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Norm convergence of normalized 
iterates and the growth of Koenigs maps 

P i e t r o  P o g g i - C o r r a d i n i ( 1 )  

A b s t r a c t ,  Let r be an analytic function defined on the unit disk D, with r  r  
and r162 Then by a classical result of G. Kcenigs, the sequence of normalized iterates 
Cn/,V ~ converges uniformly on compact subsets of D to a function a analytic in D which satisfies 
~or It is of interest in the study of composition operators to know if, whenever cr belongs 
to a Hardy space H ~), the sequence 0n/A n converges to ~r in the norm of H p. We show tha t  this 
is indeed the case, generalizing a result of P. Bourdon obtained under the assumption tha t  r is 
univalent. 

When r is inner, P. Bourdon and J. Shapiro have shown tha t  c~ does not belong to the 
Nevanlinna class, in particular it does not belong to any H p. It is natural  to ask, how bad can the 
growth of c~ be in this case? As a partial answer we show tha t  c~ always belongs to some Bergman 
space L~. 

1. I n t r o d u c t i o n  

Le t  ~b b e  a n  a n a l y t i c  f u n c t i o n  d e f i n e d  o n  D ,  w i t h  qh(D) c D ,  ~b(0)=0 ,  a n d  ~b ' (0 )=  

A r  K o e n i g s ' s  T h e o r e m  p r o v i d e s  a n  a n a l y t i c  m a p  c~ o n  D w h i c h  i n t e r t w i n e s  ~b w i t h  

m u l t i p l i c a t i o n  b y  A, 

(1.1) o-o~b = / ~ a .  

T h e  m a p  a is o b t a i n e d  as  t h e  l imi t ,  u n i f o r m  o n  c o m p a c t  s u b s e t s  of  D ,  of  t h e  

s e q u e n c e  o f  n o r m a l i z e d  i t e r a t e s  ~bn/A ~, w h e r e  ~ = ~ b  . . . . .  r n t i m e s .  O r i g i n a l l y  

i n t r o d u c e d  t o  s t u d y  t h e  b e h a v i o r  of  ~b n e a r  t h e  o r ig in ,  t h e  f u n c t i o n  cr h a s  r e c e n t l y  

f o u n d  a p p l i c a t i o n s  in  t h e  s t u d y  of  t h e  c o m p o s i t i o n  o p e r a t o r  C 4 ( f ) = f o O ,  i n d u c e d  

b y  4~ o n  t h e  a n a l y t i c  f u n c t i o n s  f of  D ,  m a i n l y  b e c a u s e ,  b y  (1.1) ,  o- is a f o r m a l  

(1) The author is partially supported by NSF Grant  DMS 97-06408 and wishes to thank  
Professor P. Bourdon for sharing results and conjectures. 
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eigenfunction of Cr Recall that  for 0 < p < o c ,  the Hardy space H p is the family of 
analytic functions f defined on D which satisfy 

(1.2) II fll~/p sup f 2 ~  : I f (r~ ~~ I ~ dO/2~ < ~ .  
0 < r < l  J0 

The operator Cr is known to be bounded on the Hardy spaces H p, i.e. C r  p) c H p  

for 0 < p < o o  (this is known as Littlewood's subordination principle). On the other 
hand, the Kcenigs map (7 does not always belong to H p. When r is univalent, then 
(7 is also univalent, so (TEH p at least for 0<P<�89  However, when r is an inner 
function, P. Bourdon and J. Shapiro in [BS] show that  (7~[-Jp>0 Hp (actually they 
prove that  a is not even in the Nevanlinna class). Conversely, in [P1] we showed that  
when r is not inner, (7 is always in some H p, for some p>0.  Hence, the property 
of r being inner provides a dichotomy for the growth of (7. A further description of 
this phenomenon will be provided below (see Remark 3.2). 

In this context, P. Bourdon in [B] recently asked the following question. When 
is the sequence of normalized iterates Cn/l ~ convergent to (7 in the norm of HP? 

Clearly a necessary condition is that  (7 be in H p. Bourdon shows that  this 
condition is also sufficient if one assumes that  r is univalent. We show that  the 
univalence requirement can be dropped. 

T h e o r e m  1.1. For every p > 0  such that o - c H  p w e  have 

- (7  --+0, as n ---+ oo . 

As mentioned above, when r is inner (7 is in no H p space. So it is natural 
to ask the following question. How bad can the growth of (7 be in this case? For 
instance, how does (7 behave with respect to the Bergman spaces? Recall that  for 
0 < p < o c  the Bergman space L p is the family of analytic functions f defined on D 
such that  

= f D  [f(z)lP dA(z )  < 

g~ 

IJfll[  00, 

where dA  is area measure normalized so that A ( D ) = I .  
In the second part of the paper we show that  for arbitrary self-maps r (inner 

or non-inner), the Koenigs map (r is always in LP~ for some p>0.  
In order to study the behavior of Kcenigs maps with respect to the Bergman 

spaces, we consider the "growth spaces" G p, for 0 < p < o c ,  consisting of all analytic 
functions f defined on D such that  

(1.3) Ilflb~ : sup I f (z) l (1- Iz l )  1/p < oo. 
zED 
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These spaces are related to the Bergman spaces L~ by the following inclusions. For 

O<p<cx) and O<c<p ,  

(1.4) L p-~ D G p D L 2p. 

The first inclusion is clear; for the second one, see for instance [R, Theorem 7.2.5, 
p. 128]. The space 

A 
p>O p)O 

is much bigger than the Nevanlinna class. But some parts  of the classical theory 
can be extended to A -~176 see the work of Korenblum [K]. In particular, the zero 
sets of functions in A - ~  have been studied extensively. We prove the following 
result. 

T h e o r e m  1.2. I r e  is an analytic function of D,  with r  r  and 
Cr(0)=A~0,  and ~ is the associated Kwnigs map, then 

p>0 

C o r o l l a r y  1.3. Let Z =  { an } C D \ { O } be a Blaschke sequence, i.e. a sequence 

such t h a t  En~.l(1--1anl)<(XD, a~td l e t  ~) be a function as in Theorem ].2 which 
vanishes on Z.  Then the set [_Jn~_l r  obtained by repeated backward iterations 

is an A - ~ - z e r o  set. 

Proof of Corollary 1.3. Suppose w e D  and r  for some n > l .  Then 

A,~+~ - A n + ~  - A n + ~  = 0 .  

Hence, by Theorem 1.2, U~=l r  is a subset of an A-~ set. So Corol- 
lary 1.3 follows from Corollary 2, p. 129, of [K]. El 

Question 1.4. Is Theorem 1.2 sharp? i.e. for every p>0 ,  are there Kcenigs maps 
a that  are not in L~? 

Added in proof: P. Bourdon has recently answered this question in the affir- 

mative (personal communication). 

Question 1.5. Does Corollary 1.3 still hold if we drop the requirement that  
r162 

Finally, in view of Theorem 1.1, one may ask if the sequence of normalized 
iterates r n converges to ~ in the norm of LPa whenever ~ c L  p. This turns out 
to be a quick generalization of Theorem 1.1. 

In Section 2 we describe the key example that  led us to the proof of Theorem 1.1. 
In Section 3 we introduce the radial maximal function of a and prove Theorem 1.1. 
Then in Sections 4 and 5 we deal with the Bergman spaces situation. 
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2. A K c e n i g s  m a p  o b t a i n e d  f r o m  a c o v e r i n g  R i e m a n n  s u r f a c e  

Before proving Theorem 1.1, we are going to describe the example that  pro- 
vided the intuition for the proof. In the univalent case, Cn/), ~ and ~ have radial 
limits almost everywhere on 0D,  so one can restrict the at tention to the boundary 
functions. Bourdon then shows that  gb~/,~ ~ converges almost everywhere on 0D 
to a, and uses the fact that  a is one-to-one together with Koebe 's  ~-theorem to 

establish 

(2.1) r  _< C l < ,  a.e. on 0D,  

for some constant C > 0 .  So by the dominated convergence theorem, he obtains tha t  
whenever (vEH p, the sequence ~5~/A n converges to a in H v. 

It is therefore natural  to ask if (2.1) holds in general, for non-univalent func- 
tions. First observe that  when r is not univalent, the set r  could be infinite 

and there could be a point OCz0Er for which r  is non-empty for all 

n_>l. Pick znEr Then 10,4~,d/; ,-I=lzol I ; ~ 1 - ~ .  However, o-(zn) must 
be zero, by (1.1), since 

- = : o .  

This suggests that  (2.1) may not hold for non-univalent maps. Hence, we set out 
to construct an example of r for which (2.1) fails. 

As mentioned above, the sequence of normalized iterates r '~ converges to a 
map  cr which solves the functional equation (1.1). Kcenigs's theorem, however, also 
has a uniqueness part.  Namely, whenever ~ is a function on D satisfying ~o r  
then cr must be a constant multiple of l i m ~  r n (see IS, p. 90]). So, in order 
to construct a counter-example, we first produce a map r by geometric means, such 
that  or(0)-0  and a ' ( 0 ) r  Then we check that  there is a map q5 which satisfies 
~or Thus, by uniqueness, cr a ' (0)  lim,>_+o~ Cn/A% 

Consider the region ~ obtained from the right hal~plane H - { z E C : R e  z>0}  
by punching out the sequence of points ~2 ,~~176 Then the universal cover of ~ is a L J n  0" 

simply connected open Riemann surface 14; standing over the right half-plane with 
branch points at 2 n for n 0, 1, 2, 3, .... We let rc be the canonical projection of l/Y 
onto the complex plane. By cutting W along all points that  project onto [1, +oo) 
we obtain countably many simply connected sheets which look like I I \ [ 1 , + o c ) .  
Pick one such sheet So and extend it by the Schwarz reflection principle to cover 
(H\[1, +oc) )UD.  We obtain a new simply connected open Riemann surface SDW 
covering f~UD and branched at {2n}~_0 . Moreover, points in fl have infinitely 
many  preimages in S, while every point in DN{z :Re  z<0}  has a unique preimage. 
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A good way to picture this surface is to imagine a dictionary lying over the right 
half-plane with infinitely many pages ligated at the points s2~~ and such that  L J n = 0 ,  
the first page has a tag in the form of D sticking out over the left half-plane. 

bet 0E$  be the point that  projects onto 0, and let G be an analytic and one-to- 
one map of D onto S such that  G(0)=0.  Set er=rcoG. Then o (0 )=0  and ~ ' (0) r  
The branch ~ - s  ]D is uniquely defined, analytic and one-to-one onto a neighborhood 
of the origin V0=cr * ID(D)cD,  and sends 0 to 0. Define q~0(z)=a I l D ( 1 0 - ( Z ) ) .  

Then ~b0 is analytic and one-to-one on V0, fixes the origin, and has derivative equal 
1 to ~ at 0. For all zCD\Vo, cr(z)C[2, hence �89 So, in a disk A of radius 

�89 centered at l~ (z )  one can define a branch of cr ll= to be one-to- 
one and analytic. By letting qSz=e -11~ (l~r(z)) for some appropriate choice of the 
branch a-11A ' ~b0 can be analytically continued along any path in D starting at 0. 
Since D is simply connected, ~0 extends to a map ~b analytic on all of D by the 
monodromy theorem. Note that  r is locally one-to-one at every point of D, hence 
~b'(z)sr for all zED.  Also, at every zED,  q~(z)=cr-l(�89 for some choice of 
cr -~, so r  and a%b(z)= �89 Therefore cr'(0)2~q~,~ converges uniformly on 
compact subsets of D to ~. Mereover, the range of a is contained in { z : R e z > - l } .  
So, by subordination a c H P  for 0 < p <  1. Finally, q~ is not inner because, for instance, 
it has modulus strictly less than one on the arc of 0D which is sent by (7 onto the 
left half-circle 0DN{z:Re  z<0} (or apply Theorem 1.5 of [Pl]). 

We now need to identify a sequence of sheets besides So. Let %:  [0, 1]--+S 
be the path starting at 0 whose projection on C describes a circle in the positive 
direction with diameter [0,3.2 '~ ~]. Let S~ be the sheet containing %( t )  for t 
near 1. Note that  for n_>l, Sn projects onto II\[1, +oc). Let ~, be the segment of 
0S~ projecting onto [- i ,  i]. Then G 1 extends continuously to OS~, by the Schwarz 

sends reflection principle, and E~ = G 1 (L~)C 0D. Observe that  nmltiplication by 
1 lifts to the the path ~r(%) onto the path ~r(% 1). By construction the map 5z 

map q~=Go+oU ~ of 8 into itself. So ~(S0)cS0 and for all n_>l, ~)(Sn)CS.,~-l. 
In particular, for all n > l  we have ~ ( L ~ + l ) = h .  Thus ~b~(E,~+I)=Ea C0 D  and 
12~b~1=2 ~ on E~+I. On the other hand, Icrl<l on E.~+I. So for all R > 0  we can 
always find a set EcOD of positive measure where 1 ~ ' ( 0 ) 2 ~ - < _ > R l < ,  i.e. (2.1) 
cannot hold. 

Nevertheless, consider the cross-cut Y e S  which projects onto (2 ~, 2 ~+1) and 
separates So from S~. Fix r  then the path G(r(), for 0 < r < l ,  starts in So 
and ends in S~, so it must cross J.  Therefore, cr(r()=TroG(r() must intersect the 
segment (2 ~, 2n+1). This means that  if we consider the radial maximal function 
of a, a*(()=sup0<~<l la(r()l ,  we have cr*(r ~, on E~. Thus the function c~* 
grows in size like the sequence of normalized iterates. This is the observation that  
suggested to us the proof of Theorem 1.1. 
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3. T h e  radial  m a x i m a l  f u n c t i o n  o f  t h e  Kcenigs  m a p  

Motivated by the example of the last section, we now prove the following result. 

T h e o r e m  3.1. Let r be an analytic map on D such that r  0 (0)=0  
and r Let a be its Koenigs map, i.e. a = l i m n _ ~  en /A  n. For ( c O D ,  let 

a*(()=sup0<~<t ]a(r()l  be the radial maximal function of or. Then, there exists a 

constant C > 0  independent of n and ( such that 

(3.1) r  < C a * ( ( )  for a.e. ( c O D .  

Moreover, i f  a c  H p for some p>O, then a can be defined on OD and r  A ~ converges 
to ~r almost everywhere on OD. 

From this we deduce immediately Theorem 1.1. 

Proof of Theorem 1.1. Suppose a E H  p for some p>0.  By a well-known theorem 
of Hardy and Littlewood, see [G, p. 57 (and top of p. 59)], it follows that  a~E 
LP(OD). By Theorem 3.1, there is a constant C > 0  such that  

On A.~ a < ( C + l ) a * ,  a.e. on OD. 

Also, by Theorem 3.1, r  n converges to cr almost everywhere on 0D. Thus 
Theorem 1.1 follows from Lebesgue's dominated convergence theorem. [] 

Remark 3.2. When r is inner, [BS] show that  a does not belong to the Nevan- 
linna class. In view of Theorem 3.1, we see that  actually a * = c c  almost everywhere 
on 0D, since in this case 0~/)~n clearly converges to infinity almost everywhere on 
0D, as n tends to infinity. 

Proof of Theorem 3.1. We first show (3.1). For c~>0, let f ~  be the com- 
ponent of {z~D:la(z)l<c~} containing the origin. Since a '(0) 1 and a(0)=0,  a 
is one-to-one on some disk A c A c D  containing the origin, and a(A) is an open 
neighborhood of 0. So there is 5>0  such that  the open disk of radius 6 at 0, B(0, 6), 
satisfies B(0, 5) c B ( 0 ,  5) c a ( A ) ,  that  is to say f~  c A .  Let us write a -1 for (alA) -1. 
Since the derivative of ~r ~ is 1 at 0, a - l ( z ) - z = z 2 g ( z ) ,  for some g analytic in a 
neighborhood of B(0,5).  Let M = M ( 6 )  be the maximum of Igl on B(0,5).  Then 
for zCB(0,  6), la - l ( z ) l<Iz l ( l+Mlz l )<_( l+M~5) lz l  . Write C = I + M 6 .  Then for all 
wEA such that  la(w)l<~)<6 , we have Iwl=l~-a (a (w)) l<C0.  In other words, for 
every 0 < g < 6 ,  

(3.2) f ~  C/3(0, Cg). 
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Since r is bounded there exists a set WcOD of full measure such that  every 
iterate Cn has a radial limit at each point of W. Fix a point ( c W .  If ~*( ( )=oo ,  
then (3.1) holds trivially. So suppose that  cr*(()<oo. Then there is an integer 
N = N ( ( )  such that  

(3.3) ~IAI N+I  ~ gr*(~') < 51/\1 - N .  

For n = l ,  ..., N - l ,  

(3.4) IAI-n]r <__ iAl-n _< IA I Nd-1 < ~o-*((). 

On the other hand, by the second inequality of (3.3), for n>_N, 

(3.5) sup I~(r  = sup IAncr(r()l = ]Ajncr*(() <51/~1 n-N. 
0<r<l  0<r<l  

Thus L(r) r (r()  for 0 < r < 1, is a path starting at 0 which stays in {z E D: I~(z) l < 
61~ln-N}, and hence stays in ~261a1,~-~. So, by (3.2), r n-N, and, for 
n>N, 

(3.6) IA1-~1r162 IAI ~r162 _< csIAI -~  <cbAI 1~*(0, 

where we used the first inequality of (3.3). Let Cl=max{1/6 ,  CIAI-1}, and notice 
that  C1 depends only on A and 5. Then by (3.4) and (3.6), for every ( E W  and for 
all n_>l, 

I.'~--ncn(()l ~ ClO'*(() .  

This establishes (3.1). 
Now assume that  crEH p for some p>0.  Hence, cr*<oc almost everywhere on 

0D, and without loss of generality cr*(()<ec for all ( E W .  For each ( c W  choose 
N = N ( ( )  as in (3.3). Then, for n>N, Cn( ( ) ea6 ,  by (3.5). Since fie is a compact 
subset of D, r ~ converges to a uniformly in ~ .  So, 

~)n(~) r162 O-((~N (~)) 
An - ),,~_N AN ~ A N  = ~ ( 0 ,  

as n--~oo. Therefore, r n tends to a pointwise everywhere on W. [B 

4. K c e n i g s  m a p s  are  a l w a y s  in s o m e  B e r g m a n  s p a c e  

In this section we prove Theorem 1.2, which says that  Kcenigs maps are always 
in some Bergman space. Our method of proof is analogous to the one used to prove 
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Theorem 2.1 of [P1], which says that  the Kmnigs map of a non-inner self-map r is 
always in some Hardy space. If r is an analytic function defined on D, we introduce 
the following level sets: for c~>0, let ft~(~) be the component of {zcD=lr 
containing the origin, and let F ~ ( r  riD. In [P1] we studied the Hardy class 
of ~ by looking at the rate of decay as c~ tends to infinity of the harmonic measure 
of F~(~) at O. 

T h e o r e m  4.1. ([PI, Theorem 2.1]) Let r be an analytic map such that r  
D, r  and 0</r  and let ~ be its Koenigs map. Let cos be the harmonic 
measure of the level set F~(a) at 0 in D. Then the following limit exists, 

lira log(1/co~)-->(~7). 
~ log ct 

Moreover, a E H  p if and only if 0<p<#(cr) ,  and # ( a ) = 0  if  and only i r e  is inner. 

Now, instead of harmonic measure we will use hyperbolic distance. Recall that  
the hyperbolic distance between two points a, bED is defined by 

l+ I (b -a ) / ( 1 - b a ) I  
~0 D (a, b) -- log 

1 - [ ( b - a ) / ( 1 - b a ) l "  

For a > 0 ,  we let 
O~ L)D(O,F~(~b)) inf ~)D(0,4). 

Our convention is that  ~ is infinite when Fs(~)  is empty. 
We reformulate the definition of the spaces G p, defined in the introduction, in 

terms of ~ .  

L e m m a  4.2. Let ~ and cos be defined as above. Then, for 0 < p < o c ,  ~ E G  p if 
and only if there is a constant C > 0  such that 

(4.1) log~ >- p -  log~" 

Proof. Define M(9 ,  r)=maXlzl_,, I~(z)I for 0 < r < l .  Then, ~CG p if and only 
if there is a constant C > 0  such that  

(4.2) M(~,  r)(1 r ) I / P < C  

for all 0 < r < l .  Choose z0 with Iz01=r such that  Ir162 Then by the 
maximum principle, Ir <lr for all z such that Izl<r.  Hence, setting (~ 
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M(~b,r), we have rDcf~(~b)  and z0CF~(~b). In particular, 0~=0D(0, z0). Since 
0D(0, z0)X--log(i--r) ,  (4.2) can be rewritten to yield (4.1). [] 

Let r be a self-nmp of D as in the introduction and let a be its Koenigs map. 
Consider the level sets F~=Fo(cr) and f~=fG(c r ) .  Then {f~}  is an increasing 
family of non-empty (because or(0)=0) simply connected regions. The sets F~ are 
disjoint for different cds, and if a l < a 2 ,  F~ 1 separates F~2 from 0 in f~2- Thus 

(4.a) 

Observe that,  since ~r satisfies equation (1.1), the following properties hold for all 
a>O, 

(4.4) r  c r~lxl~ and r  c Pl:,l~. 

Suppose E is a closed set in D \ f G  for some a > 0 ,  so that  Fo separates E from 0 
in D. Then by (4.4), F~/q),i separates r I(E) from 0 in D, and by the invariant 
form of Schwarz's lemma (Theorem 1.4.~ of [CO]), 

(4.5) LOD (IVa, J~) __~ OD (F~/p,], 0-1 (E)). 

Using (4.3) and (4.5) we prove the following theorem. 

T h e o r e m  4.3. Let r be an analytic map such that r  r  and 

A=r and let ~ be its Kmnigs map. Then the following limit exists strictly 
positive, 

lira ~ ~ o o  log a -- ~](a) > O. 

Moreover, ~CGP for 0<p<.(~)  and ~r for V(~)<P<~. 

From Theorem 4.3 and the inclusions (1.4) we obtain that  aELP~ for 0<p<~/(~) 
and a~LP~ for 2~(cr)<p<cx~. In particular, since ~](a)>0, Theorem 1.2 follows. 

Question 4.4. Is a in L p for ~(~)<p<2~/(a)? 

Remark 4.5. Theorem 4.3 leaves open the question whether a E G  p for p=v(r  
Equation (4.10) below implies that  

p~ C 
log a -< ~/(a) q- log~ 

which is the other direction of (4.1), and hence does not help. We suspect that  one 
can find examples in both cases by looking at univalent maps. 
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Proof of Theorem 4.3. Without loss of generality, ~ l c s D  for some 0 < s < l  
(multiply ~ by a large enough constant). Fix f l > l  and find an integer N > I  such 
that  

(4.6) I~1 N+I ~/3 < I~I-N. 

For all a>/3, there is an integer H>_I such that  

(4.7) ~LAI -(H-1)N _< a < ~1~1 HN. 

Having set the scales in which we are measuring the sizes of a and/3 we let Th = 
F~IXI-hN and Wh t2~lx I hN for h 1, 0,. . . ,  H - 1 .  Iterating (4.3), we obtain 

H-1 
(4.8) 0~ _> Z ~n(%_I ,T. )  

h=0 

Notice that  by (4.4), 0hN1 (F~)NWh=0 and Oh~(Ffl)DTh. So, 

-1 f OD(Th 1,Th)=~D(Zh-l,r ~)). 

Then, by (4.5), for h=0,  ..., H - l ,  

~.(%-1, eh~(F~)) _> ~.(T_I, F.). 

Finally, using the fact that,  by (4.6), /31)qN<l and thus T _ I C ~ c s D ,  (4.8) be- 
COIlles 

~ _> HOD(a1, FZ). 

Write RZ for gD(~l,  F~). Using (4.7), we obtain 

~ > HR~ 
log ~ - H N  log(1/lal)+log/3" 

Letting c~ tend to infinity, H also tends to infinity. Hence, 

l iminf t)~ > R~ 
~-~o~ logc~ - Nlog(1/[A[)" 

By (4.6), Nlog(l/l~l)<tog~+log(I/l~l), so 

(4.9) liminf log a log Z+log(1/I),l)" 
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This estimate will be used below. 
Since ~ is bounded on sD, there exists/30>1 such that s D C f ~  for all/3>/3o. 

By the triangle inequality, the constant C 0 = l o g ( ( l + s ) / ( 1 - s ) )  is such that  

R~ _> OH- Co 

for/3>/3o. Thus 

g~ > 0r Co 
(4.10) lim_)nf log c~ - log/3+log(I/]A])" 

Letting/3 tend to infinity in (4.10), we obtain 

~ > l imsup  OH 
l i ~ n k i n f l o ~ -  ~+oo log/3' 

So, the limit r/(a) exists. 
Moreover, for /3>/3o, R~>O. 

[] 
Therefore, (4.9) implies that  we always have 

5 .  M o r e  o n  n o r m  c o n v e r g e n c e  

In this section we show that  Theorem 1.1 can be extended to the Bergman 
space case. We proceed as in Section 3 and define the maximal function 

sup >(rz)l. 
0 < r < l  

But now we let z be any point of D. Then, Theorem 3.1 still holds (the proof goes 
through verbatim), i.e. there exists a constant C > 0  independent of n and z such 
that  

@z) <_Ccr,(z) for all ED.  Z 

Notice also that  crCL~ implies cr*cLP(D, dA). In fact, for every function f defined 

on D and 0 < r < l  let f~(z)=f(rz), then 

Hence, 

(cr*)r = (cr~)*. 

01 

where C > 0  is the constant provided by the theorem of Hardy and Littlewood. 
Therefore, Lebesgue's dominated convergence theorem yields the following state- 
ment. 
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T h e o r e m  5.1.  Let  r be an analytic map such that r  r 0 and 

A=qSt(0)r and let ~ be its Koenigs map. For every p > 0  such that a E L ~ ,  we have 

r  -~r  --~ 0, as n -+ cc. 
A,~ L Pa 
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