A locally convex space which is not an w-space

¥RrIK GRUSELL

The purpose of this paper is to exhibit an example of a locally convex topological
vector space which is not an w-space.

The class of locally convex spaces for which uniform holomorphy holds was
first introduced by Nachbin [3]. It is extended by the class of w-spaces whose
definition was first published by Dineen [1]. Dineen has since then given a new
definition, which covers more general situations [2]. In this paper we use the term
“w-spaces’’ for spaces which in Dineen’s new terminology are called ““C-w-spaces’.

The notion of an w-space is of a certain importance in infinite dimensional
holomorphy, as Dineen shows in [1] and [2].

We have recently become aware that M. Schottenloher has also constructed a
space which is not an w-space. His example is a subspace of the space of holo-
morphic mappings from a certain Banach space into itself.

Definition. A locally convex space E is an w-space if for every function
fiU—C, where U C E is open and connected, and f is Gateaux holomorphic
and continuous, there exists a sequence {p;};i>;, of continuous seminorms such
that f is also continuous in the topology generated by the sequence {p},.

Let E = ®Den, C algebraically, i.e.
E = {(x,),€R+; %, # 0 only for a finite number of coordinates}.

If AcR, we let (z,),cs denote the point (y',),em_ where vy, =z, if

r€4 and y, = 0 otherwise.
Define a topology on E by the set of seminorms

(P} U {pa; s €ERN\Z,, k€ Z,},

where
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p) = 3 lo) i @ = @)en,.
rER

and
psk(x) — .Zl !x]! . knsj.
j=

Here {(n;)”;s € R,\Z,} is the set of all strictly increasing sequences of
numbers belonging to Zi, where that set has been put in a one-to-one
correspondence with R\ Z.

ProrositioN. Define a function f: E—C by

@) = f(@er,) = 5w fife),
s€R+\Z+

where
fi@) = fil(z)) = i TREAL
j=1

Then f is Gdteauz-holomorphic and continuous, but f is not continuous in any semi-
metrizable locally convex topology on E, weaker thawn the given one.

Proof. a) f is continuous. The functions = = (ac,),eﬂjL 2, are continuous
for every 7, € R+, for they are linear and p(x) << e implies |z, | <e.

For s € Ry \ Z. the seminorms pu, k €Zy, are chosen so that f, is
continuous: ’

Let a® = (2?) be given and choose m > max {r; x° # 0}. Then

Jix) = z X - X = Z @ - gy Z @ w,d = fa(®@) + falx),
j=1 j—1 j=mtl

for any « € B, and f, is clearly continuous in the topology defined by the semi-
norm p, ie. [fy(2° -+ y) — f.(@")] < e if p(y) is small enough. Now

el

L@ + 9) — fal@®)] = 1fal@® o) = | 2 gl + 99| < paly)

j=mi1
if py) <1 and k> |20 + L.
Thus f,; and f, are both continuous in 2° which implies that f, = f,; + f.
is continuous there. But 2’ was arbitrary, and f, is then continuous everywhere.
Let 2° = (a:f),eRJr still denote an arbitrary element of E. Then we have

0 0 0
¥ = (xr)r€R+ = (x?)reA + (xj)j€B7

where 4 € R:\Z+ and B CZ, and both are finite.
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floy= 2 =2, flx) + Z x f(x) = fil®) + fol®)

reI{+\Z+ red

for any xz € B, if M = (R\Z )\ 4.
Now, f, is a finite sum of finite products of continuous functions and thus
continuous. For t € M and y € U, where

U= {y;ply) <[l + ilx}’l]‘l} N {y; p(y) <3},

we have
B )l = 2 o i) < 2 1] )l <
¥ e 0 1
ST <2l <3 5 =
This gives
1fo(@® 4 ) — fola®)]| = 1fol@® + y)| = IEMy,'f,(x"ﬂ)i §2-€ZM!y,I < 2-p(y).

Thus, f, is continuous in 2°. Then f = f; + f, is continuous in 2% but 2° was
arbitrary and therefore f is continuous in all of E.

b) f is not continuous in any semi-metrizable locally convex topology weaker than
the given one.

Let P be a denumerable subset of the set of seminorms defining the topology
on K. Then there is a number ¢ € R\ Z, such that

Ny —

— o when j— o
Nsj

for every s corresponding to a seminorm in P.

Every zero-neighbourhood in the topology defined by P contains a set of the
form:

——‘{xpsk <8psk€P1}n{9€_’p <8},

where P, is a finite subset of P.
If g(x) <1 and x= (¥)jez, then z €U, provided

1\

1
a@) =~ 2 lyl W

J
where

h = max {j; pj € P1 for some s € Ry\Z4}
and

n; = max {ng; psx € Py for some k €Z,}.
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Let

o)
" =g W~ﬁj:1, m=1,2,...
and 2’ = (xf)5613+, 2l =10 if s £t a) = 2, where ¢ is the number mentioned
above (thus (n; — j)/mj — oo when j— o). Then ¢(z™) <1, m =1,2,... and
e 2% m omi—J

(0 my a0 4 "”:‘-m- C T — €
fa bty =al ffa b at) =2 2 T gy =2

j=1

If m is chosen large enough, the last term above is arbitrarily large, i.e. f(z° + U)
is not bounded.
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