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1. Introduction

Let M and N be two complex manifolds of complex dimensions m and n
respectively. A holomorphic map f: M — N is called nondegenerate if in each
component of M, there exists a point p, such that the induced linear map of the
holomorphic tangent spaces fy: T,(M)— Ty, (N) is surjective. This can only
happen if m > n.

If L is a holomorphic line bundle on a complex manifold N and R is a positive
integer, then we say that R has property P with respect to L if there exists a
positive holomorphic line bundle 7' and a positive integer s, such that

HN,(I*Q Ky T £0 (1.1)

where K, is the canonical bundle of N.
The main result of this paper is the following generalization of the big Picard
Theorem.

TrEOREM 1.2. Let N be a smooth projective algebraic variety and L a holomorphic
line bundle on N. Suppose further that F',... F® are sections of L in normal
position, where R has property P with respectto L, and put F = F' @ ... Q FX.
Let M be a complex manifold and f: M .8 — N\ |Dy| a nondegenerate holo-
morphic mapping, where S is an analytic subvariety of M. Then f can be extended
to a meromorphic map from M into N.

CoroLLARY 1.3. Let f: M \ S — P, be a nondegenerate holomorphic mapping,
where S is an analytic subvariety of M and P, is the n-dimensional complex
projective space. If f fails to meet B d-dimensional hypersurfaces in normal position
and B > (n -+ 1)/d, then f can be extended to a meromorphic mapping of M into P,.
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Let us briefly outline the idea of the proof of Theorem 1.2. After a suitable
imbedding of N into a P, has been chosen, f can be represented by certain
analytic functions ¢y, ..., g, To show that f has a meromorphic extension, it is
sufficient to show that the growth of ¢, .. ., g, is not too wild near S. We control
the growth with potential-theoretic methods, which are outlined in section 3.

It may be pointed out that the Riemann extension theorem implies that if
codim (S) > 2, then any holomorphic mapping f: M \. 8 — N can be extended to
a meromorphic mapping of M into N, whenever N is a smooth projective variety.

For a background to this paper we refer to the survey article by Griffiths [3]
and Carlson-Griffiths [2].

The plan of the paper is the following. In section 2 we give the necessary back-
ground material. We prove in section 3 some technical results, and in section 4
we prove Theorem 1.2.

2. Notations and terminology

Let M be a complex manifold. Relative to a suitable open covering {U;} of
M, a holomorphic line bundle L is given by holomorphic transition functions
fi: UiN U; — €* = € \ {0}, satisfying the cocycle condition

fik :ﬁ;ﬂk in U;N an U, .

The tensor product L; @ L, of two line bundles L, and L, is given by multi-
plication of the corresponding transition functions. A holomorphic section ¥ = {F;}
of L is given by holomorphic functions Fy: U; — C, satisfying the compatibility
relation

F,‘:ﬁij in U,ﬂ Uj.

The vector space of all holomorphic sections of L is denoted by HYM, L).

We observe that a section F of L in a natural way gives rise to a divisor Dy
on M. We denote by [Dy| the support of Dy, which is the set {z € M: F;(z) = 0
for some ¢}. Suppose F',..., F? are ssctions of L and put

F=F®...Q Fre H'M, L").

We say that F', ..., FP? are in normal position if for eaca point x € |D,| we can
fird an 4, such that « € U, and {F;: s € Z(x)} can b2 taken as part of a coordinate
system around x, where Z(x) = {s: Fi(x) = 0}. It is easy to see that a collection
of hyperplanes meets this condition if and only if they are in general position.

A metric in L is given by positive C® fune'ions a; in U;, satisfying

G; — }f;jlza,j in U;N Uj.
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Thus for a holomorphic section F = {F,} € H*(M, L), the length
IFf = |F.["a;"

is well defined.

In particular, if we let {U,} be a covering of M with coordinate neighbour-
hoods U, with holomorphic coordinates Z, — (i, ...,2"), then the canonical
bundle K, of M is given by the transition functions

02\ 1
gy = det (az{) in U;NUj.

J

Thus, if F = {F;} is a section of K, then the locally given holomorphic (m, 0)-
forms Fdz; A\ ... Adz" patch together to a holomorphic (m, 0)-form on M.
In the same way, we observe that the metrics on K, are in one-to-one
correspondence with the positive (m, m)-forms on M.

If 7 isa C% real form of type (1, 1), then % is given locally by

}L == '\/ — 1 Z k;jdz,- /\ dZ—j (kij = }—Lji).

We shall say that h is positive if (k;) is a positive definite Hermitian matrix.
We are now in a position to define what is meant by a positive line bundle.

Definition 2.1. Let L be a holomorphic line bundle on the complex manifold M.
Then L is said to be positive, if there exists a metric {a;} on L, such that the
real (1, 1)-form kA on M, given in U; by

h=v —12020dloga

is positive. This metric is then said to be positive.

3. Some technical results

Since we are going to work in €™, we start by collecting some notation.

= |22+ ... + [zw[® for z= (21, ..., 2.) €EC™,

v 1 _ —1 m
j — e . 5.
Vie —— e = — {j;dz,/\dz,}
VE=VIAVIA. AV, VO=1, (3.1)
k
& &

4 = 4{ }, the Laplace operator.

02,02, T 802,
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We shall from now on assume that N is a smooth connected =n-dimensional
projective variety and that L is a holomorphic line bundle on N and that R
has property P with respect to L.

Let F',...,F®€ HYN, L) be in normal position and put

F=FQ...Q Ffe H(N,L").
Hence, we can find a positive bundle 7', an integer s> 0 and an
HeHN, (L ® Ky © T

such that H 0. Let {a:;} = a be a positive metric on 7, and let ¢ be any
positive number. We observe that

R
x = (alHPP ' |F|? TT tlog (s1F°))~*

is a section of Ky @ Ky in N\ |Dy|, and therefore gives rise to a non-negative
(n,n)form W in N \ |Dy|, given locally by

E— o | (3.2)
W =\- (@ |H: [y |F:| 72 TT log (¢)F7|})] *dwry A divy A . . . A dwn N di.
j=1

2
We are now in a position to formulate the main result of this section. For a

related result see Carlson-Griffiths [2].

THEOREM 3.3. There exist two positive numbers ¢ and ¢ with the following
property: For any domain M in C™ (open, connected set) and any nondegenerate
holomorphic function f: M — N "\ |Dy| the nonnegative function ws in M defined
by

WA V™™ = ypVm

is such that log us is plurisubharmonic and

Alog ur > c(u)™ in M\ {z € M: u(z) = 0}. (3.4)

Proof. Let W, be any (n,n)-form on N given locally by

v -1y
W1: T hdwl/\dﬁ)l/\./\dw,./\du')n

and let @ be the class of subsets of {1,..., m} containing exactly n elements.
If we write f= (f1, ..., f») in local coordinates, then one finds easily that
afi 1<i<n|2
W ATV ™ =hof { > | det (g) } v (3.5)
se€o! iljes

Since f is assumed to be nondegenerate, we have that
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ai 1<i<n
det( f)

0z jes

12

2

5€Q

is not identically zero. By using Corollary 1.6.8 in Hérmander [5], we find that
log J; is plurisubharmonic. To show (3.4) it is therefore sufficient to prove that
there exists a ¢ > 0 such that the inequality

o(up)" < Alog {(ai o flHio 1) |Fio f| ™ T:_[ log (¢llF" o fIF) %}

holds in M, = M \ {z € M: u(z) = 0}. Since both log |H:o f|> and log |F; o f}?
are harmonic in M, it is enough to show that

e(up)'™ < wo, (3.6)

where we have put w = s7{A4 log (ai o f)} — Z L A log (log (|F” o fIf))?

We start by choosing & so small that elFFif <1 in N for 1 <r < R. This
is possible by the compactness of N. We localize around |Djy|. From the assump-
tions about F and the compactness of N, it follows that we can cover |Dy|
with finitely many coordinate neighbourhoods {U}, with local coordinates
(wy, . . ., ws), such that for some p, 1 <p <n, there exist ky, ..., ky,
1<k <k,<...<k, <R, with wI:F?l,...,wszfP, andif k €{ky, ... k,},
then inf, ., |[F¥@z)| > 0. Furthermore, there exists a positive b € C*(U), such
that if G € H'(N, L), then |G|} = b|G,*>. Without loss of generality we may
assume that w; = F! for 1 <j < p. Since we have assumed that T is positive,
there exists a number ¢ > 0, such that

s A log (aio f) >

nM:

: (3.7)

If v > 0, then Alogv = vidv — 402 >}, |0v/0z,[2. We apply this relation
to v = (log (¢]F" o f|*))*. Then we have in f~}(U) N M,

azk

Alog (log (|  f1)* = 2 (log (&llF" o f|))4 log |F" o fI* —
2 log nF' o fIE 2 (3.8)

™m

— 8 (log (ellF” < 1))~ Z

It is obvious that there exists a number C > 0, such that if 1 <7 << R, then

Aog|Frofp|<os 5|2
AloglFefifl <03 3|2
and if p+1<r <R, then

alOgllF' fll22 mox|ofi P

>, 3 >
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Therefore, by combining the estimates above with (3.7) and by choosing &
sufficiently small, we get the following estimate of wu,, with possibly a different
c>0

. »om L |alogF o fiRP
Uy > 02 kzl 8zk 82 g (log (¢|lF” < fiI") T (3.9)
Now we have that
dlog|F ofl® Qdloghbeof of
— F o)yt

azk - azk

We recall the following elementary inequality. If & and &, are two complex
numbers, then |& + &2 > 1/21&2 — |2 By wusing this inequality with
§ = 0of,/oz and & = alog bo f/oz, we find from (3.9) that

£ 43S fo o log (6" S k

SIS
l

53 3 oo siye| T

azk

n[\/]=

We may as before absorb the third term of the right hand side of the inequality
above into the first term by choosing & sufficiently small, and we are left with

m 2 m ]2
Uy = CLEI kEI azk 412 ,Zl |y o fI72 (log (¢l [F” o fIP)) " o -] = 0; glcx v Z;
where we have put

. b+ fwie fI7* (log (el o fIP) 7 if 1 <i <p
1) = {1 it p+1<i<n
Hence we can find a ¢ > 0, such that
n of, 12
Uy > csge ; kesoc( ) aj; (3.10)

From the inequality between the arithmetical and the geometrical mean we have
n 6f~ 2 (n n af: 2>1/n n ( n of: 2)1/n
= oot = x(e)'" .
—_2-1 Z azk ]:Il- k;s ©) 0z (H ) ]]1- kgs Oz
Now we have from Hadamard’s inequality that

n |ai 2 af\1<i=n
f det(f)
02kl e s

T2 |5
Since inf{|[F (z):2€ U} > 0 for p + 1 <r < R, it follows that

2
=

i=1 k€8
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n R

TT (@) = c|F o fI-2TT (log (el F” o f1*)2,

i=1 r=1

for some ¢ > 0 in f(U). By combining this with (3.10) we get, with some ¢ > 0
R

—_— ai 1£i<n
ty = oI o £ TT og (8"« fI)2S det(ai )
r=1 SeQ ! k

2/n

kES

From this inequality (3.6) follows by observing that the terms a; and |H;| can
be taken to be bounded and by applying the inequality > ai™ > (3 ;)" to
the last factor of the inequality above. To complete the proof we have to show that
we can choose ¢ such that log uy is also plurisubharmonie, but that is done in
the same way, and is therefore omitted.

We shall now turn to some consequences of Theorem 3.3. Suppose p, € N \ |Dy|
and that there exists an H € H'(N, (L* @ Ky @ T™*) with H(p,) # 0. Fix a
coordinate neighbourhood U around p, with local coordinates (wy, ..., w,).
If f:B™r)— N is a holomorphic mapping, where B™(r) = {z € C™ |jz] < r},
with f(0) = p,, then we put

2

, for ze€fYU).

a'fl 1<i<n
Jp(2) = det( )
f() S%Qi 02t/ kes

Here @ is the set of all subsets of {1,...,m} containing n elements and we
have written f= (f;,...,f,) in local coordinates (w,, ..., w,).

As an application of Theorem 3.3 we shall prove the following generalization of
Landau’s theorem (cf. Kodaira [7] and Carlson-Griffiths [2]).

THEOREM 3.11. T'o each m > n there exists a constant r, > 0 with the following
properties: For any holomorphic mapping f: B™(¢) — N\ |Dg| with f(0) = p, and
J(0) = 1, the intequality o <1, holds.

From this result we deduce the following variant of the (small) Picard theorem.
CororLvARY 3.12. Any holomorphic mapping f: C" — N\ |Dgp| is degenerate.

Proof of Corollary 3.12. Pick a G € HY(N, (L ® Ky @ T™Y) with & #0.
Let M be the set of all points z €C™ such that f,:7T,(C")— Ty, (N) is
surjective. Suppose that M is not empty. Then M is open and hence f(M) is
open in N. Therefore f(M) contains a point p, such that G(p,) # 0. We may
assume f(0) = p, and 0 € M. We can choose a coordinate system around p,
such that Jp(0) = 1. Theorem 3.11 implies that f can be defined only in a bounded
domain and this contradiction finishes the proof.
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Proof of Theorem 3.11. We wish to each ¢ > 0 construct a positive infinitely
differentiable function ¥V, in B™(f) with the following properties:

(a) Alog V, < V™,
(b) lim V,(z) = oo for all z, € 9B™(¢),

Z—>2,

(¢) lim V,(z) = V,(z) for each fixed z € B™(r),

r—>1

(d) lim V,(0) = 0.

t—>00

If >0 is given, then we put g(r) = nlog (8n(m - 1)) + log ("(t* — »*)™"),
0 <r < t. We construct the family {V,} by putting

Vi(z) = exp gur), |zl =r.
‘We now have
2 1 d 2, 1 d
Alog Vi) = r=—™"* O—Z;(r " (gt(r))) =

22 — r2) -+ 2
= e < Bl 4 DEE — ) = (V)T

and hence the family {V,} satisfies (a). The rest is straightforward verification.
Next we consider the function u; as constructed in Theorem 3.3. From the assump-
tions about f, it follows that there exists a number B > 0, such that

up(0) > B, for all f€Y, (3.13)

where V, is the set of all holomorphic mappings f: B™(¢) — N N\ |Dyl, satisfying
f(0) =p, and J,0) > 1. Let 9¢, be the set of all nondegenerate holomorphic
mappings f: B*(g) — N "\ |Dp|. We want to show, that there exists a number
A > 0, such that for all p> 0 and all f€9(, we have

u < AV, (3.14)

We prove relation (3.14) with the aid of a classical trick due to Ahlfors [1]. From
property (c) of V. and the continuity of wy, it follows that to each ¢ < o, there
exists a point & € B™(t), such that

u€)| Vi) == sup {u(2)[Vi(z): = € Br()}.

Sinee f is nondegenerate, we must have that uf(&) > 0, and hence u, is infinitely
differentiable in a neighbourhood of £. Moreover, since & is a local maximum
for log (us/Vs), we have

Alog ([ V2)(&) < 0.

Now we have from Theorem 3.3 that
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(&))" < 04 log ug(é) < OAlog Vi(£) < O(Vi(&)™,
and hence wui(&) < AV,(&). Therefore, we have for all z € B™(p)
up(z) < 4 lim Vi(z) = AV (2).

This proves relation (3.14). In particular, we have from (3.13) that if f € 7, then

B < u(0) < AV(0) = A{8n(m + 1)},
and this gives
¢ < (4/B)"*8n(m + 1),

which completes the proof of Theorem 3.11.
From the proof of Theorem 3.11 we have the following corollary.

CororrarY 3.15. To each m > n there exists a constant K > 0 with the following
property: For all domains M in C™ and all holomorphic mappings f: M — N \_ |Dy|
the inequality

uplz) < K(d(z, M)~ (3.15)
holds, where d(z, M) = dist {z, oM} and f is nondegenerate.

Proof. We continue using the notation of the proof of Theorem 3.11. It is sufficient
to treat the case z = 0. For each ¢ < d(0, M) we have f€9(, and from (3.14)
we have

u(0) < AV,(0) = A{Sn(m + 1)}"g™™.

Letting ¢ — d(0, M) we have (3.16), and this finishes the proof.
It is possible to prove Theorem 3.11 along different lines.

Second proof of Theorem 3.11. We continue using the notation of the previous
proof of Theorem 3.11. Let & be the Green function of B™(r) with pole at 0.
This function is given by

log L if m=1
) = g(lh) =y Il
> — =2 if m > 2.

We have from the Riesz representation formula applied to the subharmonic
function log us that there exists a positive measure u; on B™(p), such that for
all », 0 <r <oy,

log us(0) = a,, /log us(r€)do(E) — B fG d‘uf (3.16)

OB™(1) B™7)
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Here do is the area measure on 0B™(1), g, the area of 9B™(1), §, = (2=x)! and
B = {0,(2m — 2)}1 if m > 2. From Theorem 3.3 we have dus > c(u)'"V™.
Put Pir) = / . (up)"V™. Hence we have

B fG )s(2) >Cl3mfPf

B™r)
A partial integration gives that

ﬂmfPf (t)dt = «,, fP e,

where o, is a constant. Recalling (3.13) and (3.16) we have

log B + ex,, fP B dt < o flog up(ré)do (). (3.17)
8B™(1)

Arguing as in Kodaira [7], one can from inequality (3.17) finish the proof. We omit
the argument.

4. The generalized Picard Theorem

Let B=1{2€C:|z] <38}, B*=B\ {0}, D*=B*xXBx...xB and
N —

D = Bx...xB. We next prove Theorem 1.2, 1

Proof of Theorem 1.2. Since the set of singular points of § are of codimension
> 2, we may assume that § is nonsingular. Localizing, we can assume that f
is defined in D*. We have to show that the pull back of the rational functions on
N can be extended to meromorphic functions on D. There exists by Kodaira [6]
a positive line bundle E on N, such that if {s° ..., s%} is a basis of HYN, E),
then the mapping F: N — P, defined by

Fiz— [z .. 0 s2)] (4.1.)

is an imbedding. Let s € H'(N, E), s # 0, and put G = f(|D,|). We start by
demonstrating that G is an analytic subset of D. We may assume that ||| < 1.
It follows from Bishop’s Theorem (Theorem F of Stolzenberg {81), that it is sufficient
to show that there exists a neighbourhood U of {z € D:z; = 0}, such that

7t < . (4.2)

*>NU
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It follows from the proof of Theorem 3.3, that there exists a 6 > 0, such that
the function vy = log [|s o f|’u; is plurisubharmonic in D*. Without loss of general-
ity, we may assume that there exists a zi, such that /(21,0 ...0) > — o, other-
wise we change our coordinate system. We can also assume, possibly after a change
of the coordinate system, that if Jz1]=1, Iz <1,..., |2u| <1, then
vp(z1, 22, o . 2m) > — 0. Let B, , ={f€C & <1} and n(r,&) be the
number of roots, counted with multiplicity, of the equation s(f(z, §)) =0 in
{zr < [y| <1} Fix £ €B,_, and put v,(z) = v(2, ). We can find a sequence
{v;}21 of twice continuously differentiable subharmonic functions in B*, such
that o, v, For each j, an application of Green’s formula gives

2z
f 0 Vi f 02
o Y (re VAo = 4 5;16‘2'] vi(z0)dV (1) .

0 r< |51

25
0 _
f o vi(e? " NdY — »
0

Here dV isthe planar Lebesgue measure on €. Dividing by # and then integrating,
we have

27 27
f vj(re Vji‘r')dﬁ — f vj(e ’/:—W)dﬁ +
0 0
2 . (4.3)
+ (dog rY) f 2 vi(e? = )d9 = f 4¢7! f z vj(21)dV (21)
J " 0 :
r <5 | <

It is clear that there exists a constant K, such that if |z;] = 1, then |vz)] < K
for all j. Moreover, this constant can be chosen independent of & € B, ;. The
functions v; can be taken as iterated mean values. From the explicit representation
of the derivatives of such functions, see Helms [4, p. 20], it is clear that there exists
a constant K, also independent of &€ B, ;, such that if |z,| =1, then
[0v(z1)/or] < K. Letting j tend to oo in such a way that the measures
(02/02,0%))v,dV tend weakly to the Riez measure of ., we find that

(4.4)

1 27 27

f in(t, E)dt — f log |ls o fre¥ =17, &)|d9 < / log us(re?” =1, £)d9 + K log r .
0 0

r

One consequence of (4.4) should be noted here. If we take & = 0, then an integration
gives

1
f V{21, 0)dV (2)) = — K / tlog t~'dt > — K. (4.5)
r<|gf <l r

It follows from Corollary 3.15, that log u(re V=i, &) < Klogr~', with K
independent of & € B, _;, and hence we have from (4.4)
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1 27
f n(t, E)dt — 6 f log [Is o f(re? ~ 1%, &)|d® < K log r~". (4.6)
r 0
We get from (4.6) that
n(t, &) < K for all £€B,_,. (4.7)

We may therefore assume that wvy(z,0) > — oo for 0 < |z| < 1. If z € B¥%,
then we define v(&) = v/(2, &), £ €B,_;. Let 4, ; be the Laplace operator on
C"~'. Since v, is subharmonic in B we have by the Riesz representation
formula

m—1»

0.(0) — f vt (t) — o2 [ Ao 0O EAT o (E), (4.8)

0By Bm—1
where do, , is the surface measure on 9B™~', normalized so f . do, 1 =1,
m—1

dV,_, is the Lebesgue measure on €™ ' ¢.(&) = [E* ™ — 1, m > 3, g,(€) =
=log |7 and «, = (2m — 4)(2m — 2) fB 1(”7’“‘1 for m >3 and o, =

= (2n)~'. Let u(z) be the 2(m — 2)-volume of G'N{z} x {£€C" " |& < 1/2}.
Since g¢,.(£§) > 2, > 0 if ||| < 1/2, we have from (4.8) that

w(z) < Klog |z2]7' — apinv(z, 0).

If we now make use of (4.5), then an integration gives

f w2 dVz) < K for all », 0 <r < 1. {4.9)
r<la| <1

Now the relations (4.7) and(4.9) establish Bishop’s condition (4.2).

Pick any two sections s; and s, of H, s, # 0. To complete the proof, it is
sufficient to show that the meromorphic function % = (s; 0 f;)/(s, o f) has a mero-
morphic extension to D. In view of (4.2), we may assume that

D, ) c{z€D:z =0}

Hence we may assume that 2 is analytic in D*. Let ¢ have the Laurent expansion

o
g(Zl, 295 + o oy Zm) = . Z Z‘{Aj(22, N Zm).

Fix £ € B,_;. We note that |&| = ||s; o f||/lls, o fll, and since we may assume that
llsdl <1, ¢ =1,2, we have that (logt = max (0, log))

27 27

f log+ ﬁg(re’/__w, §)idd < — f log ||s; of(re’/jw, &)ld9 < Klogr™', (4.10)

] 0
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where the last inequality follows from inequality (4.6). From the Nevanlinna theory
it now follows that there exists a number %k > 0 such that A]-(S) = 0 for all
J<—k 1If we for r€Z+ put H(r) ={£€B, ;1 4;¢) =0 forall j < —r}
then we have just shown that J, H(r) = B,, ;. Since the sets H(r) are closed,
at least one, H(ry) say, contains an open subset of B, ;. Since the functions 4;
are analytic, we have that 4; =0 for j <7, and this proves Theorem 1.2.

Proof of Corollary 1.3. Let H be the hyperplane bundle of P, and K the
canonical bundle of P,. Since K = H "', it is easily seen that if R € Z* and
R > (n + 1)/d, then R has property P with respect to H".
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