A Maximum Principle With Applications

To Subharmonic Functions in n-space

Roxarp Gariepy and Josx L. Lewis

1. Introduection

Denote points in 7 dimensional Euclidean space R*, # >3, by z=
(21, @2, . . ., %a). Let r = || and 21 =7rcos 8, 0 <6 <z A real valued function
f defined on a subset £ of R" is said to be symmetric (with respect to the x;
axis) if f(x) = f(y) whenever x,y €K and 2 and y have the same 7,0
coordinates.

For r> 0 let B(r) = {x: |x| <7}, S(r)= {2 |{z] =7} and 8§ = §(1). For
0<a <z let Cla) =8N{x:0 <) Given a set EC R, let K, 0E, denote
the closure and boundary of £ in R" If K c 8(r) let 9E denote the boundary
of E relative to S(r). Let H™ denote m dimensional Hausdorff measure in R".

If f is defined on a set K c R* let 06(r) be defined by

H™(C(0(r)) = H*'(p(S(r) N B))

where p denotes the radial projection of R* — {0} onto S. For 0 <6 < 6(r)
let

-

Fr, 6) = sup f foary

where the supremum is taken over all measurable sets F C p(S(r) N E) with
H"N(F) = H"}(C(0)).
Let 2 be a bounded region in R" of the form
Q= U 0@
r<{r<{ry

where 0 <7, <7, << o0 and 0<6(r) <z for r, <<r<<r, Let h be a sym-
metrie, bounded, harmonic function in £ such that, for r, << r <y, h(r,0) is a
non increasing function of 6 for 0 << 6 << f(r). Then
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h(r, 0) = h(ry)dH* 'y in Q.

(o)

Let u be a subharmonic function (== — o) in B(R)D 2, R>r, In § 3
we will prove

THEOREM 1. If h has a continuous extension to 2 — {0} and @ < h4c on
902 — {0} where ¢ >0, then 4@ <h + ¢ everywhere in £.

We note that Baernstein [2, Theorem A’] has obtained a similar theorem in R2.

We will give two applications of Theorem 1. The first is to an extremal problem
for potentials. Given a real number y,1 <y < oo, let H(y) denote the class of
potentials

p(x) = f r— gy, s € R

where u is a probability measure on S and
p(x) <y whenever x € R".
Choose o so that the Newtonian capacity of § — C(«) is »~1 and let P € H(y)

denote the corresponding equilibrium potential. In § 4 we prove

THEOREM 2. If @ is a nondecreasing convex funciion on (— oo, ), then
[ owepary < [ o@earry
whenever r >0 and p € H(y).
Thus, if 42 >1, ®u) =u* for v >0, and Ou) =0 for u <0, we have
[ wepyamy < [ (@epyany
whenever r > 0 and p € H(y). It follows that

max {p(x): x € 8(r)} < max {P(x): x € S(r)}

whenever r > 0 and p € H(y).
We note that the above inequality has been obtained by Davis and Lewis [6].
If % is a subharmonic function in R", let M(r, ) = max {u(x): z € S(r)}
whenever 7 > 0 and M(0, u) = %(0). As a second application of Theorem 1 we
prove in § 5.

THEOREM 3. Given 0 < pu << 1 and 0 << fB <1, there exists o = o(u, B, n) > 0
such that if w is any subharmonic function in R™ with
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H™ (o w(@) > uM(jz], w)} N S(r) < BH"1(S(r))

whenever r > 0, then either w << 0 everywhere in R"® or lim,_  r M (r, u) exists
and is positive (possibly -+ o0).

For 0 < <1 and p =0, Dahlberg [4], Hiiber [14], and Talpur [15] have
all shown the existence of ¢* = *(8, n) > 0 for which the conclusion above holds.
In § 6 we will show the ¢ we obtain is best possible for 0 <y <1 and 0 << g < 1.

Baernstein [1] has obtained a similar result in R2

To prove Theorem 3 for 0 << u <<'1 we use Theorem 1 to reduce the problem
to one considered by Dahlberg [5] and Essen and Lewis [7]. For 4 =0 we use
Theorem 1 and arguments similar to those of Heins [12, p. 114, ex. 11].

2. Spherical symmetrization

Given a closed set ¥ c R", define the spherical symmetrization F* of F as
follows: If F N S(r) =¢, then F*N' S(r) = ¢. Otherwise H "'(F*N 8(r)) =
H*"YF N 8(r)) and F* D S(r) is either the point (r, 0, ..., 0) or the closed cap
on S(r) centered at (r,0,...,0). Let » be subharmonic in B(R), B > 0. Given
t, — 0 <t << o, let F(t) = {x: u(x) >t} and note that F(t) is closed. Define
an associated function u«* by letting

u*(x) = sup {#: x € F*(})} whenever z € B(R).

It is easily seen that «* is symmetric and {a: u*(z) > §} = F*(t). It follows tha
u* is upper semicontinuous, % and wu* are equimeasurable, and ‘

a(r, 0) = /c( ) w*(ry)dH" 'y (2.1)

whenever 0 <7 << R,0 <0 <z We note for later reference that Gehring [10,
lemma 4] has shown that «* is Lipschitz in B(R) whenever u is.

Consider now the restriction of » and «* (also denoted by % and u*) to S(r)
for fixed r, 0 <<r << R. Assume that « and «* are Lipschitz functions on S(r).
Define a Borel measure %, H"™' on R by letting

u HYE) = H (w1 ()
whenever K is a Borel subset of R. Define #%H""' analogously.
Let 5/ denote the gradient relative to the sphere S(r), and let G be the subset
of S(r) where </u* exists. Define a function g on R by letting
git) =0 if WHT(HNE=4¢
and
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g(t) = |7u*(z)| for any « € (u¥*)~'(t) N G, otherwise.

Since %* is symmetric, g is well defined. Note that ¢o u*(z) = I@u*(x)] for
H*~' almost every x € S(r). Thus by [8, 2.4.18 (1)].

/ ]@u*ﬁdﬂn—l — /2 deu:’;H"*l,
A*(t 85) t

where A*(f;, ) = {x: t; < u¥(x) << by}
Since u H* ' = w*H"" wesee by [8, 2.4.18 (2)] that gow is H"™' measurable

and
/2 gzdu#Hn—l — f (g ° u)?dHn41
t Ay, 1)

where A(t, %,) = {2: ¢, < u(x) <<t,}. Hence

f (g ° u)2dHn—1 — / lﬁu*lzd}]”‘l-
Al 1) AXty, 1)

Using the coarea formula [8, 3.2.22 (3)] and the spherical isoperimetric inequality
for sets of finite perimeter (see [8, 3.243 and 4.5.9 (31)] for a similar inequality in
the Euclidean case), we obtain

ty
f N wk P A = / </ go u*dH"2>dt
A*(ty, 1) 4 ("))
< /2</ goudH”"Z)dt: / (g o )|/ w|dH" ",
£ u=it) At t5)

From Holder’s inequality, it follows that

f 9o )T uldH <
A(tl, t2)

1172 . 1/2
<[, wewrar [ Gupar|
Atys 1) Al t5)
~ 12 - 1172
= [ f ;vu*fdﬂ"'lJ { f WuﬁdH"—IJ .
A‘(t17 tﬁ) A(tl’ t2)

f VA < VAR :
A*t,, 8)

At 1)

Thus

Applying the coarea formula again we obtain

f(/ ;@u*deH)dtg f(f ;6u;dﬂn>2>dt
A =" t u=i(t)
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whenever # <C#,. Hence for almost every ¢ (with respect to one dimensional
Lebesque measure)

R e BT (2.2)
@) ui(t)
The coarea formula also implies that

H 2w \(t) — oo u(z) > ] =0

for almost every ¢ Thus, for almost every ¢, we can replace w7l(f) by
o{w: w(x) >} in (2.2).
The argument above was suggested by [10, (27)].

3. Proof of Theorem 1

The proof is by contradiction. Suppose there is an ;€ £ such that
U(x) > h(xy) + ¢. Let w(x) = h(zx) -+ nlx|*™" + na;, where 5 > 0 is so small that
W(xy) — w(x) = ¢, > c. Clearly w is symmetric, harmonic in 2, and ow/96 < 0 at
each point of Q off the x; axis. Also, 4 <w + ¢, on 902 — {0}.

There exists a decreasing sequence {u,} of subharmonic functions in
B(1/2(r, + R)) with continuous second partial derivatives that converges pointwise
to w in B(1/2(r, + R)). Since % is Lipschitz in B(r,), it follows from (2.1) that

#; is continuous in B(r,) — {0}. Since

0 < dy(r, 0) — a(r, 0) < 4(r, m) — 4(r, @),

and  4(r, m), %(r, 7) are continuous functions of r on [g, 1/2(r, + R)] for
0 < ¢ << 1/2(r, + R), it follows from Dini’s Theorem that {i,} converges uniformly
to 4 in the closure of B(ry) — B(c) whenever 0 << ¢ << 7,. Thus @ is continuous
on B(ry) — {0}. Choose ¢ >0 so small that %@ — @ << ¢, on the closure of
B(o) N 2. Then there exist m and &> 0 such that

(@) + H"H(S) |2* — w(w) < e

whenever « € J[Q2 — B(o)].
Let v(x) = u,(x) + ¢lx[? for 2 € 2 — B(s) and note that

o(r, 0) — w(r, 0) = f

C(9)

v*(ry)dH" 'y — f w(ry)dH" 'y
C(6)

has a relative maximum at a point in 2 — B(c¢) with coordinates (ry, 0y), 0 << 6, < =.
Note also that

Av = 2ne. (3.1)
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Since ¢* and w are continuous in £, it follows that v*(ry, 0,) = w(r, 0y) and
for 6 — 6, > 0 and sufficiently small,

[ owanry < wlrgy)dH"y.
C(6)—C(s0) Cle)—Cloy)
Since v* is Lipschitz, and v*(ry, §) and w(r,, 0) are nonincreasing and decreasing
functions of 0 respectively, it follows that
V0¥ (1, 0)] = [V (. 6)] > 0 (3.2)

for all 0 in a set F with the property: Given any 7 > 0, the one dimensional
Lebesgue measure of F N [0, 0,, + 7] is positive.
For 6 — 6, small and positive, let E(f) © S be such that
(i) SN {y: vlrey) > v¥(ry, 0)} € B(0) € S 0 {y: v(roy) = v*(ro, 0)};
(i) HHE() = H"~(CO)),

i) 300, 0) = [ otg)am "y = [ orgay.
E(o) C(o)

Note that all three sets in (i) have the same H"~' measure whenever 0 € F, and
that K(6,) C E(0) whenever 0, << 0 €F.
Let

p(r) = f o(ry)dH" "y — f w(ry)dH" 'y
E(eo) C(2)
and observe that
p(r) < 7"(7': Bo) — 7,1\)(7": 0p) < (7o),

for r sufficiently close to r,. Thus y has a relative maximum at r, and

d dy
— | -1 D
d? (r dT)r:ru S 0.

Consequently given any » > 0, we have

f a <n—1 a'l}) dHn*I < f 4 (n—l aw dH‘n—l 3.3
E() Or 4 or (roy) ¥ = cle) OF r or (roy) y+vy (3.3)

whenever 6 — 0, > 0 and sufficiently small.
For 2> 0 let

L6, 2) = {sy: 1y <5 <1+ 4y € HO)}
and L(0) = L(0, 0). Since {v*(ry, 0):0 € F 0O [0,, 0, + 7]} has positive one di-
mensional measure, whenever t > 0 there is an F’' € F containing § arbitrarily
near 6, and such that (2.2) holds with » = u, § = v*(ry, 0), and 0L(0) replacing
u(¢) whenever 6 €F'. By [8, 3.2.22 (2)] we can assume that 8~L(0) is
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(H™?%, n — 2) rectifiable whenever 6 € F’ and hence that 9L(6, A) is (H* ™", n — 1)
rectifiable whenever 6 € F”.
Now, from (3.1),

2ned " TH™(L(O, 1)) < A7} AvdH",

Lo, 1)

Using the Gauss-Green theorem [8, 4.5.6 (5)] and letting A->0 we obtain for
6 € F',

0 ov ~
n—1 l1—-n n—1 n—1 __ n—-2
2neH" 1 (L(6)) < 7, f 0 o (7” ar>r_,u dH /~ [Nl dH" .

L JdL(o)

Since w is harmonic a similar argument gives

7" f z(r""l a_w) dH" ! = f [/ w|dH"*
Cile) OF or Jr=r, Feyle)

where C,(0) = {rqy: y € C(0)}.
Using (3.2), (2.2), (3.3), and the above inequalities we obtain for 0 € F’,

f  SwlaEt < Soxar < [ (Sl
9C,(6) 3C,(0)

OL(o)

Ol I e R e
— 0 L{o) or or r=ry

<A [ a (e 2)am ey +
— 0 Cy(e) or or r=r,

= [ [VwldH"? — 2neH"Y(L(B)) + .
0Cy(0)
Thus 2neH" '(L() <y whenever 0 € F’ and hence 2ner; 'H"'(C(6,)) < 7.
Since y is arbitrary and f, > 0, we have reached a contradiction. Hence Theorem
1 is true.

4. Proof of Theorem 2

Let y,H(y), and P € H(y) be as in § 1. If y» = 1, then the conclusion of
Theorem 2 is obvious smce P is the only member of H(1). Thus we assume that
1<y< o Then 0 <a <z and h= — P is subharmonic in R", harmonic
in R"—[§ —0)], and A= —7» on S8 — C(x). It is readily seen that % is
symmetric and that h(r, 0) is a nonincreasing function of § for 0 < 6 <z and
fixed r > 0. From the proof of Theorem 1 we see that h is continuousin R" — {0}.
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Now suppose p € H(y) and # = — p. Clearly % is subharmonic in R". Given
¢ > 0 choose R large enough that @ <C h+4e on S(R).

Let Qc B(R) denote the bounded symmetric region in R" such that
B(R) — £ consists of the union of § — C(x) and the line segment from the origin -
to (— R,0,...,0). One verifies that 4(r, ) = i&(r; m) for 0 <<r < c0. Since
u* > h=—v on § — Cx), it follows that 4 gfb on 8 — C(x). Thus 4 < i + ¢
on 202 — {0}. By Theorem 1, & <% - ¢ in Q. It follows that 4 < % in R* — {0},
Note that

i(r, 6) = (— p)(r, 0) = p(r, = — 0) — B(r, 7)

with a similar relation holding between i and P. Thus since p(r, @) = 13(7", 7T)

for 0 <7 < o, we have p < P in R — {0}. It is known-[11, p. 170, 249—250]
that this inequality implies the conclusion of Theorem 2.

5. Proof of Theorem 3

It sufficies to assume that % > 0 (otherwise consider max {u, 0}) and that
uw £ 0. Let «, 0 <x <7, be such that H" (C{x)) = H"'(8) and let

whenever « € R* — {0}. We observe from the hypotheses of Theorem 3 that
p(r, 0) = puM(r,u) if 6>« For 0<<o <<z let :

K(o) ={ty: 0 <t << o0 y € C(0)}

and let K(o, B) = B(R) N K(o). Assume henceforth that M(R, «) > 0. Note
that for ¢ > «, p is upper semicontinuous on 9K(s, B) — {0}, and continuous
except on a polar set. Thus there is a unique bounded harmonic function £  in
K{o, B) such that

lim sup k (z) < p(y) whenever y € 0K(o, R) — {0},

and lim, A (x) = p(y) except on a polar set in 9K(s, R) [13, Lemma 8.20].
Since uM(|x|, w) is subharmonic in R*M(0, u) = u(0)), it follows that
uM(lz], w) < h(x) in K(o, B). From the boundary values of k, we see that A
is symmetric in K(o, R).

Let

g

g, (r,0) = sup {k (r,0,): 0 <0, <o} in K(o, R).

Then ¢, is symmetric and has the same boundary values as h,. Using the fact
that ¢ (r,0) = & (r, 6,) for some 6,0 <0, <o, it is easily checked that ¢ is
upper semicontinuous and satisfies a local sub mean-value property in K(o, R).
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Thus ¢, is subharmonic in K(o, E) and since it is obvious that 2, < ¢_, it follows
that h, =g¢q, in K(o, R). Hence h(r,0) is nonincreasing for 0 << <o and
fixed 7,0 << r << R. The proof of this fact is due to Matts Essén (oral communi-
cation).

Fix ¢ > « andlet v(x) = b (x) + ¢lx[*~" for z € K(o, R) and ¢ > 0. Observe
that v has a continuous extension to K(o, R) — {0} and that 4@ <o on
S8(R) N K(s). Thus, if

sup {i(y) — v(y): y € 3K(0, R) — {0}} = ¢ > 0,

then @(r, o) —o(r,0) =¢ for some 7 with 0 < < R. However since
w*(r, 0) < uM(r, u) < o(r, ) whenever a < 8 << ¢, it follows that

i(r, o) — o(r, &) > @(r, 6) — v(r, 6) = ¢ > 0,

which contradicts Theorem 1. Hence ¢ < 0. Applying Theorem 1 and letting ¢—0
we have @ < 720 in K(o, R) whenever o > «.

Let h(x) = uM(x|, w) for x € B(R) — K(o, RB). Then hk, is subharmonic in
B(R) and if x <oy -<o0p then A, <h, in B(R). Thus h=1lim, 5, is
subharmonic in B(R) and harmonic in K(x, R). Clearly h(x) = uM|2z|,%) in
B(R) — K(x, R). Since B(R) — K(x, R) is not thin at any « € 0K(x) N B(R)
[13, Corollary 10.5], it follows that hA(z) = pM(|z|, #) on 0K(x) N B(R). Since
i< h, in K(x, R) whenever ¢ > «, we have @ <h in K(x, R).

Let

h= Py + Qs (5.1)
where P and @, are bounded harmonic functions in K(x, B) with

lim Py(x) = pM(|y|, ) whenever y € 9K(x) N B(R),

Xy

lim Pp(z) = 0 whenever y € K(x) N S(R),

x>y

and Qr=h — Pr. Note that
lim @z(x) = 0 for y € dK(x) N B(R),

x>y

lim Q(z) = ply) for y € K(x) N S(R),

x>y

off of a polar set.
Let 0 <<y <<yy<C... be the eigenvalues of the boundary value problem

0p +y$ =0 on C(x),
=0 on 9C(x)

where ¢ is the Beltrami operator defined in terms of the Laplacian A by
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d 0
A=p" 57" (7‘"_1 E’) 4+ 734,

Let {¢,} denote corresponding symmetric eigenfunctions with continuous second
partial derivatives in C(x) and

$dH ' =1 for k=1,2,...
C(x)

Let g, be the positive root of the equation g, (0, +n —2) =19, for k=1,2,...
Then as in [9] we have

Qr(r, 0) = 2 ay(r/R)*y(1, 0) in K(x, R), (5.2)

k=1

o = f o, PRSIy,

Using the estimates in [7, § 8] or [4, Lemma 2.5], the series

where

o0

2, (r[R)™=1|gy(1, 0)]

can be seen to converge uniformly in K(x, sR) whenever 0 < s << 1. Note also that
o] < M(R, w)H" {(C(x))"".

The case u = 0. In case p = 0 we have Pr = 0, Qr = h, p = u*, and hence

4 = f W (Ry)bu(y)dH™y. (5.3)
c)

It is known [3, VI § 6] that ¢, is either positive or negative in K{(x, R). Assume
¢, > 0. Since ¢, is symmetric and d¢, = — y,¢;, it is readily seen that d¢,/df < 0

in C(x). Using this and the fact that @ <h in K(x, R), we have
m(r) = / 7‘:[/ ‘751 Hn ly_ - f 7" 0) de (1 0)

< — f h(r, 6) dH (1, 0)do = fc(a)h(w)cﬁl(y)dﬂ"_ly.

From (5.2) and (5.3)

[ wenbamr=y = aeire = eire [ ar@ppany,
) @)
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and hence
r om(r) < R~em(R) for 0 <r << R.

Consequently b = lim, r~@m(r) exists. We assume that

lim inf (r~2M(r, w)) << 0.

r—>o0

Otherwise the proof is complete in case p = 0 with o = g;. Since

m(r) < M(r, w)H"(C(x))"
we have b << co.
Now from (5.2) we deduce that for 0 <r < R/2,

red(r, 0) < r=eh(r, 6)

= R™oq, $dH ' + R~ z oy (r/ Ry d dH "
C(o) k=2 Cle)
< BR~om(R) $dH* ' - R™®M(R, u)g(r/R)
C(e)

where ¢ is continuous on [0, 1] and ¢(0) = 0. Since lim inf

R-—>o0 RﬁglM(R’ u) < 00,
it follows that

redi(r, ) < b édH™ ™ in K(x).

C(o)
This inequality and the subbarmonicity of « imply that
r=@M(r, u) < b, (1,0) for r> 0,

and hence that b > 0.
Suppose that
lim inf =M (r, u) < bé,(1, 0).

r—>0

Then there exists a sequence {r;} with 7, } oo and ¢ > 0 such that
T]'_QIM(rj’ u) < b¢1(1: 0)
For j=1,2,... and 0 <8 <& Thus,
ri%d(r;, 0) < b ¢ dH™!
C(o)

for 0 < 6 < ¢ and it follows that

Q1 il —014; d(ﬁl
r;om(r;) = — o i u(r;, 6) 20 (1, 6)do

* n—1 d¢1
< ——b/0<fc(8)¢1dH )% (1, 0)d0 = b.
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Letting j 1 oo we obtain a contradiction. Hence

lim r~@M(r, u) = by (1,0) > 0

r—=>ow

and the proof is complete in case u =0 with ¢ = g;.
The case 0 << pu << 1. For 0 < A <1 the boundary value problem

op + Ao(des +n — 2)p = 0 on C«)
py=1 on oC(x)
has a unique symmetric solution. Choose 2 so that the corresponding % has the
value p! at r=1,0=0.
Since @ <k in K(x, B) it follows that M(r,u) <h(r,0) for 0 <r <R
and hence that
My) = pM(lyl, w) < ph(lyl, 0)

for y € 9K(x) N B(R). Thus, using the arguments of [7, (3.1)],
rf e M(r, u) < reh(r, 0) < p'RTOM(r, w) (5.4)
for 0 <r << R. It follows that

0 < lim sup r*aM(r, ) < p~' lim inf r @M (r, u).
Assume that lim sup, ,, r~*@M(r, w) < co. Otherwise the proof is complete in
case 0 << u <1 with g = 1p,.
For Py as in (5.1) we note that Pp < Pr in K(x, R;) whenever R, < R,.
Also, from (5.4), we have

M(r, Pg) < h(r, 0) < u~'(r/R) @M (R, u)

for 0 <7r < R. Since liminfy, ,  R"M(R, u) < oo, it follows that V =
limg_, , Pr is harmonic in K(x) and

M(r, V) < p~'r* lim inf R~ M(R, u). (5.5)

R->w

From (5.4) and the definition of @y we have

s , M(R,u)
Pp — Pp < u(By/R,)™ m Qr

1

in K(x, R;) whenever R, < R,. Letting R, — co it follows that

0 <V — Py < (constant) @ in K(x, E,).
Thus
Viy) = lim V(z) = uM(lyl, ) on 0K(x). (5.6)

x>y
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From (5.2) we have
R

Qulr, 0) < A@/RYM(R, w) for 0<r< 5

where A is a positive constant independent of E. Since

lim sup B M (R, u) < oo,
R
it follows that @z — 0 uniformly on compact subsets of K(x) as B — co. Using
(5.4), (5.1) and letting R — oo we deduce that M(r, u) << V(r, 0) for r > 0.
This last inequality, (5.5), and (5.6) imply that lim, r~*M(r, w) exists
[7, (4.6)] and hence the proof is complete in case 0 << pu <1 with ¢ = g,.

6. Remark

With ¢, and ¢, as in the proof of the case p =0, let
u(r, 0) = r¢,(1,60) in K(x)
and
u(r, ) =0 in R* — K(x)

Then # is subharmonic in R® and satisfies the hypothesis of Theorem 3. Hence
¢ = g is the best possible exponent in case u = 0.

Incase 0 << pu <1, let 2 and y correspond to g as in the proof of Theorem 3.
It is known [7, (1.5)] that v > 1 in C(x). Let

u(r, 0) = r*o(1, 0) in K(x)
and
u(r, ) = r* in R" — K(x).

Then w is subharmonicin R™ and satisfies the hypotheses of Theorem 3. Thus the
exponent ¢ = dg; is best possible when 0 << pu << 1.
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