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Invariant fundamental solutions and solvability
for symmetric spaces of type G¢/Ggr with
only one conjugacy class of Cartan subspaces

Nils Byrial Andersen

Introduction

Let G/H be a reductive symmetric space and let D: C>*(G/H)—C*>(G/H) be
a non-trivial G-invariant differential operator. An invariant fundamental solution
for D is a left- H-invariant distribution T" on G/H solving the differential equation

(x) DT =36,

where 6 is the Dirac measure at the origin of G/H.

Assume that G/H is of type G¢/Gr (G complex and H a real form of G)
and that H, up to conjugacy, has only one Cartan subalgebra. Let A denote the
associated Cartan subset of G/H, identified with a real abelian subgroup of G.
Using results from the theory of orbital integrals defined on G/H obtained by
Bouaziz, Harinck and Sano, we can then reduce () to a differential equation on A4,

[(D)T4 =64

for some distribution T4 on A, where I'(D) is a uniquely defined differential ope-
rator with constant coefficients on A and 64 is the Dirac measure at the origin of
A, ie. T4 is by definition a fundamental solution for I'(D). Our main result is the
following theorem.

Theorem 5. Let D be as above. Then D has an invariant fundamental solu-
tion on G/H if T'(D) has a fundamental solution on A.

Our result is similar to results obtained by Helgason for Riemannian symmetric
spaces, see [11, Theorem 4.2, and by Rouviére for semisimple Lie groups with only
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one conjugacy class of Cartan subalgebras, see [15, Theorem 4.2], and our approach
is very much inspired by their works.

Assume now that D has an invariant fundamental solution on G/H. Then D
is solvable, in the sense that DC(G/H)=C*>(G/H), if G/H is D-convex, see [1,
pp- 301ff.]. Van den Ban and Schlichtkrull give in [1, Theorem 2] a necessary con-
dition on D for D-convexity of G/H, and we show that this condition implies that
I'(D) has a fundamental solution on A, and hence, as an application of Theorem 5,
that D is solvable, see Theorem 7.

Notation

Let G be a reductive complex connected Lie group with Lie algebra g, and let
H be areal form of G with Lie algebra h). Let o denote the conjugation of g relative
to b and let also ¢ denote the involution of G whose differential is o, then H is the
open connected subgroup of G7, the fixpoint set of o in G. The space G/H is said to
be a reductive symmetric space of type Go/Gr. Let g=h®q be the decomposition
of g into the +-1-eigenspaces of o, where q=15. Let # be a Cartan involution of
g commuting with o, and let g=8®p be the usual Cartan decomposition into the
+1-eigenspaces of §. Let K=G? be the maximal compact subgroup of G consisting
of fixpoints of 8, with Lie algebra &.

Let p be the canonical projection of G onto G/H and let ¢ be the map of G/H
into G defined by G/H>p(g)—go(g) ' €G, gcG. The image of ¢ in G, denoted by
X, is a closed submanifold of G, see [14, p. 402], and ¢ is seen to be a G-isomorphism
from G/H onto X, equipped with the G-action g-z=gz0(g)~!, z€X, gcG. We
will in the following use this realization of the symmetric space G/H.

Denote the space of distributions on X by D/(X). The group G acts naturally
on D'(X) via the contragradient representation (on G/H), and we denote the H-
invariant distributions under this action by D'(X)H.

Let exp denote the exponential map of g into G.

Cartan subspaces, Cartan subsets and root systems

A Cartan subspace a for X is defined (cf. [14, §1]) as a maximal abelian subspace
of q consisting of semisimple elements. We see, since § is a real form of g, that a is
a Cartan subspace for X if and only if ia is a Cartan subalgebra of §. The Cartan
subset A of X associated to a Cartan subspace a for X, is defined (cf. (14, §1]) as
the set of elements z€X centralizing a in G {under the adjoint action).
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So let a be a Cartan subspace of q. We denote by A=A(g, ac) the root system
of the pair (g,ac), where ac=a+ia. We choose a set of positive roots denoted
by A*. Let W denote the Weyl group corresponding to the root system A. Let H,,
respectively g, denote the coroot, respectively the root space, of the root a€A.

We say that a root a€ A is real, respectively imaginary or complex, if it is real-
valued, respectively imaginary-valued, or neither real- nor imaginary-valued, on the
Cartan subalgebra ia of §. The set of real roots, positive real roots, imaginary roots,
positive imaginary roots, complex roots and positive complex roots are denoted by
AR, A%, Ar, A7, Ac and A respectively.

Let a€Ay. The root «a is called compact if and only if (go+g—o+CHy)N is
isomorphic to su(2), respectively noncompact if and only if (go+g8—o +CHa)Nh is
isomorphic to 5{(2, R). The set of imaginary noncompact roots is denoted by Apye.

We will in the following assume that there is only one H-conjugacy class of
Cartan subalgebras of . This is obviously equivalent to H having only one conju-
gacy class of Cartan subalgebras (or Cartan subgroups). So fix a #-invariant Cartan
subalgebra ia of h. Then Agr=Ap,.=0, see [13, Proposition 11.16]. Let A denote
the Cartan subset of X associated to the Cartan subspace a for X. Then A is given
by

A=expa=y(p(expa)),
see [9, Corollaire 1.7], i.e. A is a connected real abelian Lie subgroup of G with Lie
algebra a. Let S(a) denote the symmetric algebra of the complexification of a. This

algebra can be identified with the algebra of differential operators D(A) on A with
constant coefficients, by means of the action generated by

d

Xfla)= af(exp tX-a)li=o

for X €a, where feC°(A) and acA.

Regular elements
Put n=rankh and let x€X. The characteristic polynomial of the C-linear
endomorphism Ad(z)—1I on g=qc=Nhc can be written as

detc((1+2)I —Ad(z))=2"Dx(z) mod 2"t

for all ze€C. The function Dx so defined is an H-invariant analytic function on X.
An element z in X is called regular (cf. [14, §1]) if Dx(x)7#0, and the set of regular
elements in any subset U CX will be denoted by U”.
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Define for every root « a function £, on A by
Ealexp X) = e
for X €a. We see, using the root space decomposition of g, that

Dx(a)= [] (1-¢-a(a))

acl

for ac A. We furthermore, for all subsets SCA, define the function

bg = H (1"5—01)

a€S |1#§—a|

on the set A’. We note, since all of the functions £, a€Aj}, are real, that the
function b A+ is 1 on the connected components of A’.

We easily see that Zy(a)=Zg(a) if ac A’ (since a=expiX, where X is a reg-
ular element of h) and that Zy(a)=Zy(A) (since A is connected), i.e. the quotient
Nu(A)/Zg(A) is finite and equal to Ng(a)/Zg(a). The subgroup Zg(a)=Zy(A)
is a Cartan subgroup of H. The map from H/Zy(A)x A’ into X defined by
(hZp(A),a)—h-a, is an everywhere regular |Ng(A)/Zy(A)|-to-one map onto X/,
see [14, Theorem 2(ii)], and we thus have the decomposition X'={J, o h-A’. Let
UCA’ be a compact subset. Since Dx is an H-invariant continuous function on
X, we conclude from regularity of the map (hZgx(A),a)—h-a, that the subset
H[U]=U,eq h-U is closed in X. We see in particular that the H-orbit H{a| through
any regular element a€ A’ is closed in X.

Orbital integrals

Definition 1. Let feC2®(X). The orbital integral Ky of f, relative to the
Cartan subset A, is the function defined on the regular elements ac A’ by

K ;(a) = | Dx (a) /2 / f(h-a) dh,

H/Zn(A)
where dh is an H-invariant measure on H/Z (A).

Remarks. Let ac A" and let feC°(X), then supp fNH{a]CX is compact, and
the above integral converges. We also easily see that KyeC™(A").

Consider the space I{A) of functions F'e C>°(A’) satisfying the properties:

I (A): supeynar [ XF(a)|<oo for all compact subsets VCA and for all X e
S(a).
I,(A): The function b aF extends to a C*°-function on A.

I4(A): There exists a compact subset V C A such that F(a)=0 for ac A'\V.
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We note that the space I(A) is isomorphic to the space I(X), see [10, pp. 9ff.], of
H-invariant differentiable functions on X’ satisfying the (similar) properties I;(X),
i€{1,2,3,4}, since condition I3(X) is empty when there is only one conjugacy class
of Cartan subspaces.

Let UcX and VC A be compact subsets, and consider the Fréchet spaces

O (X) ={f € C°(X) |supp f C U},
CY(A)={FeCX(A)|supp F C V},
CP(A)Y={FeI(A)|F(a)=0 for ac A\V}.

Theorem 2. Let UCX be compact. There exists a compact subset VC A, only
depending on U, such that K{a)=0 for ac A\V for all feCF(X); and the map
f—=Kj is a continuous map from CgF(X) into CFP(A").

Proof. By mimicking [4, §2.2] for the space X, see also [4, §8.1], we see that

H[UINA is a bounded and closed subset of A, hence compact. The orbital inte-

gral K is obviously identically zero outside H[U]NA’, so we can choose the subset
V C A as H[UJNA. There exists around every a€ A’ a completely G-invariant neigh-
bourhood V in G, see [4, §8] for the construction and definition of completely G-
invariant neighbourhoods. We conclude from Harish-Chandra’s method of descent,
[4, Lemme 8.2.1], and properties I1(m), Iz(m) and I;(m) of the orbital integral Ju
defined on the Lie algebra m, see [3, §3] and [4, §4], that K satisfies the properties
I, (A), I;(A) and I4(A) listed above, since they are all of local nature. Let a€A’,
then the map f+- Ky (a) is a continuous functional on C{P(X) (a Radon measure
on Cg°(X)), and continuity of the map f+ Ky thus follows from the closed graph
theorem. [

Corollary 3. Let UCX be compact and let VCA be a compact subset as in
Theorem 2. The map f»—»bA;r Ky is a continuous map from CP(X) into C{P(A).

Proof. The map f '_’bA;fK ¢ is a continuous map from CgP(X) into C{°(A)
since b N =+1 on the connected components of A’. The map extends to a continuous
map from CP°(X) into CP°(A) by Theorem 2, since A’ is dense in A. [

Let D(X) denote the algebra of G-invariant differential operators on X. This
algebra is isomorphic to the center Z(f) of the universal enveloping algebra of
the complexification of b, see [2, Théoréme 2.1] for details (valid in the general
case as well), and we identify the two algebras. Let I denote the Harish-Chandra,
isomorphism of D(X)=Z(f) onto S(a)"¥, the Weyl group invariant elements of
S(a), see e.g. [13, p. 220].



196 Nils Byrial Andersen

Let DeD(X), then we have
(Kps)(a)=T(D)Ky(a)

for all ac A’, see [16, Lemma 12.1]. Since b,+==1 on the connected components
I
of A’ we also get

(bat Kpy)(a) =T(D)bp+ Ky(a)

for all g€ A’, and hence by density and continuity for all a€ A.
Let Q=]],cn+ Ha€S(a) and let 6€D'(X)H denote the Dirac measure at the
origin of X.

Theorem 4. Let feCX(X). There exists a constant ¢#£0 such that
<6a f) = f(e) = CQbATKf(e%

where e denoles the identity element of G (A).

Proof. It follows from [10, Lemme 7.1(ii)], since ia is a fundamental Cartan
subalgebra of h. O

Fundamental solutions and solvability

Let DeD(X). An invariant fundamental solution for D is a solution T'€
D'(X)H to the differential equation DT'=§. Consider T'(D)cS(a) as a differen-
tial operator on A, then a fundamental solution for T'(D) is a solution T4 €D’'(A),
the space of distributions on A, to the differential equation I'(D)T4=084, where §4
denotes the Dirac measure on A at the origin.

Both the symmetric space X and the Lie group A carry invariant measures,
which in a natural way induce bilinear pairings of C3°(X) and C°(A) with them-
selves. We denote these linear pairings by (-,-) and (-, )4 respectively. Let
DeD(X) (DacD(A)) and let D* (D%) denote the adjoint of D (D) with respect
to the pairing (-,-) ({-,-)a)-

Define the isomorphism «, from D(X) onto S(a)" as on [2, p. 59]. This
isomorphism is identical to the isomorphism ~ from D(X) onto S(a)" defined on [1,
p. 304] (with a=a; and W~W,), see [8, pp. 15ff.] for further details. We have the
following identities: 279" PIY(D)=~,(D)=~(D) for DeD(X) homogeneous, see [2,
p. 59]. It follows from [1, Lemma 3] that I'(D)*=T(D*).
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Theorem 5. Let DeD(X). Then D has an invariant fundamental solution
on X if T(D) has a fundamental solution on A.

Proof. Let Ty€D’'(A) be a fundamental solution for I'(D). Define a distribu-
tion TeD'(X)H by
(T, f)= (T4, LVIN Ks)a

for feC(X). Continuity follows from Corollary 3, and H-invariance from H-
invariance of Ky. We easily see that:

(DT, f)= (T, D* f) = (T, Qb+ Kpef) a
= (Ta, Q0 (D*)bps+ K ) a = (Ta, T(D*)cbp+ Kf) 4
= (D(D*)* T, b+ Ky a=cQbp+ Kf(e) = f(€) = (6, f),
since [(D*)*=T(D). O

We decompose a according to the Cartan decomposition as a=a:Day,=antd
anp. Let Ag=ANK=expay and Ap—expa, be the compact, respectively the
euclidean, part of A=AxA,. We similarly decompose the complex dual of a as
ag=0; ¢ Xa, o, the product of the complex duals of a; and a,. The lattice of char-
acters of the compact abelian group Ax is canonically identified with the lattice A
of analytically integral elements A€ag . Consider now the elements of S(a) in the
natural setup as polynomials on ag. Let X €S(a) and let A€ ay ¢, then we define the
polynomial X on aj & as Xy (v)=X (A, v) for ve€a; . Let {X1,..., X, } be a basis
for ap, and define a norm on S(ay), the symmetric algebra of the complexification
of ap, as [ X[|?=3",(a!)?|aq]? for X=)"_ aa X' ... X2 written in the multi-index
notation. Let |- |. denote any norm on ag,.

Proposition 6. Let Xe€S(a). The differential operator X on A has a fun-

damental solution on A if and only if there exists a constant C>0 and an integer
NeNuU{0} such that

(%) XAl = C+[AL)~Y
for all AeA.
Proof. See e.g. [5, §7] or [15, Proposition 3.2). [

Remark. The inequality || X-Y||>Cn|| X |Y|| holds for all X,Y €S(a,) of de-
gree <N, with NeN, where Cn >0 is a constant only depending on N. It follows,
that if X and Y satisfy (xx) for some A€A, then so does the product X Y. Let
D1, D;eD(X) and assume that T'(D;) and T'(D3) both have fundamental solutions
on A, then it follows, that the product D;-D5 has an invariant fundamental solution
on X. In particular, if DeD(X) and T'(D) has a fundamental solution on A, then
all powers D™, meN, have invariant fundamental solutions on X.
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Theorem 7. Let 0£DeD(X). Then D is solvable, i.e. DC*(X)=C>(X),
if degT'(D)=degT(D)x for some A€ag .

Proof. We first notice that if degI'(D)=degI'(D), for some A€ay g, then
degT(D)=degI'(D), for all Acag . Let {Y1,...,Y;} be a basis for ae, and write
(D) as 32,5 aa,ﬂYfl ...Yl’B’Xf‘1 ..Xm. There exists a coefficient ay 070 with
|o|=deg I'(D), and we have the estimate [|[T(D)x||>]|¢a,o0X1" - X | =a!|aa,0|>0
for all A€ag . We conclude from Theorem 5 and Proposition 6 that D has an
invariant fundamental solution on X.

The algebra a,=aNp is a maximal abelian subalgebra of pNgq, the so-called
split part of a. Let A, and Ag denote the root systems of a, and a in g© (the
complexification of g) respectively, and denote by W, and W¢ the corresponding
Weyl groups. We note that the pair (Ag, W) is isomorphic to the pair (A, W),
the roots having multiplicity 2 respectively 1 in the two root systems. Define as
on [1, pp. 305-306] homomorphisms « and 7, of D(X) onto S(a)"<, respectively
into S(a,)"s. We note again that I'(D)(2A)=~(D)()), A€ag. The correspondence
between 7(D) and (D) can be expressed as n(D)(v)=v(D)(v—om)=7(D)_,,. (V)
for v€a; o Cag, where g, is a fixed element of ay o Cag, see [1, Lemma 1]. We
conclude that degn(D)=deg~(D), and hence, by [1, Theorem 2], that X is D-
convex. It now follows, by [1, p. 301], that D is solvable. [l

Examples and further results

(1) Let AeD(X) denote the Casimir operator on X, then it is easily seen that
DAYA, v)=A-At+v-v—g-g for A€ay o, vE€ay o, Where o is half the sum of the pos-
itive roots of Ag. Assume that a,#{0}, then we see that degI'(A)=degT'(A)x
for all A€ag ¢, and we conclude from the above that A has a fundamental solution
and that it is solvable. Solvability of the Casimir operator was proved, for general
semisimple symmetric spaces, by Chang in [7]. Let DeD(X) be a differential oper-
ator of the form A™+ D1, with meN, where deg Dy <deg D=2m. Again assuming
that a,#{0}, we see that I'(D) satisfies the conditions in Theorem 5 and Theorem 7,
i.e. D has a fundamental solution and it is solvable.

(2) Let K be a compact Lie group and let K¢ denote the complexification of
K, then Kc/K is a Riemannian symmetric space (of type Ge/Gr) with only one
conjugacy class of Cartan subspaces. Since a=ay,, we easily see from the above, that
every non-zero invariant differential operator DeD(K¢/K) has a K-invariant fun-
damental solution and that it is solvable. Helgason obtained these results for general
Riemannian symmetric spaces in [11] and [12], as mentioned in the introduction.
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(3) Let H be a complex connected semisimple Lie group. By choosing a suitable
complexification He of H, we can view H~He/H as a symmetric space of type
G /Gr with only one conjugacy class of Cartan subspaces. Then Theorem 5 is
a well-known result by Cérézo and Rouviere, see [6, Proposition 1]. In this case
however, it follows that D is solvable if ['(D) has a fundamental solution on A, see [6,
Proposition 2]. These results are also valid on general connected semisimple Lie
groups with only one conjugacy class of Cartan subalgebras, see [15, Theorem 4.2].

(4) There are up to coverings two families and one exceptional example of
non-complex, non-compact connected semisimple Lie groups with one conjugacy
class of Cartan subalgebras, namely SO,(2n+1,1), n>0, (dima=n+1, dima,=1);
SU*(2n), n>3, (dima=2n—1, dima,=n—1) and eg(_26) (dim a=6, dim a,=2).

Remerciements. Je remercie Jean-Philippe Anker de m’avoir suggéré ce prob-
leme et de 'avoir suivi pendant sa résolution, Abderrazak Bouaziz et Pascale Ha-
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ment écouté et fait bénéficier de ses critiques éclairées pendant 1’élaboration de ce
travail. '
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