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Invariant fundamental solutions and solvability 
for symmetric spaces of type GC/GR with 

only one conjugacy class of Cartan subspaces 

Nils Byrial Andersen 

I n t r o d u c t i o n  

Let G / H  be a reductive symmetr ic  space and let D: C ~ ( G / H ) - ~ C ~ ( G / H )  be 
a non-trivial G-invariant differential operator.  An invariant fundamental  solution 
for D is a left-H-invariant distribution T on G / H  solving the differential equation 

(*) D T  = 5, 

where 5 is the Dirac measure at the origin of G/H.  
Assume that  G / H  is of type G c / G R  (G complex and H a real form of G) 

and that  H,  up to conjugacy, has only one Car tan  subalgebra. Let A denote the 
associated Car tan  subset of G/H,  identified with a real abelian subgroup of G. 
Using results from the theory of orbital integrals defined on G / H  obtained by 
Bouaziz, Harinck and Sano, we can then reduce (*) to a differential equation on A, 

F ( D ) T a  = 5A 

for some distribution TA on A, where F(D) is a uniquely defined differential ope- 
rator  with constant coefficients on A and 5A is the Dirae measure at the origin of 
A, i.e. TA is by definition a fundamental  solution for F(D).  Our main result is the 
following theorem. 

T h e o r e m  5. Let D be as above. Then D has an invariant fundamental solu- 
tion on G / H  if F(D) has a fundamental solution on A. 

Our result is similar to results obtained by Helgason for Riemannian symmetr ic  
spaces, see [11, Theorem 4.2], and by Rouvi~re for semisimple Lie groups with only 
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one conjugacy class of Car tan  subalgebras, see [15, Theorem 4.2], and our approach 
is very much inspired by their works. 

Assume now that  D has an invariant fundamental  solution on G/H. Then D 
is solvable, in the sense that  DC~(G/H)=C~(G/H), if G/H is D-convex, see [1, 
pp. 301ff.]. Van den Ban and Schlichtkrull give in [1, Theorem 2] a necessary con- 
dition on D for D-convexity of G/H, and we show that  this condition implies tha t  
F(D) has a fundamental  solution on A, and hence, as an application of Theorem 5, 
that  D is solvable, see Theorem 7. 

N o t a t i o n  

Let G be a reductive complex connected Lie group with Lie algebra g, and let 
H be a real form of G with Lie algebra ~. Let cr denote the conjugation of 1~ relative 
to b and let also cr denote the involution of G whose differential is a,  then H is the 
open connected subgroup of G ~, the fixpoint set of cr in G. The space G/H is said to 
be a reductive symmetric  space of type Gc/Ga. Let 9=%Oq be the decomposition 
of g into the d-l-eigenspaces of a,  where q=ib.  Let 0 be a Car tan  involution of 
~t commuting with or, and let g=t~Gp be the usual Car tan  decomposition into the 
i l - e igenspaces  of 0. Let K=G ~ be the maximal  compact  subgroup of G consisting 
of fixpoints of 0, with Lie algebra t~. 

Let p be the canonical projection of G onto G/H and let ~ be the map  of G/H 
into G defined by G/HDp(g)~gcr(g ) t CG, gcG. The image of p in G, denoted by 
X, is a closed submanifold of G, see [14, p. 402], and p is seen to be a G-isomorphism 
from G/H onto X, equipped with the G-action g.x-gxa(g) -1, xEX, 9cG. We 
will in the following use this realization of the symmetr ic  space G/H. 

Denote the space of distributions on X by 7?t(X). The group G acts naturally 
on ~D'(X) via the contragradient representation (on G/H), and we denote the H-  
invariant distributions under this action by ~D~(X) H. 

Let exp denote the exponential map of 9 into G. 

C a r t a n  s u b s p a c e s ,  C a r t a n  s u b s e t s  a n d  r o o t  s y s t e m s  

A Car tan  subspace a for X is defined (cf. [14, w as a maximal abelian subspace 
of q consisting of semisimple elements. We see, since ~ is a real form of g, that  a is 
a Car tan  subspace for X if and only if ia is a Car tan  subalgebra of ~1. The Car tan  

subset A of X associated to a Car tan  subspaee a for X, is defined (cf. [14, gll) as 
the set of dements  x ~ X  centralizing a in G (under the adjoint action). 
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So let a be a Cartan subspace of q. We denote by A=A(B,  ac )  the root system 
of the pair (0, ae) ,  where ac=a+ia. We choose a set of positive roots denoted 
by A +. Let W denote the Weyl group corresponding to the root system A. Let Ha,  
respectively 1~, denote the coroot, respectively the root space, of the root aCA.  

We say that  a root s E A  is real, respectively imaginary or complex, if it is real- 
valued, respectively imaginary-valued, or neither real- nor imaginary-valued, on the 
Cartan subalgebra ia of 0. The set of real roots, positive real roots, imaginary roots, 
positive imaginary roots, complex roots and positive complex roots are denoted by 
A m  A~,  AI,  A~, A c  and A~ respectively. 

Let a E A I .  The root a is called compact if and only if ( g~+f t_~+CH~)N0  is 
isomorphic to su(2), respectively noncompact if and only if ( I~+I~-~+CH~)NO is 
isomorphic to N(2, R).  The set of imaginary noncompact roots is denoted by AInc. 

We will in the following assume that  there is only one H-conjugacy class of 
Cartan subalgebras of b. This is obviously equivalent to H having only one conju- 
gacy class of Caftan subalgebras (or Caftan subgroups). So fix a 0-invariant Caftan 
subalgebra ia of 0. Then AR=AIn~=0,  see [13, Proposition 11.16]. Let A denote 
the Cartan subset of X associated to the Caftan subspace a for X. Then A is given 
by 

A = exp a = ~(p(exp a)), 

see [9, Corollaire 1.7], i.e. A is a connected real abelian Lie subgroup of G with Lie 
algebra a. Let S(a) denote the symmetric algebra of the complexification of a. This 
algebra can be identified with the algebra of differential operators D(A) on A with 
constant coefficients, by means of the action generated by 

d 
X f(a) = ~ f ( e x p  tX.a)It=0 

for XEa, where fcC~176 and aEA. 

Regular elements 

Put  n = r a n k  o and let xCX.  The characteristic polynomial of the C-linear 
endomorphism Ad(x)-I  on l~=qc=Oc can be written as 

detc((l+z)I-Ad(x)) =znDx(x) mod z '~+1 

for all zEC.  The function D x  so defined is an H-invariant analytic function on X. 
An element x in X is called regular (cf. [14, w if D x ( x ) # 0 ,  and the set of regular 
elements in any subset U C X will be denoted by U'. 
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Define for every root a a function ~a on A by 

~ ( e x p  X)  = e ~(x) 

for X c a .  We see, using the root space decomposition of t~, that  

D x ( a )  = n (1 -~_~(a ) )  
c~cA 

for acA.  We furthermore, for all subsets S c A ,  define the function 

b~--  n ( 1 - ~ _ ~ )  

on the set A r. We note, since all of the functions ~ ,  a E A ; ,  are real, that  the 
function bA+ is •  on the connected components of A t. 

We easily see that  ZH(a)=ZH(a) if acA'  (since a=expiX ,  where X is a reg- 
ular element of ~) and that  ZH(a)-~-ZH(A) (since A is connected), i.e. the quotient 
N.(A)/Z.(A) is  nite and equal to The subgroup 
is a Car tan  subgroup of H.  The map from H/ZH(A)•  into X defined by 
(hZH(A), a)~--§ is an everywhere regular ]NH(A)/ZH(A)I-to-one map onto X ' ,  
see [14, Theorem 2(ii)], and we thus have the decomposition X'=Uh~H h.A'. Let 
U C X  be a compact  subset. Since D x  is an H-invariant  continuous function on 
X, we conclude from regularity of the map  (hZH(A),a)~-~h.a, tha t  the subset 
H[U] = U h ~  h. U is closed in X. We see in particular that  the H-orbi t  H[a] through 
any regular element a c A  ~ is closed in X. 

O r b i t a l  i n t e g r a l s  

Definition 1. Let f E C ~ ( X ) .  The orbital integral K S of f ,  relative to the 
Car tan  subset A, is the function defined on the regular elements aEA t by 

Ks(a) = IDx(a)l 1/2 fmz.(A) f(h.a) di~, 

where dh is an H-invariant  measure on H/ZH(A).  

Remarks. Let a6A  t and let f ~ C c ~ ( X ) ,  then supp fnH[a] c X  is compact,  and 
the above integral converges. We also easily see tha t  K S C C ~ (At). 

Consider the space I(A) of functions F ~ C  ~ (A t) satisfying the properties: 

I I (A) :  SUPaevn A, }XF(a)l<oo for all compact  subsets V c A  and for all X C  
s(a). 

/2 (A): The function bA+ F extends to a C~ on A. 

I4(A): There exists a compact  subset V c A  such tha t  F(a)=-O for a c A ' \ V .  
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We note that  the space I(A) is isomorphic to the space I (X) ,  see [10, pp. 9ft.], of 
H-invariant differentiable functions on X '  satisfying the (similar) properties I~(X), 
iE{1, 2, 3, 4}, since condition Ia(X) is empty when there is only one conjugacy class 
of Cartan subspaces. 

Let U c X  and V c A  be compact subsets, and consider the F%chet spaces 

C ~ ( X )  = { f  �9 C ~ ( X )  I supp f C U}, 

C~(A)  = {F E C ~ ( A )  I supp F C V}, 

C~(A ' )  = {F �9 I(A) IF(a) = 0 for a E A ' \V} .  

T h e o r e m  2. Let U c X  be compact. There exists a compact subset V c A, only 
depending on U, such that Kf(a)--O for a c A ' \ V  for all f c C ~ ( X ) ;  and the map 
f ~ K I  is a continuous map from C ~ ( X )  into c~ (m ' ) .  

Proof. By mimicking [4, w for the space X, see also [4, w we see that  
H[U]NA is a bounded and closed subset of A, hence compact. The orbital inte- 
gral Ky is obviously identically zero outside H[U]f~A t, so we can choose the subset 
V c A  as H[U] NA. There exists around every aEA t a completely G-invariant neigh- 
bourhood V in G, see [4, w for the construction and definition of completely G- 
invariant neighbourhoods. We conclude from Harish-Chandra's method of descent, 
[4, Lemme 8.2.1], and properties Ii(m),  /2(m) and I4(m) of the orbital integral Ym 
defined on the Lie algebra m, see [3, w and [4, w that  K/sa t i s f ies  the properties 
II(A), I2(A) and h ( A )  listed above, since they are all of local nature. Let acA' ,  
then the map f ~ K / ( a )  is a continuous functional on C ~ ( X )  (a Radon measure 
on C ~ ( X ) ) ,  and continuity of the map f ~ K /  thus follows from the closed graph 
theorem. [] 

C o r o l l a r y  3. Let U C X  be compact and let V c A  be a compact subset as in 
Theorem 2. The map f~-~bA+K f is a continuous map from C ~ ( X )  into C~(A) .  

Proof. The map f~bA+iK f is a continuous map from C ~ ( X )  into C~(A ' )  
since b~x+ - •  oil the connected components of A t. The map extends to a continuous 

map from C ~  (X) into C ~  (A) by Theorem 2, since A' is dense in A. [] 

Let D(X)  denote the algebra of G-invariant differential operators on X. This 
algebra is isomorphic to the center Z(b) of the universal enveloping algebra of 
the complexification of b, see [2, ThSor~me 2.1] for details (valid in the general 
case as well), and we identify the two algebras. Let F denote the Harish-Chandra 
isomorphism of D ( X ) = Z ( O  ) onto S(~) W, the Weyl group invariant elements of 
s (a ) ,  see e.g. [13, p. 220]. 
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Let D E D ( X ) ,  then we have 

(KDf)  (a) = F(D)K$ (a) 

for all aCA',  see [16, Lemma 12.1]. Since bzx+-+ l  on tile connected components 

of A', we also get 

(ba+ I KD$) (a) = F (D) bA+ I K f  (a) 

for all a EA ~, and hence by density and continuity for all a EA. 

Let ~2 [ I~zx+ HoES(a )  and let 5ET?'(X) H denote the Dirac measure at the 
origin of X. 

T h e or e m 4. Let f ~ C ~ ( X ) .  There exists a constant c7~0 such that 

(5, f l  = f (e)  = cf~bzx + K$(e),  

where e denotes the identity element of G (A). 

Proof. It follows from [10, Lemme 7.1(ii)], since ia is a fundamental Cartan 
subalgebra of [?. [~ 

Y~lndamental so lut ions  and solvabi l i ty  

Let D c D ( X ) .  An invariant fundamental solution for D is a solution TE  
~) ' (X) H to the differential equation D T = 6 .  Consider F (D)ES(a )  as a differen- 
tial operator on A, then a fundamental solution for P(D) is a solution TAE:D'(A), 
the space of distributions on A, to the differential equation F(D)TA=bA, where 5A 
denotes the Dirac measure on A at the origin. 

Both the symmetric space X and the Lie group A carry invariant measures, 
which in a natural way induce bilinear pairings of C ~  (X) and C ~  (A) with them- 
selves. We denote these linear pairings by ( . , -}  and (- ,-}A respectively. Let 
D E D ( X )  (DACD(A) )  and let D* (D~) denote the adjoint of D (DA) with respect 
to the pairing ( - , -}  ( ( . ,  ")A)- 

Define the isomorphism 7,  from D(X)  onto S(a) W as on [2, p. 59]. This 
isomorphism is identical to the isomorphism ~ from D(X)  onto S(a) W defined on [1, 
p. 304] (with a=aa and W~-W1),  see [8, pp. 15ff.] for further details. We have the 
following identities: 2~ for D ED(X)  homogeneous, see [2, 
p. 59]. It follows from [1, Lemma 3] that F (D)*=F(D*) .  
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T h e o r e m  5. Let D E D ( X ) .  Then D has an invariant fundamental solution 
on X if F(D) has a fundamental solution on A. 

Proof. Let TAED'(A) be a f lmdamental  solution for F(D).  Define a distribu- 
tion T E D ' ( X )  H by 

(W, f} = {TA, ~bA+ KS}A 

for f E C ~ ( X ) .  Continuity follows from Corollary 3, and H-invariance from H-  

invariance of Kf .  We easily see that:  

(DT, f )  (T,D*f}  =(TA,c~b~TKD.f )A 

= (TA, c~r (D*)b<  KS)A = (TA, r (D*)o~b< KS)A 

= (r(D*)~TA, cf~bA+Kf)A = c~bA+ K f  (e) = f(e) = (8, f}, 

since r(D*)*=r(D).  [] 

We decompose a according to the Car tan  decomposition as a=ae|174 
a•p. Let A K = A N K = e x p a e  and Ap--expap  be the compact,  respectively the 
euclidean, part  of A=AKAp.  We similarly decompose the complex dual of a as 
a~ a~,c • %,c ,  the product  of the complex duals of ae and ap. The lattice of char- 
acters of the compact  abelian group AK is canonically identified with the lattice A 
of analytically integral elements AEa~, o. Consider now the elements of S(a) in the 

natural  setup as polynomials on a~. Let XES(a )  and let Aca~' c ,  then we define the 
polynomial X~ on a;, c as X~(v)=X(A,  v) for z~Ea;, c .  Let {X1, . . . ,  Xm} be a basis 
for ap, and define a norm on S(ap), the symmetric  algebra of the complexification 
of a, ,  as ]]Xll'2=~(a!)2]a~l u for X = ~  a~X~ ~ ... X ~  "~ written in the multi-index 

notation. Let ]. I* denote any norm on a~. 

P r o p o s i t i o n  6. Let XES(a) .  The differential operator X on A has a fun- 
damental solution on A if and only if there exists a constant C > 0  and an integer 
N c N U { 0 }  such that 

(**) IIX~,ll > c (1+  IAI.) -N 

for all )~cA. 

Proof. See e.g. [5, w or [~5, Proposition 3.2]. [] 

Remark. The inequality [IX-Y][ >CNHXH [[YH holds for all X, YES(ap)  of de- 
gree < N ,  with N E N ,  where CN>O is a constant only depending on N.  It  follows, 
that  if X and Y satisfy (**) for some AEA, then so does the product X . Y .  Let 
D~, D 2 E D ( X )  and assume tha t  F(D~) and F(D2) both have fundamental  solutions 

on A, then it follows, that  the product D1-D2 has an invariant fundamental  solution 
on X. In particular, if D ~ D ( X )  and F(D) has a fundamental  solution on A, then 
a]l powers D m, m E N ,  have invariant f lmdamental  solutions on X. 
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T h e o r e m  7. Let 0 r  Then D is solvable, i.e. DC~(X)=C~(X) ,  
if d e g r ( D ) = d e g r ( D ) x  for some Aea~, c. 

Proof. We first notice that  if d e g F ( D ) = d e g F ( D ) x  for some ,kea[,c,  then 
d e g F ( D ) = d e g F ( D ) x  for all Aea~, c. Let {Y1, ... ,Y1} be a basis for as, and write 

r(D) as ~ , Z  a~ , z  Y lz l  ' Y~Z~X7 ~ ' X :  m There exists a coefficient aa,or with 

Ic~l =deg F(D),  and we have the estimate [tr(D)x II-> Ila~,0X~ ~ .--X~ = II =a!la~,0 I>0 
for all AChe, c .  We conclude from Theorem 5 and Proposition 6 that  D has an 
invariant fundamental solution on X. 

The algebra ap--aNp is a maximal abelian subalgebra of pNq, the so-called 
split part of a. Let Ap and A c  denote the root systems of ap and a in gc  (the 
complexification of g) respectively, and denote by Wp and Wc the corresponding 
Weyl groups. We note that  the pair (Ac ,  Wc)  is isomorphic to the pair (A, W), 
the roots having multiplicity 2 respectively 1 in the two root systems. Define as 
on [1, pp. 305 306] homomorphisms 7 and r], of D(X)  onto S(a) W~ respectively 
into S(ap) W~ . We note again that  F(D)(2A)=-y(D)(A), AChe. The correspondence 
between ~/(D) and "~(D) can be expressed as ~l(D)(u):'y(O)(u-~,~)=?(D) e,~(u) 
for ~,ea~,cCa~, where ~m is a fixed e]ement of a~,cCa~, see [1, Lemma 1]. We 
conclude that  deg~/(D) deg'y(D), and hence, by [1, Theorem 2], that  X is D- 
convex. It now follows, by [1, p. 301], that  D is solvable. [] 

E x a m p l e s  a n d  f u r t h e r  r e su l t s  

(1) Let A c D ( X )  denote the Casimir operator on X, then it is easily seen that  
F(A)(~, u)=/k./k+u.u-s for ),Ea~,c, uea~,c, where 0 is half the sum of the pos- 
itive roots of Ac .  Assume that  ap•{0}, then we see that  d e g F ( A ) = d e g F ( A ) ~  
for all AChe, c ,  and we conclude from the above that  A has a fundamental solution 
and that  it is solvable. Solvability of the Casimir operator was proved, for general 
semisimple symmetric spaces, by Chang in [7]. Let D E D ( X )  be a differential oper- 
ator of the form A "~ +D1, with m E N, where deg D1 < deg D =2m.  Again assuming 
that  ap ~ {0}, we see that  F(D) satisfies the conditions in Theorem 5 and Theorem 7, 
i.e. D has a fundamental solution and it is solvable. 

(2) Let K be a compact Lie group and let K c  denote the complexification of 
K,  then K c / K  is a Riemannian symmetric space (of type Gc/Ga) with only one 
conjugacy class of Cartan subspaces. Since a ap, we easily see from the above, that  
every non-zero invariant differential operator D E D ( K c / K )  has a K-invariant fun- 
damental solution and that  it is solvable. Helgason obtained these results for general 
Riemannian symmetric spaces in [11] and [12], as mentioned in the introduction. 
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(3) Let H be a complex connected semisimple Lie group. By choosing a suitable 

complexification H e  of H, we can view H ~ - - H c / H  as a symmetric space of type 

G C / G R  with only one conjugacy class of Cartan subspaces. Then Theorem 5 is 
a well-known result by C~r~zo and Rouvi~re, see [6, Proposition 1]. In this case 

however, it follows that D is solvable if F(D) has a fundamental solution on A, see [6, 

Proposition 2]. These results are also valid on general connected semisimple Lie 

groups with only one conjugacy class of Cartan subalgebras, see [15, Theorem 4.2]. 

(4) There are up to coverings two families and one exceptional example of 

non-complex, non-compact connected semisimple Lie groups with one conjugacy 

class of Cartan subalgebras, namely S0o(2n+1 ,  1), n_>0, (dim a = n + l ,  dim ap 1); 

SU*(2n),  n>_3, ( d i m a = 2 n - 1 ,  d i m a p = n - 1 )  and e6(26) (d ima=6,  d imap=2) .  
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