Realization of the invariant inner products
on the highest quotients of the composition series

Jonathan Arazy

§ 1. Introduction

Let Z be an irreducible JB*-algebra of finite dimension 4 and rank r. Let D
be the open unit ball of Z; it is a bounded symmetric domain of tube type. We
denote by G=Aut (D), the connected component of the identity in the group
Aut (D) of all biholomorphic automorphisms of D. The isotropy subgroup at the
origin

K = {peG; ¢(0) =0} = GnGL(Z)

is a maximal compact subgroup.
In the recent work [FK] Faraut and Koranyi describe the Hilbert spaces of
analytic functions on D which are invariant under the unitary action of G given by

UP (@) = fop-(Jp)'?, ¢EG.

Here Jo=det (¢’) is the complex Jacobian of ¢, p is the genus of D (to be defined
below) and A ranges over a permissible set of non negative real numbers called the
Wallach set. The formulas for the invariant inner products in [FK] are in terms of a
certain orthogonal expansion of the functions (called the Peter—Weyl decomposi-
tion), which refines the homogeneous expansion.

The purpose of this work is to provide more concrete formulas (in terms of
integrals of certain derivatives) for the invariant inner products, in the special cases
of the highest quotients associated with points A is the discrete part of the Wallach
set. The main results are Theorems 12, 14, and 19 below.

Our formulas for the invariant inner products exhibit the invariant Hilbert
spaces as certain Besov spaces. They can be used effectively to define duality in the
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invariant Banach spaces of analytic functions on D. Our results extend some known
facts concerning the Dirichlet space in the context of the unit disk in the complex
plane.

We fix some notation and terminology. For more details see [FK], [U1] and
the references therein. Fix a frame {e,, e,, ..., ¢,} of minimal orthogonal tripotents,
let e=e,+...+e,. Let Z==i=;=,DZ;; be the Peirce decomposition of Z
relative to {e,};_, and let

Z; = Shaimi=j®Zy, j=12,..,r.

Z; is a JB*-algebra with unit e,+...+e;. Let N; be the determinant (“norm”
polynomial of Z;, j=1,...,r. We denote N,=N.

For I=i<j=r let a=dim(Z,;). It is known that a is independent of the
particular choice of 7, j with 1=i<j=r. Thus d=r+r(r—1)5 . The genus of D is
p=(r—1a+2=2dr.

For two polynomials p, g let

(P, Pr = 0,(¢")(0)

0 — ..
be the Fischer inner product, Here dp=p [3_J and ¢(z*)=q*(z). Itis known that
z

the Fischer inner product is given by
—— oie 1 - s
(p,q) = cfzp(z) q(z) e~ = gy (z) = Ffzp(z) qg(z)e izl g5

where dV(z) is the usual Lebesgue’s volume measure and |[z| is the unique K-in-
variant inner product on Z, normalized so that the norm of a2 minimal tripotent is 1.
The Fischer inner product is called the “Fock inner product” by some authors.
In particular, the Fischer inner product is K-invariant:

(pok, gok)y = (p, @)r; k€K

Let S={k(e); k¢K} be the Shilov boundary of D and let do be the unique
K-invariant probability measure on S. The Hardy space H*(S) is the completion
of the space P=P(Z) of analytic polynomials with respect to the inner product of
L2(S, o).

A signature is an r-tuple m=(my, m,, ..., m,) of integers satisfying m,=
my=...=m,=0. The conical polynomial associated with the signature m is

Nm(z) = N =" () N2~ ™ (z)... N (2).
Let
F,:= span {Nnok; keK}.
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It is known (see [S] and [U1]) that the spaces {Pn}m are precisely the irreducible
K-orbits in the space P of analytic polynomials on D. Moreover, P admits a direct
sum decomposition

P= 3, ®F, (sum over all signatures),

called the “Peter—Weyl decomposition”, see [U1], which is orthogonal with respect
to the Fischer inner product.

Let L={keK; k(e)=e}. For each signature m consider the spherical poly-
nomial

Om(2) = [ Ny (@) dl

(d! is the Haar measure of L). @n is the unique L-invariant polynomial in Py sat-
isfying gm(e)=1.
For Z€C and a signature m we define

= I I3 (49— G- 2

It is known [FK, Theorem 3.6] that
d .
loml} = [7]m/d1m By

The Bergman kernel K(z,w) is the reproducing kernel of the space L2(D) of
analytic functions in L*(D)=12(D, dV). Notice that K(z,0)=1 for all zéD. The
Wallach set W (D) of D is the set of all 0=1 so that K(z, w)*? is positive definite,
ie. 2, ,4d,K(z;,z)""=0 for all finite sequences {z;}j_, in D and {a;}]_,
in C. It is known (sce [FK]) that the Wallach set consists of a discrete part W;(D)=
{(v—1) §};—, and a continuous part W,(D)=((r—1) 4, <). For A€W (D) one
defines an inner product (-,-); on H#®:=span {K(-, w)*?; weD} via

(K( ) w)l/p’ K( b Z)z/p)ﬂ. = K(Z, w))-/p

and let 3, denote the completion of #,®. Define an action U of G on analytic
functions on D by

UP (@) f = (fop)- (Jo)'*

where (Jp)(z)=det (¢’(z)) is the complex Jacobian of ¢ at z, p=(r—1a+2 is
the genus of D and we used the principal branch of the power function. By the
transformation rule

Jp(2)K(@(2), p(w)) Jo(w) = K(z,w); z,weD, pcG
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one sees that for each ¢€G, U™ (p) is a unitary operator on ;. Unless A/p is
an integer the map ¢—UW(¢p) is not continuous, nor is it an anti-homomor-
phism. There is however a natural way to extend U®) to an anti-representation of

the covering group G of G (see for instance [B], [U2]). This yields the important
formula

UD (oY) = c(9, ¥, ) - U U*(9), o, ¥€G,

where ¢(¢, ¥, ) is a unimodular number. Clearly, U¥(id)=1 where “id” is the
identity function on D.

The classification of the irreducible bounded symmetric domains up to bi-
holomorphic isomorphism, due to E. Cartan, is the following.

DL, p) = {zEM, ,(C); zz* <1}, 1=n=m;

D(L) = {zeD(,,); 2T = —z}, S=mn;

D(IIL,) = {zeD(l, ,); 27 = z}, 2=nm

DAV,) = {zeC"; [(Z., 11— | 2., B 1 < 1-Z, 2% S=m
D(V) = {zeM,,,(0); |zl < 1};

D(VI) = {z&M;,5(0); 2% = z, ||| < 1}.

Here 27 is the transpose of the matrix z, O is the complex 8-dimensional Cayley
algebra. The domains of types I—IV are classical. D(V) and D(VI) are the excep-
tional 16 and 27 dimensional domains. The domains of tube type are D(1, ,), D(IL,)
for n even, D(III,), D(IV,), and D(VI). The parameters of these domains are given
in the following table:

type 1 11, 111, 1V, VI
parameter e n (6=n even) Q2=n) (4=n)
d=division nt nn—1)/2 nn+1)/2 n 27
r=rank n n/2 n 2 3
a=dim Z, ; 2, if 2=n
1si=j=r {0, if n=1 4 1 n—2 8
p=genus 2n 2(n-1) n+1 n 18

Acknowledgement. The author benefited from several conversations with H. Up-
meier on subjects related to this paper. He is also grateful to Z. Yan and A. Koranyi
for sending him their unpublished results ([Y] and [K] respectively) after the first
draft of the paper was written.
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§2. Analysis of the differential operator Jy.

Proposition 1. N(k(z))=x(k)N(z), k€K, where x: k—~T is a multiplicative
homomorphism.

This is well-known,

Notation. m’=(my, my, ..., m,_;, 0).

If m is a signature and ! is a non-negative integer, we denote
m+l=(m+Lm+l ...,m+I]).

Proposition 2. Let m be any signature, [=0. PN ’=Pﬂ+z . In particular, Pn- N b=
P m' +1.

Proof.
Pomy1,...m+) = span{((N, NYok): keK}
= span {(N,ok) N¥; keK), by Proposition 1
= span {N,ok; k€K} -N?
= BN i
Lemma 3, 0y (Nm N')€Pn N'-1.

Proof. Clearly, f=0y(Nm NY)€2, the space of homogeneous polynomials of
degree s, where s=|m'|+(I—1)r=3""1m;+(/—1)r. Let gcZ,. Then 9,/ is con-
stant and so

9y f = Byn(Nw NY) = Oyn (N N)(0) = (gN, Npw N')g.
If g=20|=58o, 8s€ P, then
(g, N, NwNYe =0
unless g=(m+/—1, ....,m _+1-1,1-1).

So
JE€Pmyv1-1, .. my_ +1-1,1-1) = P;_'-_'Nl—l- |

Notation. aN(Nﬂ; Nl)=Fﬂ',tNl'1, Fﬁr,léPﬂr .

In the proof of Lemma 4 below we use the fact that N*=N and that for every
polynomials p, g

(T) (17*, q*)F = (g, Pr



6 Jonathan Arazy

and
§hp) Oxp, 9r = (P, N@)r-

The first formula follows easily from the integral form of the Fischer inner product,
while the second follows from the definition (i.e. the differential form of the Fischer
inner product).

Lemma 4. dy(gok)=((0xg)ok)y(k), kEK.

Proof. 1t is enough to assume that g€Pm N'. Then dy(gck)¢Pw N'~'. Let
h€ Pm N'-*. Then 8,(0y(gok))=0,y(gok) is constant. Hence

(04(On(gok))) = Dun(gok)(0)
= (gok’ h*N)F’ by (T)s
= (g, (W*ck=Y)N)px(k), by K-invariance,

= (Ong, ok Hpy(k), by (i),
= ((Ong)ok, i*)py(k), by K-invariance,

= 04 (On(g)ok) k), by (.
Hence dy(gok)=(0y(g))ok - x(k) as desired. [
Lemma 5. dy((Nm-ok)N')=(Fn 0k)N'~* for any k¢K.
Proof. Oy((Nuwok)N') = Oy (N NYyok) [2(k)
= ((On(Nw NH)ok)[x(x)'7*, by Lemma 4,
= (Ey,i0k)N'=1, ]
We define linear operators {T;};2;, T;: Pm—Pm, as follows.

I; (2\ C\'(Nﬂ’okv)) = Zv CvFﬂ',lokv

and extend T; to the space H# (Z):=_m @®Pm of harmonic polynomials by line-
arity. By Lemma 5, for every harmonic polynomial g¢€.#(Z)

Ti(q) = dx(gN)IN'=".
Lemma 6. Let g€ #(Z), [=1. Then T(qok)=T,(g)ok; VkEK.
Proof. Let g Pm . Then
Ti(gok) = In((qok) N')[N'=1 = Oy ((GNY)ok)[(N'~1- x(k)')

dx(gNY)ok) - x(k On(gN’
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Corollary 7. There are numbers cw; such that
T(9 = cwaq for q€B.

Proof. T;: Pn—P, commutes with the action of the group K. However, Pm
is K-irreducible. So by Schur’s lemma in representation theory Tiip..=¢m iIp,.- |

Lemma 8.
, d ) a
cﬂ’,l = ”(DE'NIH%‘/“(APQ’N'_IH% = ]]j=1 (7+mj+l_ 1 '_(J—' 1)7)
where a=dim (Z;;) for 1=i<j=r, (m,=0).

Proof. Since N is L-invariant and N(e)=1, for every signature m, ¢mN'=
Om+t. Also

O (P +1) = aN((pﬂ'Nl) = Cm,z(Pg'Nl—l = Co 1 Qw1 P +141°
Hence

Cm1 = (aN((Pn_t’+l)7 9"»£'+z+1)F/”(Pg'+;—1”?7 = ”Cf”ﬂ%l”%/”@ﬂ'u-1”§'
by (1) above. But
loalt = (2, [aim B

(see Section 1) and dim (P +1)=dim (P +1-1)=dim (Pm) by Proposition 2. Thus

d d r {d . a
o = (T]EH/ (s = MaalFemei=1-G-03).

Corollary 9. Let m be any signature with m,=1. Let

r d . a
Cm = szl (—r—+mj——1—(j~1)—5].
Let cw=0if m,=0. Let f=3m fn be analytic in a neighborhood of D, fu€Pm. Then
3Nf= aN (Zr_nfm) = Zm,zl Cgfﬂ/N'

Proof. If m,=1 and fcPn, then f=gN™, with g€R,, .. . m _ -m,0- BY
Lemma 8

oNf: C(ml—-m,.,...,m,._l—m,.,())mrf/N: Clrf/N'

If m, =0 then P, consists of harmonic polynomials, and hence dy f=0 for all

f€Pu (sec[U)). 1
Corollary 10. For every non-negative integer s

N*0ys ngr_q = Zm,.z_sbg.sfg
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d
. (T)m
—_— — h— = —
with b’."_'s_cﬂ'c(ml—l,....m,—l)"'c(ml—s+1....,m,-—s+l)—(__,£)__ for m,=s and bﬁ”—o
r/n-s

if m <s.

Proof. Since dy.=(dy)°, we get by Corollary 9 for any signature m with m,z=s
and fm€Pn

azv“fg = (aN)sfﬂ
= cﬂ(aN)x—lfz/N: with fﬂ/NGI)(ml—l,...,m,.-l)
= Cﬂ- c(m1~l,...,m,.—l)(aN)s_z(f@_/Nz) with fm_/NZEP(ml_z’ ey — 2)

= Cm* c(m;—l,...,m,.-l)'“c(ml—s-i-l,...,m,.—s+1)(f!/Ns)'
If my<s then bm,s=0 and the same proof yields
O fu =0 = b SN 1
Corollary 10,
N0 (Zfu) = Zmse Lo I (S 4= i= G- D) 2

§ 3. Characterization of the invariant inner products on the highest

quotients by integration over the Shilov boundary

Fix A=A,=(v-1)¢,v=12,...,r, be a point in W;(D). For a signature m
let g(2, m) be the multiplicity of A as a root of the polynomial

©m =15, II,";;‘(€+’ -U- ”%]

(We set g(1, m)=0 if 1 is not a root of (&)m). Set g(1)=supm q(4, m). Clearly
q(A)=r. More precisely

r—v+1; a even
q(d) = [';v]+1: a=1, D= D(I,)
1; D = D(IV,), nodd;

Consider the action U™ of G on analytic functions on D defined by

UP(o) f = (fo@)(Jp)*?.
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Let PP =span {UP(@)P; ¢cG). For j=0,1,...,q(1) define
M}'l) = {fEP(l); f= 2 fg’ f_n_lEPg}'

(i, my=j

Clearly,
*) 0} S MP C MP G .. S MG) =PO.

According to [FK] (see also [@)] for the special case of domain of type 1, ,) the spaces
MP are UP-invariant and the quotients MV/M(?, are irreducible (where
M?*,:={0}). Thus (*) is a composition series of P, It is not hard to see that in fact
every UM-invariant subspace of P® is one of the spaces in (*). Moreover, if we

define for ¢€C and f, gc PV

(fs 8= 2 (s 8m)Fl(E)m
and for f, ge M® we define

(f i = é‘f} &= (. 8
. is a U™-invariant Hermitian form on M® with

then (-,-),1,J
{feMP; (g, f)a; =0, vgeMP} = MY,

One can compute

(.f’ g)i.,j = 2' (fﬂ,gg)l-‘Kl)_m_,j

22, m)=j
where

— (é)m m;—1 . a
<)~>m.l )'(C 1)1 Hv 1]] (A.+I‘—(j—— I)E]

(where “J]’7u7™” ranges over all non-zero terms). The Hermitian form (-,-); ; on
MPIMP, s deﬁmte (positive or negative) if and only if either j=0, or j=g(4)
and (r—v)% is a non-negative integer. In this case the quotient MP/M® is
said to be unitarizable, and we denote by #, ; the completion of M{“/M{?, with
respect to (-,-); ;.

Since Z is a JB*-algebra, we get the following three possibilities.

Corollary 11. (1) If a is even then MIM),_, is always unitarizable, i.e.
(s )aq0 is definite.

(2 If D=D(11,) and a=1 then MQ\IM{),_, is unitarizable if and only if
r=v (mod 2). In this case q(A)=-3-+1.

(3) If D=D(1V,), nodd, then q(A)=1, MPIM® is unitarizable for i=-23
and not unitarizable for .=0.
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The following theorem is the main result of this section.

Theorem 12. Let /=(v—1)5, 1=v=r, and assume that the highest quotient
MM, is unitarizable. Then

”f”%.,q(/'.) = y(N’(()st, f)Lz(S)

where s=(r—v)g+1=2—;, and y=[['_ [V ((v-j)5+1), the product

J
ranges over non-zero terms. Consequently, #, ., is identified with the space of analytic

functions f on D for which (N°dy.)'* fc H*(S).
Proof. Let f=m fm be analytic in a neighborhood of D. Then

11 a0 = Zatam= q(/)(<f)m>:nfq"('2:

= Zm,.zs(fm’ fm)F/HJ 1H,ml—1(("*‘l)—+l (1—1) ]

Also, by Corollary 10

r S d . .
(NSaN’fsf)Li'(S) = Dm=s ]]j=1 ]],-zl (7 +my—i—(j— 1) %] (fﬂafﬂ)Lz(S)

I I, [%+m—i—(j— 1)%]
I, IV ‘1[ +1—<f—1>%)

= Zmrgs (fﬂafE)F

by {FK, Corollary 3.5). Now, if m,=s then

]];:1 II;_, (?%—m-—i—(j— 1)—;—]
I 1 (S 1-G- 3

(e Eereo-n )

ny -1 a . a wl_ l_ 1
[IL N [(v—l)f-u—(_/—l)f)] o

Hence

‘/'(Nsa.r\"f;f)L?(S) = l!fli%.,q(}.)' |
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Remark. If r=1 (and then a=0), Z=C and D={z¢C,|z]<1}, A=0 and
H#,,1 is the Dirichlet space. Theorem 12 yields in this case the known result

”f”iz)irichlcl == f |f’(2)[2dA (Z) = f" eiaf’(ei”)j_(eT';d % .

lz}<1
Corollary 13. Let /, s, y be as in Theorem 12. Then

(s ©i,q) = y‘,(N*'Bst, sy

Thus (NOysf, 8)1xs) is invariant under the action of G given by U™ (¢)f=
(foo)(Jp)*r.

§ 4. Characterization of the invariant inner product in terms of integration over D
The Dirichlet semi-norm in the unit disk 4 in C,

I fllpicichtet = (fizl<1 !f'(Z)|2dA(z))ll2

can be written as
I Motesenier = ([, _, 1(7002) @ du@)'* = I(fo0Y l12(6,e01-

Here the Mébius transformation ¢,(z)=(a—2z)/(1—-az) is the biholomorphic sym-
metry of 4 which interchanges 0 and @, du(a)=(1—|a|?)~2dA(a) is the Mobius-
invariant measure on the unit disk and do is the Haar measure of G=Aut (4)=
(Aut (4)),.

In this section we study the generalizations of this formula to other tube domains
and group actions. Let D be a tube domain in C? and fix a point A=2,=(v— D%,
(1=v=r) in W(D). Recall that UP(p)f=(fo)(Jo)*'?, pcG.

We restrict our attention to the case where the highest quotient M{)/M ) _,
is unitarizable, i.e. (r—1)§—Ai=(r—v)4 is a non-negative integer.

Define

s = 5(4) = min {{¢N: N'¢ M) 1)

Thus, s is the first positive integer for which
span {UD(p) N*; @€G} = M)y = PD.

It is not hard to see that in fact
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Define a differential operator D form the analytic functions on D into the
real analytic functions on G by

DA (f)(9) = dx=(UP (@) £)(0) = (UP(9) S, N
D is invariant in the sense that
DA (UR(9) )W) = c(@, ¥, YDP () (p¥), @, Y€G
where c(¢, ¥, 1) is the unimodular function introduced in Section 1. Also, for k€K
Rx DV = y(k)J (/7 D® = y(ky+H2 D
where R, (4)(¥)=u(yk) is the operator of right translation by k.

Definition. #™® is the space of all analytic functions f on D for which
DX f)e L*(G)=L*(G, dp), with the seminorm

1fle» = 1D (NilLxey-

Here dg is the Haar measure of G.
The main result of this section is the following

Theorem 14. Let D be a tube domain in C?, and let ) be a point in W;(D). Assume
that the highest quotient M\IM),_, is unitarizable. Then #® is non-trivial if
and only if A<1, and is this case H'P =5, ,,, with proportional seminorms

“fﬂx"'“ =4a ﬂfﬂm ala)

where o is a constant, independent of f.

We prove the theorem in several steps, where the most substantial one deals
with the non-triviality of #® for A<1 (i.e. that #® contains some function with
non-zero semi-norm). Let us begin with the easier parts.

Step 1. Characterizing #'™ by integration over D.
Define for an analytic function f on D

D? f(a) = IDP (f) (o)l

where @€G satisfies ¢(0)=a. The right K-invariance of D shows that D?®f(a)
is well-defined, i.e. independent of the choice of ¢ which satisfies ¢(0)=a. Also,
DP UM (p)=LeDP, where (L,u)(y) is the operator left translation. Let ¢,€G
be the symmetry which interchanges 0 and a. Then # consists of all analytic
functions f on D for which DV (g,)fc L*(D, i), where du(a)=K(a, a)dV (a) in the
G-invariant measure on D,
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Step 2. #P is invariant with respect to the isometric action U® of G.
Indeed, for every fe# and ¢€G,

IUD (@) fllen = [DPUD (@) fllLray
= |Ly(D® fliLesy» Dby the invariance of D{?
= |D® fllisy, by the left invariance of the Haar measure

= [ fllew.
Step 3. || flloo=0 if and only if f is supported on M), _,, ie. f=
Zq(l,ﬂ)<q(l)f_q,f_n_l_epﬂ-

Indeed, let fe#™®. Then | f],e0=0 if and only if (U®(¢)f, N°)y=0 for
all p€G. This is equivalent to the orthogonality of N*® in the Fischer inner product
to 5pan {U" (@) f; ¢€GY}. Since the latter space is U®-invariant and the decomposi-
tion series M{PcMPc...cMZ)) exhaust all the nontrivial U™-invariant sub-
spaces of P® we see that span {UW(p)f; p€G}=M\P for a unique j=g(4).
However N*¢ Mj;;,_,. Hence || f] 4,0 =0 if and only if j<q(4) (i.e. f=32,m=jfm
Jm€Pn and J<q(4)).

Step 4. If #'P is non trivial, then £ P =, ., with | flecr=a(D)If e, .,
for all feH#™,

This is the special case of the uniqueness theorem of [AF]. We sketch the
short proof for the convenience of the reader.

Since we assume that #® is non-trivial we get by step 3 that M) is dense

in #™ and that |N®| . =>0. Moreover, by the orthogonality of the Peter—Weyl
decomposition m@ P in both of #™® and H#, ), we get

(N, s = 2(AP (N, oz, aenr
for every function f which is analytic in a neighborhood of D, where

2(4) = [N/ IN*e s, g -
The semi-inner products of #® and #, ,;, are UP-invariant. Thus for all
®, YEG:
(UD(@) N5, UPA) N*) e = (N*, UD (9 HYUP () N¥)¢
= (AN, UD @ YUPWIN)e s, 00y
= (A UP@ N, UP W) NY)e, o

since span {U® (@) N*; p€G} is dense in both #® and #, ,;,, we see that #{;,=
H;, 4y and that

(f, g = a(l)z (fs g)x’,x,qu)
for all f, geo#®,
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The last and the most important part of the proof of Theorem 14 characterizes
the A’s for which #? is non-trivial.

We begin with the transformation rule of the determinant polynomial N under
composition with automorphism of D. This is interesting in its own right.

As in [FK], let h(z, w) be the sesquiholomorphic extension of the unique
K-invariant polynomial A on Z whose restriction to spang {e; -1 1s given by

W5 te)) = N(Z_ (=te)) = [T (=10,

It is known that
K(z,w) = h(z, w)"?, z,weD.

Recall that § is the Shilov boundary of D.
Lemma 15, Let acD. Then

(1)) N(— @, () N(u) = h(a, uyh(u, a)~, ucsS.
(i) N(pa(2)) = N(a—z)h(z,a)"*, z€D.

We sketch the proof. In the matrix tube domains (types 1, ,, II, (n even), and
I1L,) @, can be written as

0.(2) = I—aa*)"2(a—z)(I—-a*z)(I—a*a)'?, zeD.
The determinant polynomial N is very closely related to the ordinary determinant:
N(z) = det(z), in typesI,, and IIL,,
N2(z) = det(z), in type II, (n even).

The desired formulas in Lemma 15 follow now by the multiplicativity of the ordinary
determinant function, the formula

det (I xy) = det (I—yx)
and the fact that
det (I—zw*), types I, , and II,,

hiz,w) = {det (I_zw*)l/2’ type II, (n even).

Formula (i) in Lemma 15 is proved in full generality in [Y]). Formulas (i) and (ii)
in the Lemma are equivalent. Indeed, since both sides of (ii) are analytic in z, (ii) is
equivalent to

(1) N(—@,w)) = N(u—ayh(u,a)~', a€D, ucs.

We claim that
N(u—a) = Nw)h(a,u), acD, ues.

Clearly, this establishes the equivalence of (i) and (ii’). For u=e, this is well known
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(see [FK]). For u=k(e), kK, this follows by the K-invariance of N and k and the
previous case. Since S={k(e); k¢K} the proof is complete. f

Lemma 16. Let z, acD, then
Jo.(2) = (= 1)y K(a, a)"* K(z, a).
Proof. By the transformation rule of the Bergman kernel
K(z, ) = K(0.(¢a(2)), 0.(0))
= (J9a(0a(2) J0a(©) " = J0(2)/ 70, (0)

letting z=0, we get that Jo,(0) is real. Letting z=a, we get Jo,(0)*=K(a, a)~".
Thus Jo,(0)=¢(a)K(a, a)~*"*, with e(a)=+1. Clearly, £(a) is a continuous func-
tion of a. Where a=0, ¢,= —id, so J@,(0)=(—1)’. Thus e(a)=(—1)* identically.
It follows that Jg¢,(0)=(—1)*K(a, a)~"/*. This completes the proof. [}

Remarks. (1) The above proof holds in any bounded symmetric domain.
(2) The argument determining ¢(a) is due to A. Koranyi [K].
(3) Lemma 16 is proved in [Y] by a different method.

Lemma 17. For every acD
(N, UD(g,) N¥)p = cBK(a, a)'~?/*
where ¢ is a unimodular constant and

B = INIHIN s, = (),

Sy 8y eeey S}

Proof. By the arguments in step 4 above

(Ns, f)F = b(Ns’ f)H’(S)

for every function f which is analytic in the neighborhood of D. Recall that the
reproducing kernel (i.e. the Szegb kernel) is

S(u, a) = K(u, a)**; ucS, a€D.

Using Lemmas 15 and 16 and the fact that s+2A=p/2, we get

(NS, U("‘)((Pa)(NS))Hz(S) = fS N(”)SN((Pa(u))s./goa(u)*/l’ dO‘(ll)
= (- 1) [ h(u, 0y h(a, uy~* K(a, u} do (u)- K(@ 0~/
= l)lsz(“’ a)~** K(a, u)/* da (u) K(a, a)~***

= (~1)'K(a, ay'=re»
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where
di
l=rs+—.
> |

Step 5. Completing the proof of Theorem 14.

Since span {U® (p)N*; pcGYy=M=PW, it is clear that #® is not trivial
if and only if O<|N%|<o. However, by Lemma 17 and step 1 of the proof

NS = fu |(U(‘)(<p,,) N3, NS)Flz du(a) = ﬁ2fDK(a, a)’/? dv (a).

It is well known (see [FK]) that this integral is finite if and only if A<1. Thus #®
is not trivial for all tube domains different from D(III,) precisely when 2=0. For
D(IIL,), #™ is not trivial for A=0 if n is odd, or for A=1/2 if n is even. This
completes the proof. ]

Remark. The proof yields in fact the value of the constant
a? = HN’llfrw/llellfrA,qm

in Theorem 14. The case where D=D(IIL,), n even and i=1/2 requires the com-
putation of [, h(z, 2)*dV (z), using either [H] or formulas (3.7), (3.8) in [FK].

Corollary 18. In the context of Theorem 14, let 1<1. Then the inner product in
the highest quotient 3, ., is

1 ;
(fs8)n gy = -&T(D,(‘)f, DM g) 1)

§ 5. Characterization of the invariant inner product in terms
of integration over D XD

A less well-known formula for the Dirichlet semi-norm in the unit disk 4 in C is
1 Wicianies = [, 1/ @—=FODIFIK (2 Wi dv(2) dv(w)

where v is a very general finite measure on 4 and K, (z, w) is the reproducing kernel
of L2(v), the space of analytic functions in L2(v). See [AFP] for the special case
dv(z)=(a—1D(1-)z)2)*~2dA(z) (x>1) and [AFJPI1] for the general case and ex-
tensions to other planar domains. One interpretation of this formula is that the
Hilbert—Schmidt norm of the Hankel operator

(H D)@ = [ (F@—fW)hW) K, (2, w) dv(w)

is given by [|Hlls =| fllpiricnier» independently of the measure v.
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In this section we extend these results to the context of alf tube domains.
Fix a>p+(r—1) 3 and let

du,(z) = c()K(z, z)' /P dV (2)
where ¢(@)™*= [, K(z, z2)*~*/?dV (2). Let L2(u,) be the subspace of L(u,) consisting

of analytic functions. Its reproducing kernel is K(z, w)*?. G acts isometrically on

L*(u,) and Li(p,) via U® () f=(fop)(Jo)'?, 9p€G.
Next, let A=(v—1)a/2 (1=v=r) be a point in the discrete part of the Wal-
lach set. Let 0¥ be the orthogonal projection on the highest quotient M{/M$) s,

that is

Qu) (ngz) = Zq(l.g)=q(l)fg-
We assume in the sequel that M)IMY),_, is unitarizable, ie. (r—1)aj2—1 is a
nonnegative integer.

Definition. #*(a) is the space of all analytic functions f on D for which

1w := (f, 2P UL @) [[iswrd0)”
is finite.
Again dp is the Haar measure of G. Since Q¥ commutes with the action of
the subgroup K it is clear that

Il = [ QP UD @) f lfiscuy du(z)

where du(z)=K(z, z)dV (z) is the G-invariant measure on D. Also, by Lemma 16
one obtains

2/,
Ana(00) = [ea O o) = I di o),

Hence,

1/ e = @ [ KQDUD (@) £)(@: W) IK(z, w)I*IP ditgw) dpo(2)

Example. Let D=4 be the unit disk in C and let 1=0. Then p=2 and
QN (©)=f(&)~£(0). Hence

Q(fo0.)(9.(w)) = f(W)—f(2)

and the last formula becomes

1P = @ ff

4X4

| f(2) = f (W) |K (2, w)'** dpa(2) dpta(w)

which is (up to the proportionality constant) the formula for the Dirichlet semi-norm.
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Remark. 1If the rank r of D is 2 or more we cannot take in the definition of
#@(a) the projection (QVf)E=f(&)—f(0) on My /M. Unless f is constant,
the integral

ffnxp | f(2)—f (W) IK (2, w)'P* dpu,(2) dpa(w)
is infinite, because it is the Hilbert—Schmidt norm of the ordinary, Hankel operator
Hph=(I—-PB)Jh, heLi(u,)

where P,: L*(u,)-~L2(y,) is the orthogonal projection. It is well-known that if
r=2 no non-trivial Hankel operator H, with f analytic is compact, see [BCZ].
The projection 0 onto M{y/M{y,_, used in the definition of # (%) is
much smaller than Q”, yet preserves the “essential contents” of f, i.e. the com-
ponent of fin the highest quotient M Q/MQ), . This observation is the key to
our definition of the generalized Hankel operator, see section 6.
The main result of this section is the following.

Theorem 19. Letr D be a tube domain and let 7.€Wi(D). Assume that the highest
quotient MM} | is unitarizable. Then #'”(x) is non-trivial if and only if . <1.
In this case ‘#(“(a):%’l,q( 1) With proportional seminorms

”f“x"()')(a) =¢c ”f”x;.,q(;.)
where
¢ = [Nl e/ IN*l s, 005

As in the proof of Theorem 14, it is easy to verify that #» (a) is invariant under
the isometric action U of G, that | f1| e, =0 if and only if f=Sq(1,m) <q(i) fus
and that if #® («) is not trivial then it must coincide with #, ,;, with proportional
semi-norms. It is also clear that s# (a) is non-trivial if and only if N°¢ #¥ (),
where as in §4

s = s(3) = min {{eN; N'¢ M) 1} = %—z.

It remains to check when is N3¢ #* ().
Recall that for every signature m, K™(z,w) is the reproducing kernel of P, in
the Fischer inner product.

Lemma 20. For any signature m, all z, weD and IEN,

(_f_)ﬂ K2(z, w)N(z)' N(w) = (%)ﬂu K™z, w)

where m+I=(my+1, my+1, ..., m+1).
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Proof. By the L-invariance of N and the definition of @ (sce the introduction),

Pm N'= P+t
Let r=237_ t;e;, ;=0 (where {e;};—, is the fixed frame of orthogonal minimal
tripotents). Denote *=27_ r3e;. If k€K, z=k(t) then N(z2)=yx(k) N(t)=
x(k) [T,_, t; and by [FK], Lemmas 3.1, 3.2 and Theorem 3.6:

9n(?) dim (By)

(7).

(2], &2z 2 W NG = dim (B () N

r

K=(z,2) = K=(t, ) =

Thus, using Proposition 2

. d m
= dim (B Joer(® = (4, K27 2

The functions (—)m KZ(z, W)N(z)N(w)' and (& )m 1 K24 (z, w) are analytic in z,
conjugate analytlc in w and coincide for z=w. Hence they coincide for all
z,weD. |

Let S(z, 1)=K(z, w3, z€D, uc S, be the Szegd kernel. It admits an expansion

Sz u)= n (%)2 K* (z, u).
Lemma 21. Let D be a tube domain and let f=3m fm€H*(S). Then for IEN
[ 1) Sz, w) N@) NG do () = Sz fu(2)

Proof. (£), K=(z,u) is the reproducing kernel of P, in the norm of H2(S).
Hence -

J 6D S ) N NG daw = 3y, [,/ (L), K™ (2,10 N NG dow)

= 3 [ @[3, K= @ 0o
= Zﬂfﬂ-l'l(z) = Zm,zlfg(z)-

Corollary 22. Let f be an analytic function in a neighborhood of D,s=%—i=
d
—;—)s Then

(@PN)@) = [, 1) Sz, 1) N} N do(u).
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Proof. 1t is obvious that
M;%/)l)—l = 2m,<s®Pm'
Hence, using Lemma 21 with /=s, we get for f=3'm fu
QPN = Smai fu(d = [ f4) Sz, u) N2} N@) do () = ON(¢u(2)~2)". 1
Lemma 23. For all a, z€D,
QW (UW(p,) N*)(z) = 0- N(z)*K(a, a)~ P~ K(z, a)'/2,
where 0 is a unimodular constant independent of a and z.
Proof. By Lemmas 15 and 16 and Corollary 22, we get
OV (UM (@) N*)(2)
=/ N (0a(@)) Joa (/P K (z, u)/*N(z) N(u)* do ()
=0  h(a, uyh(u, Q)2 K(z, u)/ K (u, a)*/? do (u) N(2Y' K(a, a)~*/*
=0/  K(@, w)=1? S(u, a) K(z, u"*do (u) N(2)* K (a, a) =%
= 0. K(a, a)~C+DIP K (2, )2 N(2)*
= 0-K(a, @)~ P-4 K(z, a)'/* N(z)*
where §=(—1)+dr=(_jyce-02 g

Lemma 24. Let a=>p—1. Then there exists a positive constant C such that for
every feL(u)
Clf Mo = IN*fliereun = 1S lLrun-

Proof. Let 0<e<l1, then
(fp\,p If(z)lzdpa(z))llz

is an equivalent norm on L?(y,). Since |N(z)|=e™" on D\¢D and |N(z)|=1 for all
z€D we get the desired inequality. [

Conclusion of the proof of Theorem 19. By Lemmas 23 and 24,
INlerow ~ [f | K(a, a)~®=*P|K(z, a)) dp(z) dps(a)
= Ap
= [/, [K(z: @l du.(2)K(a, &)"'? AV (a).
We claim that there exists 1=C=<e so that

1= fD |K(z, 8)| da(z) = C



Realization of the invariant inner products on the highest quotients of the composition series 21

for all a€D. The lower estimate is trivially,
[, K@ )l du(2) = | K(z, ) due(a)] = KO, )| = 1.
The upper estimate follows from [FK], Theorem 4.1 since a>p+(r—1)g. Thus
INeney ~ [, K(a, 8 dV (a).

The integral on the right-hand side is finite if and only if A<1. This completes
the proof. |}

Remark. Tt is possible to compute [[N*| ¢, explicitly in terms of the Gin-
dikin’s Gamma function and the generalized hypergeometric functions, see [FK1]
for general information and Proposition 2.2 there for the actual computation. This
gives the value of the constant ¢ in Theorem 19.

§ 6. Concluding remarks and open problems

The most interesting problem left for future study is to extend our results to
the non-tube cases and to obtain “canonical” formulas (involving derivatives, in-
tegrals, etc.) for the invariant inner-products on the highest quotients M()/M), _, .
This seems to require some new ideas if r>1. In the case of the unit ball B of C?
(which is the only Cartan domain of rank 1), W;={0} and the invariant Hilbert
space H#p ,0y=P@/CI consists of all analytic functions f(z)=3,¢,z* on
B so that | fl%, . =2l i le,J? is finite, see [Z]. J. Peetre [P] obtained
integral formulas for the invariant inner product (-,-)o 0 by analytic continua-
tion of the inner products of L2Z(B, u;), d<A. See [A] for the details. A similar
formula was obtained independently by M. Peloso [Pe] by different methods.

Both Theorems 14 and 19 provide integral formulas for the highest quotient
MM, only for A=0 and the special case of D(IIly) and A=1/2. It is
interesting to find the modifications of our formulas which will hold for more (or,
all) A€W;(D). In Theorem 19, it seems that one can modify Q¥ by subtracting
terms of low degree, to improve the chance of convergence of the integrals.

What is behind the seemingly different descriptions of J, ,;, (Theorems 12,
14, and 19) is its uniqueness with respect to the isometric action U® of G (see [AF]
and step 4 of the proof of Theorem 14). One can obtain many other equivalent
descriptions. For instance, let H be an auxiliary K-invariant Hilbert space of analytic
functions on D with some natural properties, and consider the space o (H) of
all analytic functions f on D for which QU™ (p)f)€H for all p€G and

1f Leway:= (f_|0® (0P (0)f )|t do)



22 Jonathan Arazy

is finite. By Lemma 23, ) (H) is non-trivial if and only if
[ INTK22[3 K (a, a7 dV (a) <o

and in this case #'»(H)=4#, ,;, with proportional semi-norms. In Theorem 19 we
study the case where H=L%(y,) and a=p+(r—1)4 (thus #W(@)=#P(L(4,)).
Also, it is easy to verify that #®(H2(S)) is always trivial.

Theorems 12, 14, and 19 justify the notation

BY = A, 4y

the Besov-2 space associated with the isometric action U™ of G. One can define the
other Besov-p spaces associated with U® (here O0<p=-o, and the genus of D is
denoted by g), by either

B = {f analytic in D; [ flaw = 1D (Nlre) <=}
or

B (X) = {f analytic in D; ||flspex, = ([, |2PU0P @)/ ) do)' <}

where X is an auxiliary Banach space of analytic functions on D. It is elementary to
use the proofs of Theorems 14 and 19 to characterize the non-triviality of these
spaces. Thus BY¥ and BW(L7(y,)) for «=>£-+(r—1)4 are non-trivial if and
only if 2<g—2(g—1)/p. Itis interesting to study the spaces B'” and B{’(X) from
the usual point of views in the theory of Besov spaces, and in particular to establish
our conjecture that B =B (X) for interesting spaces X for which B{(X) is
non-trivial.

Motivated by our Theorem 19, and by [AFP], {AFJP1], and [AFJP2] we define
the (generalized) Hankel operator H, with an analytic symbol f as the operator

Hy: L*(p)—~L%(n,) (x=>g+(r—1)4) given by

(H 1)@ = () A, (z, W) K(z, W) dpy(w)
where

As(z,w) = (@9 (fo0.))(0:(1))

and Q@ is the orthogonal projection on the highest quotient M{y/M ) _; (thus
4=0). It is easy to establish some of the usual properties of (ordinary) Hankel
operators, for instance Hjir2,y+1=0 and

UDN@)H U (p~Y) == H;.y, ¢€G.

It is interesting to investigate the question of boundness, compactness, and the
membership in Schatten ideals S, of the generalized Hankel operators. Theorem 19
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says that H €S, (=Hilbert—Schmidt class) if and only if f€B{” and that

|H s, = ¢+ Ilfllago)-

We conjecture that (at least for p>2(g—1)/g)

where

1Hlis, ~ 11> = 1f sy ~ (f  VH k. du(2))?

k. =K#[|K2*| 2, is the normalized kernel and du(z)=K(z, z)dV(z) is

the G-invariant measure on D.

AF.

AFJP1.

AFJP2.

AFP.

BCZ.

FK1.

FK.

IS.

&r

Pe.

Ul.
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