X be an n-dimensional Banach space and let H be an n-di- 
mensional Hilbert space. Then there exists an operator To: X ~ H  such that 
II T011 -- 1 and 

Idet (TO)I = sup {ldet (T)I: T: X -* H linear, fITII <-- 1}. 

The operator To has this property for any choice of determinant function - -  that is for 
any choice of basis in X. 

Moreover, i f  T: X ~ H  has Idet(T)l=ldet(To)l and lIT[[<-l, then T=UTo 
for some unitary operator U on H. 

Remark 3.3. We may use the chosen basis in X to transfer the standard volume 
on C " = R  2~ to X. Then the ellipsoid T0-1(BH) has volume Idet (To)[ -~ Vol (Bn). 
(This is just the change of variables formula, taking into account that the matrix 
of  T0 -z is a matrix with respect to a basis over C.) It follows that To-~(Bn) is an el- 
lipsoid in X containing Bx of minimal volume. The conclusion of proposition 3.2 
means that there is a unique minhnal volume ellipsoid containing Bx. 

Corollary 3.4. With the notation of proposition 3.2, the inner product on X 

<x, y> : <Tox, ~oy>. 

is an invariant inner product. 
Moreover, {x~X: ( x , x ) ~ l }  is the minimal volume ellipsoid containing B x, 

(3 .0  

and 

(3.2) 

<x, x> ~ I[xll 2 (xCX), 

{x~X: Ilxll 2 = <x, x)  : l}  ~ 0. 

Proof. If  S: X-~X is any isometry of X, then TOS has norm 1 and [det (TOS)I = 
Idet (To)[ by remark 3.1. Hence ToS--- UTO for some unitary operator U on H, and 

(x,y> = (TOx, ToY)n = (UTox, UToy)n 

: (TOSx, ToSy>. = (Sx, Sy>. I 

Remark 3.5. We will use the notation C(X) for the set in (3.2), as this is the set 
of  contact points between the unit sphere of  X and the surface of  the minimal vol- 
ume ellipsoid containing B x. It is known that CO() spans X in general (see [14]). 

The dual versions of  proposition 3.2 and corollary 3.4 are also valid and we 
have the following result. 
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Proposition 3.6. Let X be an n-dimensional normed space and H an n-dimensional 

Hilbert space. I f  7"1: H-~ X satisfies [IT~[l=l and 

Idet (T01 = suP{Idet(T)l: T: H - ~  Y linear, I[T][ _~ 1} 

then the inner product 
(x, y) = (~-~x, ~-~y),, 

is an invariant inner product on X. 

Moreover {xE X: (x, x ) <  1} is the maximal volume ellipsoid contained in Bx ,  

(3.3) 

an,t 

0 . 4 )  

Iixll ~ ~ <x, x> (x~X), 

{x~X: IIxP = <x, x> = 1} ~ ~. 

We now consider these results when X has the unique invariant inner product 
property. Let ( . , . ) 1 ,  ( ' , ' ) 2  and ( . , . ) 3  denote the invariant inner products con- 
sidered in proposition 2.1, corollary 3.4 and proposition 3.6 respectively. In view 
of the inequalities satisfied by these inner products (which are sharp in the sense 
that equality holds for some nonzero xEX)  it is easy to see that 

1 
<x, x) l  = <x, x)~ = ~ <x, x)~ (xr 

e t a )  

Let 8 =  {x~X: (x, x)l~_ 1}. Then d' is the minimal volume ellipsoid containing 
B x and (1/e(X)),~ is the maximal volume ellipsoid contained in B x.  The fact that 
the maximal and minimal volume ellipsoids are dilations of  one another is a con- 
sequence of  the unique invariant inner product property, and is not true in general 
finite-dimensional spaces (see corollary 3.10). 

A further simplification occurs as a result of  the unique invariant inner product 
property - -  the Banach--Mazur distance e(X)  from X to a Hilbert space is uniquely 
achieved (modulo rescaling and a unitary change of  variables on the Hilbert space) 
by the same operator which realises the minimal (or maximal) volume ellipsoid. 
(This strengthens corollary 2.2.) 

Theorem 3.7. Let X be a finite-dimensional Banach space with the unique in- 
variant inner product property and let T: X-~H be a linear operator from X to a 
Hilbert space H with the same dimension as X. Suppose IITII = 1 and lIT-11[ =e(X) .  
Then there exists a unitary operator U on H such that T=UTo and T - I ( B n )  is the 
minimal volume ellipsoid containing B n . 
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Proof. Let (x, y) = (Tx, Ty}n for x, yE X. By (2.4), 

1 
e(X) 2 [Ixll ~ =< IITxII~ : (x ,  x )  _~ Ilxll ~ (xEX). 

I f  ( . , . ) i  is the invariant inner product got from ( . , . )  as in (I.1), then 

1 
e(X)  2 iiXll ~ ~ (x, X)i <= [[xl[ ~ (xEX). 

As in the comments preceding the theorem, ~'~= {xEX: (x, x>i <- 1} is the minimal 
volume ellipsoid containing B x and (l/e(X))~i is the maximal volume ellipsoid 
contained in B x . 

Let oa={xEX: (x,x)-<l}.  By (2.2), B x C T - X ( B n ) = 8  and hence 

Again by (2.2), 

and therefore 

Hence 

Vol 8 => Vol 8~. 

1 1 1 

e ( X )  e t a )  e t a )  

1 1 
Vol e <= Vol 

Vol oal = Vol r 

and proposition 3.2 implies the desired result. I 

Theorem 3.8. Let X be the direct sum (Xx @ X2 E3... �9 Xn) G of  n finite-dimen- 
sional Banach spaces each with the unique invariant inner product property. Suppose 

1 2 
2<-p -<oo, - - + - - = 1 ,  dj--dim(Xj) ,  d = ~ j d j = d i m  (X) and ( . , .  )j is theinvariant 

r p 
inner product on Xj which satisfies 

IIxA z ~_ <x 1, xj>j (xjEX A 

with equality for some nonzero xj.  
For an n-tuple c=(cl, cz . . . .  , cn) o f  positive numbers let 

(3.5) ( Z I  x~, Z~yj>c = Z~  cj<xj, yj>j. 

(i) The unit ball for (3.5), c i=  I (all j ) ,  is the maximal volume ellipsoid contained 
inB x. 

(ii) The unit ball for O.5), 

Cj = e ( ,~j)  2 

is the minimal volume e!lipsoid containing B x. 
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(iii) For the map To o f  proposition 3.2 we have 

[det(T0)[ -d;2, n ( dl/r ]ay,,2 
= d H j=l ( e ( X j )  2 ) ' 

where we are taking as baMs [or X one which is orthonormal with respect to ( . , .  }r 
c j ~ l  altj.  

(iv) The inner product (3.5), c j=  l /e(X) ~ all j, is the only invariant inner product on 
X which satisfies 

1 
(3.6) e(X)~ IIx!i" <= (x, x) <= IJxJ] 2 (xE X). 

Proof. Let H denote the vector space X endowed with the inner product ( . , . ) r  
and let T denote the identity mapping from X to H. By proposition 1.6 all invariant 
inner products on X are of the form ( . , .  )~ for some e. By corollary 3.4 and prop- 
osition 3.6 it suffices to consider operators of  the form T and T-1 in calculating the 
ellipsoids of  minimal and maximal volumes. 

A calculation using Lagrange multipliers shows that 

(3.7) IITII 2 = II(cle(Xl)"-, c2e(Xz) z . . . . .  c , e ( X , ) %  

(3.8) liT-all = sup 6'71. 
l~j~n 

Take a fixed basis for X to be of  the form {ejk: 1 <=J=n,'-< l ~ k ~ d j }  where 
(ejk)~L 1 is orthonormal for Xj with respect to ( . , . ) j .  (This choice will not affect 
the absolute values of  determinants in (iii).) Then 

ej~__ (1 <= . /~n ,  1 <= k -~ dj) 
ycj 

is an orthonormal basis for H. With these bases we have 

(3.9) Idet (T)I = / / j  (G)d/~" 

(3.10) Idet (T-1)I = I [ j  (c j) -a/2 

To check (i) it suffices, by proposition 3.6, to find the value o f c  which maximises 
ldet ( T - 0 t  for [IT-~Ii ~ 1. By (3.8) and (3.10) this clearly occurs when c~=c2=... 

Some calculations, using Lagrange multipliers, show that 

"TII ~ 1} sup {Idet (T)[: N 

occurs when cj=(dfld)'~,+e(Xj) -~ for all j .  This proves (ii) and (iii) then follows 
from (3.9). 
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Since every invariant inner product ( . , .  ) on X is ( .  ,. )c for some c, we can 
rephrase (iv) to say that if llZl[~_l and [IT-1II~_e(X) 2 then c j= l / e (X)  2, all j .  
This is true by example 2.3(iii), (3.7) and (3.8). 1 

Remark 3.9. The case l<=p<2 can be handled in a similar fashion. We keep 
1 2 

the same notation and normalisations as in theorem 3.8, except that - 1. 
r p 

Then the minimal volume ellipsoid containing B x is the unit ball for ( . , . ) c  with 
c~= 1/e(Xj) 2 all j .  The maximal volume ellipsoid contained in B x is the unit ball for 
( ' , " ) c  with cl=(d/dj) 1/'. Hence 

n Idet (T0)l = / ~ j = l  e(XJ )-dfl2 

]det (T~)I = H~=I t-~f) " 

In the setting of theorem 3.8, where p = 2 ,  [det (T~)]= 1 because we chose a 
basis for X which turned out to be orthonormal for the inner product giving the 
maximal volume ellipsoid contained in B x. The ratio of the volume of the minimal 
volume ellipsoid containing B x to the maximal volume ellipsoid inside B x is 
Idet (To)l-2 Idet T~[ 2 which is 

n 2 

d~/" l-[ j=a t d)/, ) 

whether p > 2  or p < 2 ,  provided we take 1/r=l l -2 /p l .  

Corollary 3.10. For X= (X1 ~3 Xe 0 . . .  �9 Xn)p the minhnal rolume ellipsoid con- 
taining B x is a dilation of  the maxhnal rolume ellipsoid contained in B x i f  and only i f  

(dj) 1/r e(Xk) 2 = (4)1/"e(Xj) 2 

for a l l j  and k (where l / r = l l - 2 / p l ) .  

Proof. This follows immediately from (i) and (ii) of theorem 3.8 for p->2. The 
preceding remarks show that it also holds for l< :p<2.  II 

4. Extremal Problems 

We now consider nonlinear versions of the Banach--Mazur distance and the 
minimal volume ellipsoid, where holomorphic mappings f with f ( 0 ) = 0  replace 
linear operators. We show that the linear and holomorphic concepts are closely 
related and show that in certain circumstances the extremal holomorphic mappings 
are necessarily linear operators. 
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We restrict our attention to domains ~ c X  of complex Banach spaces X 
which are balanced-- that is if zE~, 2EC and 121= < 1, then 2zE~. The following 
generalizes to Banach spaces a version of the Schwarz lemma due to Sadullaev [17]. 

Proposition 4.1. Suppose ~1 and ~2 are bounded balanced domains in Banach 
spaces X and Y and that ~2 is pseudoconvex. If.[': ~ 1 - ~  is a holomorphic mapping 
with f (0)=0,  then 

(i) f ' (0 ) (~ l )  c ~2. 

(ii) f ( Q ~ 0  c 0~z (13 < 0 < I). 

Proof. Fix zea l .  Since the domains are balanced and f(O)=O, the function 
of one variable 

f O.z) 
~o(2) = 2 

is analytic from a neighbourhood of the closed unit disc in C to Y. 
Let R~,(y) denote the gauge (or Minkowski functional) of ~z, that is 

R~,(y) = inf{q > 0: (l/e)yE~2} (yEY). 

Since ~2 is balanced pseudoconvex domain, R~, is plurisubharmonic on Y ([2]) and 
consequently R ~ o  9 is subharmonic on a neighbourhood of the unit disc. Since 
{9(2): 141=I} is a compact subset of ~2, 

R~,(q~(2)) < 1 for 121 < I. 

Hence ~0(2)E~, for all 141<1. 
In particular 

~0(0) = f ' (0)(z)E~2 
and, for 0 < Q < I ,  

f(oz) = ag(e)Ee~v | 

Definition 4.2. Let ~ l c X  and ~ 2 c Y  be balanced bounded domains in finite 
dimensional Banaeh spaces X and Y of the same dimension n. A holomorphic 
mapping f :  ~ ,  with f(O)=O is called C-maximal if 

(4.1) [det (f'(0))[ = sup {Idet(g'(0))[: g: ~1 -~ 92 holomorphic, g(0) = 0}. 

Suppose that f :  ~ 1 - ~ 2  is a holomorphic embedding (by which we mean 
that f is  a biholomorphic mapping from .@, onto its range). To say tha t f i s  C-maxi- 
mal is then equivalent to asserting that if h: f ( ~ ) ~ 2  is holomorphic and h(0)=0, 
then Idet (h'(0))l <- 1. The latter states that f ( ~ 0  is a maximal part of :92 according 
to the definition of  C~rath~odory [3]. 
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If f :  9 1 ~ 2  is holomorphic, ~2 pseudoconvex, f (0 )=0  and f is ~-maximal, 
then proposition 4.1 implies that f ' (0)  is also C-maximal. Moreover, we have the 
following result. 

Proposition 4.3. I f  9 1 c X  and 9 z c Y  are bounded balanced domains in finite 
dimensional Banach spaces X and Y o f  the same dimension n and 92 is pseudo- 
convex, then 

sup {[det(f'(0))[; f :  9 1  ~ 9 2 holomorphic, f ( 0 ) =  0} 

= sup{[de t ( f ' (0 ) ) ] ;  f: 91 92 a holomorphic embedding, f(0) = 0} 

= sup {]det T]; T: s -~ r linear, T(91) c 92}. 

Proof. It follows immediately from proposition 4.1 that the last supremum is 
at least as big as the first. Clearly the first supremum is bigger than the second and 
the second is in turn larger than the last. II 

Now we consider a nonlinear version of the Banach--Mazur distance which 
has been considered implicitly in [1, 13] (see also (2.3)). 

Definition 4.4. For ~ c X  and 9 2 c  Y bounded balanced domains in Banach 
spaces X and Y, the holomorphic Banach--Mazur distance dh (91, 92) between 91 
and 92 is the infimum of all 0 >0 such that there exists a holomorphic embedding 
f :  9 ~ 9 z  with f (0 )=0  and 

1 
(4.2) - - ~ 2  (Z f(~rX) C 9 2. 

The infimum is interpreted as oo if the set of such Q >0 is empty. 
A holomorphic embeddingfofg~ into ~2 which satisfies (4.2) for ~o =dh(gx, 9.,.) 

is called extremal for dh(91, ~2). 

Proposition 4.5. I f  9~ c X and ~ 2 c  Y are bounded balanced pseudoconvex 
domains in Banach spaces X and Y, then 

(i) d h ( ~ ,  9z) 

-- inf ]0 > 0: there exists T: X ~  Y a linear isomorphism with 1 92 c T(91)C 9.,~; 
O J 

(ii) dh(~l, ~O = dh(~z, ~1); 

(iii) i f  all extremal holomorphic maps for dh(91, ~2) are linear, then all extremal 
holomorphic maps for d h (~z, 91) are linear. 

(iv) For any Banach spaces X and Y, 

dh(Bx, Br) = d(X, Y) = dh(Br, Bx). 
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Proof O) Suppose f :  ~ 1 - ~ 2  is a holomorphic embedding f ( 0 ) = 0  and 

1 
--..@o C f ( 9 0  c 9 z .  
0 

By proposition 4.1, 

(4.3) f ' ( 0 ) (~ l )  c 9.,. 

Since f is an embedding, i f (0)  is a linear isomorphism from X to Y. Since 
(1 /0 )~2cf (~0 ,  the restricted inverse map 

j .  ~: __1~_~ -~ ~ l  
o 

is holomorphic and satisfies f- l (O)=O. By proposition 4.1 

(J- ' ) ' (O)I l  g~) c ~ .  

Since (f-1) ' (O)=(f ' (O))- l ,  this implies 

I 
(4.4) --  92 c f'(O)(C~l). 

o 

Combining (4.3) and (4.4), we get (i). 
Since (4.3) and (4.4) are together equivalent to 

1 
- - . ~  c S ( ~ )  c ~ 1 ,  
~o 

~here S denotes (r we see that (i) implies (ii). Clearly (i) 
also implies (iv). 

To prove (iii), let r=l/dh(gz,~l)=l/dh(~l,~) and suppose that G: ~ 2 ~  
is extremal for da(~2,9  0. Then r91~G(9~). We define F: .~..@~ by 

F(z) = G-l(rz). 
By proposition4.1, G(r.@z)cr~ and hence r~2cG-X(r.~0. This means that 
r~.acF(~Oc~ 2 and thus F is extremal for dh(ga, 9.0. By hypothesis, F is linear 
and consequently G must be linear. II 

We now consider the problem of when the C-maximal holomorphic functions 
of Definition 4.2 and the extremal functions in Definition 4.4 must be linear map- 
pings. We need several restrictions to be able to make progress on these problems. 
We will restrict our attention to the case where one of the two domains ~ or ~., is 
the open unit ball of a Hilbert space H. In the case when Y=H and 92=Bn we 
will not need any restriction on ~.~ except a mild regularity assumption on the bound- 
ary of ~ ,  - -  that the gauge R~,(x) is continuous on X. The idea is that, by changing 
to an equivalent norm on X, we can assume that B x is the convex hull of 91. Then 
we can apply the results concerning minimal volume ellipsoids outlined in section 3. 
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When X = H  and ~ l = B n ,  we will need to assume that L72 is convex, which 
means that we may as well assume ~ = B  r. 

We will use the notation H = (~1, Y) for the space of all bounded holomorphic 
mappings from c~1 to Y (normed by the supremum norm). The following result due 
to Harris [8, Proposition 2] gives a general criterion which can be applied when 
the linear solutions to the extremal problems are understood. 

Proposition 4.6. Let 31 be a balanced bounded domain in a Banach space X 
and let T: X ~  Y be a linear map from X to a Banach space Y with T ( ~ ) c B r .  Then 
evel T holomorphic map f:  B x ~ B  r with f ( 0 ) = 0  and f ' ( O ) = T  is lineal" i f  and 
only i f  T is a complex extreme point o f  the closed unit ball of  H ~ (~x, Y). 

Proof. The proof given by Harris [8] for the case when ~ = B  x needs no 
modification for this slightly more general setting, l 

Theorem 4.7. Let X be a finite-dimensional Banach space with the property that 
the set C(X) ,  the set o f  contact points between the unit ~sphere o f  X and the minimal 
volume ellipsoid containing Bx,  is not contained in the zero set o f  any nonzero poly- 
nomial on X. Let  ~ c X be a balanced pseudoconvex domain with a continuous gauge 
which has convex hull equal to B x and let Y = H  be a Hilbert apace with the same 
dimension as X. Then eve1 y C-maximal holomorphic mapping f :  ~ - ~ B  n is linear. 

Proof. Let f be a C-maximal map. From propositions 3.2 and 4.3 we can as- 
sume that f ' (0)=T0 is also C-maximal. To show that f must coincide with f ' (0 )  
we apply proposition 4.6. To this end suppose that g: @ ~ H  is a bounded analytic 
function and []To+).gtl~<:l for I).]~l. 

Let xEC(X)  be fixed. Then []x][=[IT0x[[,=l. Observe that the closed unit 
ball Bx is the convex hull of the closure of 9 .  We claim that x must be in the bound- 
ary of ~ .  If  not, we could write x=(x l+x2) /2  for some xl ,  x2EBx\{X},  hence 
Tox=(Tox~+Tox2)/2, which would contradict strict convexity of BH. Since ~ has a 
continuous gauge, ~xE~ for ~EC, I~1-< 1. 

Now g((x)  is a bounded analytic function on the unit disc {lffl < 1} with values 
in the finite-dimensional space H. Consequently the boundary values g(e'~ are 
defined (as radial limits) for almost all values of 0El0, 2,~]. For the values of 0, 

e'~ To (x) + 2g(e'~ 

for I)~l<=l. Hence g(e'~ (for almost all 0). We deduce g(~x)=0 for [~[<I. 
Now consider the Taylor series expansion about the origin 

g(~x) = ~ ' .  ; ' " g , , ( x )  - -  0 ClOt < J). 

Hence g , (x )=0  for all n. Since g,,(x) is a homogeneous polynomial of degree n, 
the hypotheses now imply g , = 0  for all n and hence g ~ 0 .  
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This shows that T o is a complex extreme point of the unit ball of H**(~, H). 
By proposition 4.6, f=T0.  I 

Proposition 4.8. Let X= (X1 | @... @ X,) G where p >= 2 and each Xj is a 
finite-dimensional Banach space. Suppose 

(i) each Xj has the unique invariant inner product property, and 
(ii) C(Xj) is not contained in the zero set o f  any nonzero polynomial on Xj. 

Then C(X) is not contained in the zero set of  any nonzero polynomial on X. 

Proof. We refer to theorem 3.8 for notation. For each j, let <. , .  )j denote the 
invariant inner product on Xj satisfying 

Then 
Ilxj[I ~ ~ <xj, xj>j ~ e (X ) )  2 Ilxjll 2 (x j~Xj) .  

/ 1 } 
c(~cj) = xjEX~: z = IIxjl? = e ( Y j 7  (x j ,  xj>j . 

By H61der's inequality (with exponents r and p/2), 

n n 
(4 .5)  Z j=l e(Xj)2 <xj, xj>j ~ Z j = l  Ilxjll 2 ~ ( Z ~ I  I[xjllP) m'p 

and the points ~'j  x ~ X  where both the left and the right sides of (4.5) are equal 
to 1 are precisely the points in C(X)  (by theorem 3.8(ii)). Suppose Z j  xjEC(X). 

1 
Then from (4.5) we see that - - < x j ,  xj>j=l[xjll 2 for l<-j~n. For p>2 ,  

e(Xj) ~ 
the condition for equality in HSlder's inequality implies that []xj]12=t(dj/d) 2/p for 
some t>0.  Since ZyHxjlIp--1, we have t = l .  

Let ~j =(dj/d) 1/'. We have shown that 

c ( x )  : ~1 c ( x 1 )  • ~ c ( x ~ )  •  • ~ . c ( x . ) .  

In the case p=2,  the second inequality in (4.5) is an equality and 

c ( x )  = U { ~ , c ( x , ) x ~ c ( x ~ ) x  ... X/~n(X,): Z j / ~  = 1}. 

Now suppose P(x) is a polynomial on X which vanishes on C(X)  and let xj 
and yj denote arbitrary points in Xj and ~/C(Xj) respectively. The mapping xa~-~ 
P(Xl+y2+.. .+y,)  is a polynomial on X1 which vanishes on cqC(X1) and there- 
fore vanishes identically on X~. Considering next the polynomial on X2 given by 
x2~-~P(Xl+X2+y3+... +y,), we see that it must also be identically zero. By induc- 
tion it follows that P=0 .  II 

We now present our generalization of theorem 0.1. 
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Theorem 4.9. Let X= (X1 (9 X~ (9... (9 X,)ep where each X-i is a finite-dimen- 
sional Banach space and p >-2. Suppose each Xj has the unique invariant inner product 
property and C(Xi) is not contained in the zero set o f  any nonzero polynomial on Xj. 
For each j let <.,. >j denote the unique invariant inner product on Xj which satisfies 

llx~ll 2 _~ (xj, Xj>j ~ e(X-i) 2 Ilxyl[ 2 (xjEXj) 

(where e(Xj) is as defined in section 2). Let dj denote the dimension o f  Xj, d - - ~ j  d-i 
the dimension of  X and l / r :  1 -  2/p. 

Let 
<~-i x j, X j  Y.i> = 2 j  (x j ,  yj}j 

for ~ j x j ,  ~ajyjCX andlet H=(X, ( . , .> ) .  
Let f :  Bx--,B n be a holomorphic mapping with f(0)=0.  Then, using a basis 

for X which is orthonormal for ( . , .  >, 

(i) 
(4.6) [detf'(0)l -d/Z, , ( d]/" ~dj]2 

d / /y=l I, e(Xj) 2 ) " 
(ii) the following are equivalent 

(a) equa#ty holds in (4.6); 
(b) f is a linear map T where T satisfies 

<V(x 1 + x2 2[_... -J7 Xn), T (x  1 "~ x 2"~- ... "J[- Xn)>H ~-- < Z j  ~J X j ,  ~ j  ~j X j> 

for x ~ X j  and ~j=(dj/d)I/%(Xj) -1 

Proof. (i) follows from theorem 3.8 and proposition 4.3. 
If (ii)(a) is true, then proposition 4.8 and theorem 4.7 imply that f = f ' ( 0 )  is a 

linear mapping which we can denote by T. By proposition 3.2, 

(Tx, ry> = (To x, To y) 

and thus theorem 3.8(ii) shows that (ii)(a) implies (ii)(b). 
To show that (ii)(b) implies (ii)(a) is a simple computation (see the proof of 

theorem 3.8). I 

Examples 4.10. We give various examples of finite-dimensional Banach spaces 
X with the unique invariant inner product such that C(X) is not contained in the 
zero set of a nonzero polynomial. 

(i) Clearly X=C satisfies both conditions required of the component spaces in theo- 
rem 4.9. By examples 2.30i) an d proposition 4.8, f ;  (p _-> 2) and (g; @ E~, (9... (9 g~,)o 
(p=>2, q=>2) also satisfy the conditions. 

(ii) I fXis  an irreducible finite-dimensional JB*-triple system then (see example 1.4) 
X has the unique invariant inner product property. The algebraic inner product 
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( ' , ' ) a  satisfies 
Ilxll ~ <= (x, x)o <= e (Xy  [IxP 

(note that the rank r=r(X)=e(X)2). Moreover 

r C(X) = { Z j ~ I  )-ieJ: 12il = 1 all j and ej orthogonal minimal tripotents}. 

Suppose P is a polynomial on X and P vanishes on C(X). I f  xgX, then there 
exist orthogonal minimal tripotents (ej)~.= x such that x=~'~_x tie J for some 
scalars cg. The distinguished boundary of the polydisc 

R = {Z j ) . j e~ . :  I~.jI < 1} 

is a subset of C(X). Thus P vanishes on R and on the linear span of the e i . Hence 
P(x)=0.  Since x was arbitrary, we have P = 0 .  
Taking the Xy of theorem 4.9 to be irreducible JB*-triples and p= o% we 
recover the results of Kubota [10, 12] and Travaglini [18]. 

(iii) Suppose X has a symmetric basis (ej)~ 1 and C(X) contains one point 
x=~jx i% which has .x3~0 for l<-j<=n. By proposition 1.7, X has the 
unique invariant inner product property. Since C (X) is invariant under isometries 
of X (see corollary 3.4) 

z~ j e'~ ej(C ( X) 

lbr all choices of 0 i.  Thus we can argue as in (ii) to show that C(X) is not in 
the zero set of any nonzero polynomial on X. 

There is a dual version of theorem 4.7 which applies to holomorphic mappings 
f: Bn~Br from the unit ball of a finite-dimensional Hilbert space to the unit 
ball of  a Banach space Y of the same dimension. As before we consider C-maximal 
mappings f (with f (0)=0) ,  but C(X) must be replaced by the set of contact points 
between the unit sphere of  Y and the boundary of  the maximal volume ellipsoid 
contained in Br.  Moreover we need to assume that all boundary points of the unit 
ball of Y are complex extreme points. 

This argument applies in particular to the case where Y = t ~  with l_<-p_<-2. 
Thus every C-maximal mapping f :  B n---Br is linear in this case. 

Examples 4.11. 
(i) For l=<p<2 there are nonlinear C-maximal mappings from the unit ball 

-n of fp to the unit ball of/~g. 
In this situation To is the map 

To: ( Z j ) 7 = I  ~ (Z j )~=  1 

and a holomorphic map f of Beg to Be7 is C-maximal if  and only if  f ' ( 0 ) =  UT0 
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for some unitary U. An example of  a nonlinear C-maximal f is 

f ( ( z j )~)  = r + ~ ,  z~_ . . . . .  z,,) 

with O<e<24/P(1-21-~/P)/3. To see this, when n=2 ,  let x=lzll, y=lz2l, 
and note that 

(X 4-13Xy2) 2 ._}_ y2 .= 2r ..1.. 2~;X2 y2 4- 132 y2 ya 4- y2 .< X 2 4- 313x'2 y2 + y2. 

By using Lagrange multipliers one finds that x2+313x2y2+y 2 has its maximum 
on the surface xP+y"=l ,  O<_-x,y~l, when x = y  or when x=O or y=O. 
When x = y = 2  -l/p, we have 

x ~ + 313x 2 y2 + y2 = 2(2J-/p) + 3e2-4/p < I. 

Hence the maximum does not occur when x = y .  
We thank the referee for noticing an error in our original version of  this example 
and for suggesting the appropriate correction. 

(ii) For  2 < p =  < oo there are nonlinear C-maximal maps from the unit ball o f / ~  to 
the ball of  f,P. 

Proposition 4.12. Let X be an n-dimensional Banach space and Y= H an n-dimen- 
sional Hilbert space. Suppose that every C-maximal embedding of  B x in Bn is known 
to be linear and suppose in addition that X has the unique invariant inner product 
property. Then evely extrenlal function for dn(B x, Bn) is linear. 

Proof. By proposition 4.5(i) and theorem 3.7 the map T = f ' ( 0 )  has the prop- 
erty that T-I (Bn)  is the minimal volume ellipsoid containing B x. Thus, by prop- 
osition 4.3, f is C-maximal. Hence f is linear by hypotheses. II 

Example 4.13. For l < p ~  ~o, X=f~ ,  H=r the extremal maps for dn(B x, Br) 
are linear. For  2<_-p-<_~o this follows from proposition 4.12, example 4.10(i) and 
theorem4.7. For l < p < 2 ,  the result follows from the remarks following exam- 
ples 4.10. 

For  p =  oo this is due to Alexander [1] and Lempert [13]. 
So far all our examples have been finite-dimensional and of  course C-maximal 

mappings are only defined in a finite-dimensional setting. Our final example con- 
cerns the holomorphic Banach--Mazur  distance which can be discussed in an in- 
finite dimensional context. 

Proposition 4.13. Let X be a finite rank JB*-triple (finite o1" infinite-dimensional) 
and H an isomorphic Hilbert space. Then every extremal function for d h (B x, Bn) 
is linear. 

Proof. If  X is irreducible and finite-dimensional then this result already follows 
from proposition 4.6, theorem 4.7, proposition 4.12 and example 4.10(ii). 
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The algebraic inner product  ~ . , .  ), satisfies 

Ilxll 2 <= (x,  x)o <= r [Ixll 2 

where r = e ( X )  ~ is the rank of  X. Suppose ( . , . )  is any other inner product  on X 

which satisfies an inequality 

(4.7) IIx[I 2 <= (x, x> <= C Ilxll ~ 

with equality for some nonzero vectors on both sides. By the definition of  the Ba- 
nach- -Mazur  distance, C ~ r .  Let (ej)~= 1 be a set of  r mutually orthogonal mini- 
mal tripotents. The finite-dimensional subspace E spanned by (ej)j is isometrically 
isomorphic to ~',~. I f  C = r ,  then ( . , . )  and ( . , . ) a  coincide on E. Since X is the 

union of  subspaces of  this kind, we find that the algebraic inner product  is the only 
inner product  on X satisfying (4.7) with C = e ( X )  2. We can now apply the method 
of  theorem 4 . 7 -  the one difference is that we use the fact that a Hilbert space H 
has the analytic R a d o n - - N i k o d y m  property (see for instance [5]) to obtain the 
existence of  (almost everywhere) radial limits for g. The approach of  example 
4.10(ii) completes the proof. II 
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