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Continuity and 
operators on 

differentiability of Nemytskii 
the Hardy space 9r~1'1(T1) 

John  F. Toland 

A b s t r a c t .  Let 7-I 1,1 (T 1 ) denote the Hardy space of real-valued functions on the unit circle 
with weak derivatives in the usual real Hardy space 7-/l(T1). It is shown that when the weak 
derivative of a locally Lipschitz continuous function f has bounded variation on compact sets the 
Nemytskii operator F, defined by F(u)~-fou, maps 7-I 1'1 (T 1) continuously into itself. A further 
condition sufficient for the continuous Fr~chet differentiability of F is then added. 

I n t r o d u c t o r y  r e m a r k s  

Let  L 1 ( T  1) denote  the  Banach  space of real-valued Lebesgue integrable ' func- 
t ions '  on the  uni t  circle T 1 - -R /27 rZ  and let L log + L be the  linear space of functions 
v for which Ivl l o g ( I + M ) E L I ( T 1 ) .  For v E L I ( T 1 ) ,  let Cv denote  the  Hi lber t  t rans-  

form of v, also known as the  funct ion conjugate  to v. whose value a t  x E T  1 is given 
a lmost  everywhere  by the  Cauchy  principle value integral  

1 /ff  v(y) dy= 1 ~ "~ v(x-y) 
Cv(x)-- ~ ~ t a n ( � 8 9  ~ ~ tan(�89 dy. 

A funct ion v C L I ( T  1) is said to be  in the  real H a r d y  space ?-/I(T1) if CvELI(T 1) 
and, for y E L l ( T 1 ) ,  Z y g m u n d ' s  l e m m a  implies t ha t  Iv[E?-/I (T 1) if and only if vE 

L log  + L. (Zygmund ' s  l e m m a  [6, Vol. I, VII ,  (2.8) and (2.10)] s ta tes  t ha t  if u ~ a >  
- c o  and uET-/ I (T 1) then  u E L l o g  + L.) The  H a r d y  space 7-/1 ( T  1) is a Banach  space 

with  the  no rm Ilu]]ul(T1)= ]]U]]LI(T1 ) § ]]CUl]LI(TI ). 
Let  f :  R - - + R  be a funct ion and define a Nemytsk i i  ope ra to r  [4] F on spaces of  

functions u by F(u)=fou. (Nemytski i  ope ra to r s  are somet imes  called superpos i t ion  
opera to r s  [1], [3].) T h e  m a p p i n g  w-~ Iv] is a Nemytsk i i  opera to r  which maps  L 1 ( T  1) 

to itself bu t  does not  m a p  ? / I ( T 1 )  to  itself. 
Let  7-/1'1(T 1) denote  the  Banach  space of all real-valued absolute ly  contin- 

uous funct ions u on T 1 for which u ' E ~ / I ( T 1 ) ,  where the norm is IlUllT./L,(w,): 
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IlUlInl(T1)+IlU'IIn~(T1 ). In [2, Remark 1, p. 200] Janson used I H ( T  1) to denote our 
space 7-/1,1(T 1) and observed that  a Nemytskii operator F maps I H ( T  1) into itself 
if and only if f is locally Lipschitz continuous. (In fact Janson's proof yields the 
stronger result that  a Nemytskii operator maps 7-I 1"1 (T 1) into the space W 1' 1 (T 1) of 
absolutely continuous functions on T 1 if and only if f is locally Lipschitz continuous, 
in which case it maps 7-/1"1(T 1) into itself.) 

Here we are concerned with sufficient conditions for continuity and differen- 
tiability of F on 7-/1,1(T1). Marcus and Mizel [3] have shown that  any Nemytskii 
operator from WI,I(T1)  to itself is continuous. While it is not clear whether such 
a result holds for 7-/1'1(T1), we will see that  f '  being locally of bounded variation 
ensures that  F maps 7-/1,1(T 1) continuously into itself. (In particular, m-~ lul maps 
7-/1'1(T 1) continuously into itself.) We also show that  if f "  is locally Lipschitz 
continuous then F is continuously Fr~chet differentiable on 7-/1'1 (T1). 

The present remarks arose as a natural extension of observations, motivated by 
questions about functions on the unit disc, in the case f ( t )= �89 2 [5]. Recall that  for 
vET-/I(T 1) the complex-valued function v+igv can be interpreted as the boundary 
values of a holomorphic function V on the unit disc 2) in the complex plane. It is 
well known [6] that  the image of 2) under V is a connected set, the boundary of 
which has bounded variation (v+iCv has bounded variation on T 1) if and only if 
v+igv is absolutely continuous. This in turn is equivalent to the fact that  v', the 
weak derivative of v, is in 7{l(T l) in which case (v+iCv)'=v'+iC(v'). 

The treatment  here, which is independent of [2] and [3], is self-contained and 
elementary. 

Continuity 

Suppose that  f is a real-valued function on R which is locally Lipschitz (Lip- 
schitz continuous on every compact interval) and u is an absolutely continuous 
function on T 1. It follows from first principles that  the composition fou is abso- 
lutely continuous on T 1 . Therefore, for almost all x E T  1 , the classical derivative of 
fou at x exists. Note also that  f is differentiable at t for almost all t E R .  Suppose 
now that  t E R  is a point at which f is not differentiable and suppose that  u(x)=t. 
Then if u is differentiable with non-zero derivative at x it is easily verified that fou 
is not differentiable at x. From these observations it follows that,  no matter what 
finite value is assigned to if(t) at points t where f is not differentiable, the formula 

(1) ( fou ) ' (x )  = f ' ( u ( x ) ) u ' ( x )  

holds for almost all x E T  1 , where ' denotes the classical derivative at points where it 
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exists. This formula also gives the weak derivative of fou almost everywhere on T 1 . 
(The example f ( t ) =  Itl and u - 0  illustrates the point discussed in this paragraph.) 

Now consider the case when f is convex. At each point tER ,  let f+(t) repre- 
sent the right derivative of f at t. The right derivative always exists and is finite 
because of convexity, and coincides with the classical derivative almost everywhere. 
Moreover, at points where the classical derivative f '  exists, t~-~f~ (t) is continuous. 

If, more generally, f '  has bounded variation on every compact interval I, or 
equivalently if f is the difference of two convex functions on I,  the right derivative 
f~(t) is well-defined for all tER .  In this case we write f E D C  and put f '= f~  in (1). 
If u is absolutely continuous and f E D C  we see from the above discussion that,  for 
almost all x E T  1, the function G(u): T 1 x T I - + R  defined by 

(2) G(u)(x, y) = f (u (y ) ) - f (u (x ) ) - f+(u(x ) ) (u(y ) -u(x ) )  

is differentiable with respect to y at y=x, and (O/Oy)G(u)(x,y)]y=z is zero for 
almost all values of x. The following slight variant of the dominated convergence 
theorem will be useful. 

L e m m a  1. Suppose for a sequence {(gn,hn)}n~=l in L I ( T 1 ) x L I ( T 1 ) ,  that 
]gn] <_hn almost everywhere. Suppose also that there exists (g, h)ELI(T 1) x L 1 (T 1) 

such that every subsequence {(gnk,hnk)}~-i of {(gn, h,)}n~__l has a subsequence 
h (also denoted by {(gnk, nk)}k=l) with (g,k,hn~)-+(g,h) pointwise almost every- 

where and f~_~hnk dx--+ f~_~hdx, as k--+oc. Then gn--+g in LI(T1) .  In particular, 
if the hypotheses are satisfied with gn=h,~, then hn-+h in LI(T1) .  

Proof. Suppose that  gn~+g in LI(T1) ,  as n-+oc.  Then there is a number (~ 
and a subsequence with Hgnk--gllnl(wl)~c~>O for all k. From the hypothesis we 
may assume that  (gnk, h,~k)-+ (g, h) pointwise almost everywhere. Hence, by Fatou's 
lemma, 

2hdx<liminf  [ (h+h .~ - Ig .~ -g l )dx  
k - ~  J_~ 

= 2h dx +l im inf - Ignk -g [  dx. 
7r k---+ ~c ~r 

It follows that  0<_- lira supk_~ r Ilgn~ --gllL~('r~) <----c~<O, which contradiction proves 
the claim. [] 

Recall the properties of C and of integrability-B, which is defined in Zyg- 
mund [6]. 

(i) That  Vn-+V in L I ( T  1) implies that a subsequence Cv,~.--~Cv pointwise al- 
most everywhere. 
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(ii) For vEL~(T1), [Cv[[P]ELI(T ') for all pE(0.1), where t[P]=min{t,t p} for 
t>O. 

(iii) If u EL 1 (T 1) then u is integrable-B and the two integrals coincide. (We 
write this as f'_~ u dx=(B) f~_~ u dx.) 

(iv) If u E L I ( T  1) then Cu is integrable-B and (B) f~_, Cudx=O. 
(v) If u and v are integrable-B, then u+v is integrable-B and 

f f )f (B) udx+(B)  v dx = (B (u+v) dx. 
7r 7r 7r 

The key is the following observation. 

P r o p o s i t i o n  2. For yELl(T1) ,  veT / l (T  1) if and only if the positive part of 
Cv is in LI(T1).  

Proof. The 'only if' part is clear from the definition of 7-/1(T1). Suppose that  
veLX(W 1) and that  u=(Cv)+ELI(T1), where w+(x)=-max{w(x),O} for any func- 
tion w. Then u-Cv>O almost everywhere. Therefore, for all pE(0, 1), (ii)-(v) give 
that  

f f (u-Cv) [p] dx = (B) (u-Cv) [p] dx 
7r I r  

f ,f f <_ (B) (u-Cv) dx = (B u dx = u dx. 
7r ~ 7r 

When p / ~ l  we learn from Fatou's lemma that u-CvELI(T1) .  Since uELI(T1) ,  
the result follows. [] 

Remark. A trivial consequence of this observation and Zygmund's lemma is 
that  if u E L I ( T  1) and Cu>a for some h E R ,  then CuEL log + L. [] 

For any absolutely continuous function u and fEDC,  let 5r(u) be defined for 
almost all x E T  1 by 

(3) -_- ( u ( z ) ) C u ' ( x ) - C ( l : ( u ) u ' ) ( x ) .  

P r o p o s i t i o n  3. Suppose that f is convex on R and u is absolutely continuous 
on T 1. Then Jr(u)(x)>O for almost all x E T  1. 

Proof. Let x be a point at which the partial derivative of G(u)(x. y) with respect 
to y at y=x  exists and is zero. From (2) and the convexity of f ,  G(u)(x,y)>O for 
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all yER.  Therefore, by definition, 

1 f f  (f'(u(x))-f~(u(y)))~'(y) f~(u(x))Cu'(x)-C(]~+(u)u')(x) = ~ ~ t an ( �89  dy 

_ 1 / ~  (O/Oy)G(u)(x,y) dy 
21r , t an ( �89  

1 F G(u)(x, y) 
= 4---n ~ sin2(�89 dy>O. [] 

P r o p o s i t i o n  4. Suppose f EDC. Then fouET-/H(T 1) for all uE'I-ll'l(T1). 

Proof. Suppose that  uET-/1"l(T1). Then there is a compact interval I such that 
u(x) EI for all x E T  1. Since fEDC it suffices to restrict attention to the case when 
f is convex on R. Since urE~/ l (T 1) and 

c(f:~ (~)u') = f: (u)cu'- y(~), 

we find, from Proposition 3, that  (C(f~(u)u'))+ELI(T1). Hence f~(u)u'ET-ll(T1), 
by Proposition 2. However f+(u)u' is the weak derivative of f(u). Hence f (u )E  
7-/1,1 (T1). [] 

Suppose that  u E 7-I 1"1 (T1). Then it follows from elementary calculus Remark. 
that 

(4) 

and therefore 

1 / ~  dx 1 / /  u(x)-~ u(x) < ~ lu'(xlldx, 
7r 7r 

(5) 

integrating over [-Tr, 7r], using Proposition 4 and the preceding remark. 

Next we have the following result. 

F 1 2 uCu' dx< ~llulln~.l(Tl }. u E ~ I ' I ( T 1 ) .  [] 

C o r o l l a r y  5. For uE'/-/1,1(T 1) 

1 ~ f= (u (x ) -u (y )  dydx= uCu'dx< IlulI~H(T1)- 
0 <  ~ . J _ ~ \ s i n ( � 8 9  . - 

Proof. This follows from taking f(t)= �89 2 in the proof of Proposition 3 and 
[] 
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C o r o l l a r y  6. ~_~1,1 (T 1) is an algebra in which multiplication is continuous. 

Proof. Let f ( t ) =  1 2 ~t , tER,  in Proposition 3. For uET-/I'I(T 1) let 

o<_ Qu(x)=u(x)Cu'(x)-C(uu')(x) ,  x E T  1 

Hence (C(uu'))+ <iuCu '] and t h a t  ]](C(UUP))+IILI(T1) ~ I 2 _ ~]]UII741,1(T, ) follows. Since 

f~C(uu')dx=O it follows that  IIC((u2)P)IILl(T1)<2]IuII21.~(T1). The result fol- 
lows. [] 

Let WI , I (T  1) denote the Banach space of real-valued absolutely continuous 
functions on T 1 with n o r m  [[UtlwI.I(T1)=[[U[[LI(T1)-[-[[uPi[LI(T1). 

Remark. When f is locally Lipschitz, the Nemytskii operator F maps W H (T 1) 
continuously into itself [3], but a simpler result is sufficient here; for completeness 
we include the proof. 

L e m m a  7. Suppose that fEDC. Then F:WI'I(T1)-+WI'I(T 1) is continu- 
ous. 

Proof. Since fEDC it suffices to consider the case when f is convex on R. In 
this case, by our earlier discussion, (F(u))' =f~ (u)u' almost everywhere. Let un--+u 
in Wl,l(T1).  It suffices to show that  f+(un)u'n--~f~(u)u' in LI(T1). Since u'n---~u' 
in L I (T  1) and f~ is bounded on bounded sets, it is enough, using Lemma 1, to 

# t o o  show that  every subsequence (f~ (Unk)U'n~ }~~ of {f+ (Un)Un }n=l has a subsequence 
which converges pointwise almost everywhere to f~(u)u'. 

l ] Every subsequence of {unk }~o=1 has a subsequence (also denoted by (unk }k=l) 
which converges to u' on a set U of full measure. Let E c U  denote the set on which 
u' exists, let Eo=(xEE:uP(x)=O} and let EI=E\Eo. Clearly f~(unk(X))U~k(X)--+ 
O=f+(u(x))u'(x) for xEEo. Moreover, the earlier discussion ensures that  S'(u(x)) 
exists for almost all x E El.  Therefore, for almost all x E El,  the function t ~-~ f~ (t) is 
continuous at t=u(x). Hence f~(unk(X))U'nk(X)---rf~(u(x))u'(x) at all such points. 
We have shown that  f~ (unk (x))u~ k (x)-+ f'+ (u(x))u'(x) for almost all x E E. Since 
E has full measure this completes the proof. [] 

P r o p o s i t i o n  8. For f EDC, the Nemytskii operator F: 7-gl'l(T1)-+7-/l'l(T 1) 
is continuous. 

Proof. As with the proof of Proposition 4 and Lemma 7, it suffices to prove the 
result for convex f .  Also, by Lemma 7, it is now enough to show that  C(f'+ (un)u~)---> 
C(f+(u)u') in LI(T1),  as n--+oo, where {un}~=l is a subsequence of a sequence con- 
verging to u in 7-/1,1(T1). Let gn=(C(f~(un)u'n)) + and let O<M=sup{f~_(u,~(x)): 
x E T  1, n E N } < c c .  Then by Proposition 3, 

0 < g ~  = ' ' + _ (C(f + (u . )u . )  ) < If" (u,)Cu " l < MICu" I 
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almost everywhere, for all n. By Lemma 7 and (i), every subsequence of {gn}n~_l 
has a subsequence which converges almost everywhere to g=(C(f~(u)u')) +. Let 
subsequences be indexed by n and let hn =MlCu'l. Then hn ~ h  in L 1 (T 1), where 
h=MI cut I. Now an application of Lemma 1 shows that  g,--+g in L 1 (T1). By Propo- 
sition 4, C(f~_(u~)u~)ELI(T 1) and has zero integral (by (iii) and (iv)). Therefore 
for a subsequence of the negative parts, (C(f~(un)u~)--~(C(f~(u)u')- almost eve- 
rywhere and f~_~(C(f+(u~)u~)- dx-  f j . (C ( f :  (u)u')- dx, as The result now 
follows from the last s tatement in Lemma 1. [] 

Remark. From the preceding proof it follows that  if f is convex, 

li I; Ic(f&(u)u')(x)l dx <__ 2 lf'.(u(x))Cu'(x)l dx, 
7r 7r 

and therefore that F maps bounded sets into bounded sets in ~1'1(T1) when f t  is 
locally of bounded variation. [] 

By contrast with the mapping u~-rf~ (u)u ~, which is continuous from W 1'1 (T  1) 
to LI(T1),  we now show that  u~f~(u)Cu'  need not be continuous from 7-tl,I(T a) 
to LI(T1).  (As a consequence of this remark and Proposition 8, ~-:7-/1'1(T1)~ 
L I ( T  t) is well defined but not necessarily continuous when f E D C .  If, in addition, 
f~ is continuous then it follows from Proposition 8 and the dominated convergence 
theorem that  ~-: 7-/1'1(T 1) ~ L  1 (T 1) is continuous.) First a simple observation. 

L e m m a  9. Let u: T1--+R be a non-negative smooth function which is zero 
on an open interval 1, but not identically zero. Then for all x, yEI  with x>y,  
Cu(x)-Cu(y)<O. In particular, Cu'~O on I. 

Proof. Let x>y, x, yEI.  Then, since u - 0  on I, 

1 i .  - u ( x - z ) - u ( , - z )  i f  (OlOz) fv~--~u(t) dt 
Cu(x)-Cu(y) = ~ , tan(�89 dz = -~-~ , tan(�89 dz 

1 / ~  fi~-:u(t) dt 
- 47e . sin2(�89 dz<O. [] 

P r o p o s i t i o n  10. Suppose that f ( t )=lt  I, tER.  Then 9 v : 7 / H ( T 1 ) - + L I ( T  1) is 
not continuous. 

Proof. Let uC~-[I'I(T 1) be as described in Lemma 9 and let VE~I~I'I(T 1) be 

a non-negative, smooth function which is non-zero and has compact support  in I. 
Now for x in the support of v and e>0,  

[jJ+ (u+ev)C(u+ev)']x = sgn(r +r 
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The result now follows since Cu'~O on the support of v. by Lemma 9. This shows 
that  w~+f+(w)Cw' is not continuous from 741"1(T 1) into L I (T  1) which, by Propo- 
sition 8, is equivalent to the required result. [] 

Remark. We finish this section with a useful inequality. Suppose that f is 
convex and that  there exists 0 < a ~  such that  a(a-b)2<(a-b) ( f~_(a) - f~_(b) )  < _ 
f l (a-b)  2 for all a, b E I = { u ( x ) : x E T 1 } ,  where uE?-/H(TI) .  Then 

0 < a uCu' dx < f'+ (u)Cu' dx <_ uCu' dx. 
T~ 7r 7r 

To see this simply note by symmetry and the proof of Proposition 3 that,  for all 
x E T  1, 

L f ~r f+(u(x))Cu'(x)  dx = [f~_(u(x))Cu(x)-C(f+(u)u')(x)] dx 
7r 

= . e y e x  

1 F f : 8~ ~ , s i n 2 ( l ( x - y ) )  dydx  

1 /; f ( f : ( u ( x ) ) - f : ( u ( y ) ) ) ( u ( x ) - u ( y ) ) d y d x .  
- -  8-~ . . sin2 (�89 ( x - y ) )  

This identity in the special case when f ( u ) =  5ul 2 (see (5)), and the general case when 
f+ satisfy the hypotheses of this remark, combine to give the required result. [] 

F r ~ c h e t  d i f f e r e n t i a b i l i t y  

Suppose now that  f "  is locally Lipschitz. We will show that  the Nemytskii 
operator F is continuously Fr~chet differentiable on 7-/H(T1). For uE?-/I'I(T1), 
the obvious candidate for the Fr~chet derivative of F at u is the linear operator Lu 
defined by the product 

Luv=vf ' (u ) ,  v E 7-~1"1(T1). 

P r o p o s i t i o n  11. When f "  is locally Lipschitz the operator F on 7~1"1(T 1) is 
continuously Frdchet differentiable and Lu is the derivative of F at u. 

Proof. For uET/1,1(T1), f 'ouE 'Hi- I (T 1) depends continuously on u, by Propo- 
sition 8. Hence, for vET/H(T1) ,  the product v f ' ( u ) E T i l ' l ( T  1) depends contin- 
uously on u, vET-/1,1(T1), by Corollary 6. It remains only to show that  Lu is 
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the Frdchet derivative of F at u. In other words we have to show that  when 

lim HF(u+v '~ ) -F(u) -L"vn[[n~~(T~)=0 .  
n ----~<:~ [[Vn i]7../L t (T,) 

It is easy to see, from the intermediate value theorem and the hypothesis on f ,  that  
the mappings 

u ~ - +  : ( u ) ,  ~, > f ' (u )u ' ,  u,  > l:'(u)Cu' 

are Frdchet differentiable from 7-/1,1 (T  1 ) into L 1 (T  1) with derivatives 

(6) v, ~ f ' (u )v ,  v,  > f " ( u ) u ' v + f ' ( u ) v ' ,  v. ~ ( f " (u )Cu ' ) v+f ' (u )Cv ' .  

Therefore it suffices to show that the mapping u ~ C ( f ' ( u ) u  t) is Frdchet differentiable 
from 7-/1,1(T 1) to L I ( T  1) with derivative 

v,  ~ C ( ( y " ( u ) u ' v + y ' ( u ) v ' ) .  

However, because of the definition of : ' (u ) ,  given in (3), it suffices to show that  
: ' :  7-I 1'1 (T  1)-+ L 1 (T 1) is Frdehet differentiable at u where, as in the proof of Propo- 
sition 3, 

i f "  a(~l(z, y) (7) .T'(u)(x) = ~ ~ s in2( �89 dy. 

Note first that  G(u)(x,  y ) = H ( u ( x ) ,  u(y)) where, by Taylor's theorem, 

H(a, b) = f ( b ) -  f ( a ) -  f ' ( a ) ( b - a )  = ~ f " ( ~ ) ( b - a )  2 

for some ~ between a and b. Let 

H(a ,  b) 
h(a ,b )= (b_a)2,  if a ~ b ,  

1 r if a = b. 
2 J ~. /7 

Then h is continuous on R 2, and continuously differentiable on the open set where 
aCb. At such points 

Oh (a,b) H ( a , b ) - H ( b , a )  1 f " ( x ) - f " ( ; )  
0-b = ( a - b )  3 - 2 a - b  ' X , ; e  [a,b], 

t - -  -~ , ,( - ) f " ( ~ ) - f " ( a )  Oh = 2 H ( a , b ) - ~ f " ( a )  b a ~ 
I E [a, b]. 

~a (a,b) ( b - a )  3 -- b - a  ' 
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(Here [a, b] denotes the closed interval with end-points a, b, whether  a<_b or not.) 
Since f "  is locally Lipschitz, it follows tha t  Vh is uniformly bounded on bounded 
sets of points (a, b) with ar Note tha t  for ar 

Oh 2 Oh h(a,b)-h(b,a) and - - - ( h ( a , b ) - h ( a . a ) ) .  
(8) cq~ = a - b  Oa b - a  " 

For definiteness in formulae later we use the convention tha t  Vh(a, a)=(0 ,  0). Now 

(9) 

H (a+a', b+b')-  H (a, b)-  2(a-b)(a'-b')h(a, b)-(a-b)2Vh(a,  b). (a', b') 

= (a-b)2[h(a+a ', b+b')-h(a, b)-Vh(a,  b).(a', b')] 

+2(a-b)(a'-b')[h(a+a',  b+b')-h(a b)]+(a'-b')2h(a+a ', b+b'). 

When a=b and (a', b')ER 2, then 

H(a+a', b+b')-H(a,  b) = (a'-b')2h(a+a ', b+b'). 

Now for a~b and (a', b t )ER 2 let 

k(t) = h(a+ta', b+tb')-h(a, b)- tVh(a,  b).(d, b'), t E [0, 1]. 

Then k is Lipschitz on [0, 1] and is continuously differentiable except possibly at  
one point te l0 ,1] .  Therefore for (a',  b')ER 2 and aCb 

(lo) 
Kl(a, b, a', b') :=_ h(a+a', b+b')-h(a, b)-Vh(a,  b).(a', b') = k ( 1 ) - k ( 0 )  

/o 1 = (a', b'). (Vh(a+ta', b+tb')-Vh(a,  b)) dt, 

where 

fo (Vh(a+ta', b+tb')-  Vh(a, b) ) dt 

is bounded for (a, b, a ~, b') in bounded sets in R 4, and. by the dominated convergence 
theorem, converges to 0, as (a', b')--~ (0, 0), for fixed ar Let K1 (a, b, a', b') = 0  when 
a = b and let 

(11) K2(a,b,a ' ,b ' ) -h(a+a' ,b+b')-h(a,b)-~O. as (a', b'), -+ (0, 0), 

uniformly for (a, b) in bounded sets. 
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Therefore, by (9), for all u, v E 7/1,1 (T 1 ) and x, y E T 1 

H(u(x)+v(x),u(y)+v(y) ) -H  (u(x), u(y) ) -  2(u(x) -u(y) ) (v(x) -v(y) )h(u(x) ,  u(y) ) 
- (u(x)-u(y))2Vh(u(x), u(y)). (v(x), v(y)) 

= (u(x)-u(y))2Kl(U(X), u(y), v(x), v(y)) 
+ 2(u( / ) -  ~(~))(v(/) -v(~))K2(u(x), u(~), v(x), v(~)) 
+ (v(x) - ~(~))2h(u(x) + ~(x), ~(~) + v(y)). 

It now follows, from Corollary 5, with (7), (8), (10), (11) and the domi- 
nated convergence theorem, followed by an integration by parts, that  ~': 7-/1'1 (T  1)-+ 
L 1 (T  1) is Frdchet differentiable at u with derivative 

1 f~_ 2(u(x)-u(y))(v(x)-v(y))h(u(x),u(y)) 
v ~ ~ . sin 2 (�89 (x-y))  dy 

1 f _  (u(x)-~(~))(h(u(x),~(y))-h(u(y), ~(x))) 
+ ~ ~ sin 2 (�89 ( x -  y)) v(y) dy 

 v(x) 
, sin2 ( � 89  

= 1 / ~  (u(x)-u(y))v(x)f"(u(x))+v(y)(f'(u(y))-f'(u(x))) dy 
47r . sin2 (�89 ( x - y ) )  

_-- __1/~ (f"(u(x))v(x)-f"(u(y))v(y))u'(y)+(f'(u(x))-f'(u(y)))v'(y) dy 
27r tan(�89 

: [f"(u)vCu'Wf'(u)Cv'](x)-[C(f"(u)vu')wC(f'(u)v')](x). 

In the light of (6), this is what is needed to conclude that F: 7 /H(T1) -+7 / l ' 1 (T1)  
is Fr~chet differentiable at u with derivative Lu. [] 
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