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On a local uniqueness result for the 
inverse Sturm-Liouville problem 

Kim Knudsen 

A b s t r a c t .  A new and fairly elementary proof is given of the result by B. Simon [S], that  
the potential in a Sturm-Liouville operator is determined by the asymptotics of the associated 
m-function near - ~ .  The proof given is based on relations between the classical transformation 
operators and the m-function. 

1. I n t r o d u c t i o n  

In this paper we study the Sturm-Liouville operator 

d 2 

H =  -~x2  +q 

on L2([0, co)) and the related Sturm-Liouville problem 

d2u 
(1) Hu(x) = -~fix2(X)+q(x)u(x) = Au(x), x E [0, oc), 

(2) ~(0) =0.  

We assume that qELI([0, cr is real valued. Under these assumptions it is 
well known (cf. [CL, p. 255, Problem 4]) that  H is of limit-point type at infinity 
and selfadjoint on the domain 

D(H) -= {u E L2([0, co)) l u, u' E ACloc([0, oc)), u(0) = 0, - u ' + q u  E L2([0, cr 

See [CL], [J] or [LS] for the theory of singular Sturm-Liouville problems. For a 
modern treatment see [Pe]. 

The special solution to (1) defined by the conditions (2) and u~(0)=l is called 
the regular solution and denoted by ~)(x, A). 
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Since H is of limit-point type at infinity we can for A~cr(H) define u(x. A) to 
be the unique solution to (1) in L2([0, co)) satisfying u(0, A)=I,  the so-called Weyl 
solution. Associated with (1) is the m-function defined by 

(3) re(A; q) = u'(0, A) 

for A not an eigenvalue of H. Since the spectrum of H is real and bounded from 
below ([LS, Theorem 3.1]) there is a constant C > 0  such that  the m-function is 
defined for ACC\[-C,  c~). 

The main result of this paper is a new proof of the following uniqueness result. 

T h e o r e m  1.1. ([S]) Let ql,q2ELl([O, oc)) be real potentials for two Sturm- 
Liouville problems and let ml and m2 be the associated m-functions. Assume there 
is an a>O such that 

m( -k2;q l ) -m( -k2;q2)  :o(e-ak(1-e)), as k---+~, 

for every r Then ql(x)=q2(x) for a.e. x e  [0, �89 

As a corollary to Theorem 1.1 we recover the well-known result by [Bo], [GL] 
and [M] that  the m-function (or equivalently the spectral measure associated with 
(1) and (2)) determines the potential q. 

Note that  since two potentials ql,q2EL~oc([O. ~c)) satisfying ql(x)=q2(x) for 
a.e. xE [0, �89 have associated m-functions satisfying 

m(-k2;ql)-m(-k2;q2)=o(-ak(1-~-)),  as k--+oc, 

for all r  (see [S, Theorem A.I.1]), Theorem 1.1 is valid under the less restrictive 

assumption that  ql, q2 ELiot(J0, oc)). 
In the paper IS] a new mathematical object is introduced and by this new 

formalism the result is proved. As observed in [GS2] this new object is closely 
related to a certain transformation operator relating the regular solutions to dif- 
ferent Sturm-Liouvitle problems, and the main idea in the present paper is to give 
an elementary proof of Theorem 1.1 within the framework of these transformation 
operators. 

Recently Gesztesy and Simon [GS1] and Bennewitz [Be] have given different 
new proofs, which are considerably shorter than the original proof. 

The outline of the paper is the following: First we review the concept of trans- 
formation operators and prove several estimates concerning these operators. Next 
we derive an equation relating the Weyl solution to a particular transformation 
kernel. This relation then gives a relation between the m-function and the kernel 
through a kind of Laplace transform. At last we derive a relation between the dif- 
ferent transformation kernels and by this relation and a uniqueness theorem for a 
related hyperbolic partial differential equation with Cauchy-data we prove Theo- 
rem 1.1. 
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2. Transformation operators 

Let ql and q2 be potentials and let r and 02 be the regular solutions to the 
associated Sturm-Liouviiie problems. Then there exists a unique transformation 
kernel K independent of A such that 

(4) j~0 x 4)2(X,~)=4)l(X,)~)'~- fi:(x,t)Ol(t.A)dt. 

This is the Levitan-Povzner representation relating solutions to different Sturm- 
Liouville problems ([Po I and [L D, 

In the special case q2 =0, the regular solution is 4)2(x, A ) = s i n ( x v f A ) / v ~ ,  and 
the kernel denoted by - L  satisfies 

s i n ( x v ~ )  = OI (X, ~ )-- ~0 x L(x, t )4)l (t. A) dt. (5) r 

Similarly, when ql =0, the kernel is denoted by K and satisfies 

(6) 4)2(x, A ) -  sin(xv/'A) ~ . sin(tx/A ) 
v~ + t  K(x,t) - ~  dt. 

It is easily seen by inserting (4) in (1) and making use of the initial conditions 
of 4)1 and 4)2 that the kernel/~ must solve the Goursat problem 

(7) 

~.:~(~, t ) -  ~:,,(., t) + (q~ (t) - qa(x) )R(x .  t) = o, 

2 dF,(x,x) =q2(x)-ql(x), 

~(x, 0)=0. 

(x,t) ED. 

x>_O. 

x_>O, 

where D = { ( x ,  t ) E R  2 J0<t<x} .  
The following lemma shows that the problem (7) is well posed. 

L e i n m a  2.1. Assume ql, q2EL l([O, oc) ). Then (7) has a unique solution IrE 
C~ Moreover, if ql, q2eCJ([0, co)), then fi:eCI+J(D) for j e Z + .  

In any case we have the estimate 

(8) 
f( 

x+O/2 
IK( x, t)l -< Iq2 (Y) - q l  (Y)I dy 

Jo 

exp(~(x-t)/2~ (x+t)/2 ds) 
x Iq2(r + s ) - q l ( r - - s ) ]  dr 
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for 0 < t < x .  
The solution operator (ql,q2)~-+K is a continuous map in the sense, that if 

(q~n), q(n))__+ (ql, q2), as n--+ oc, in L1 ([0, c~)) x L1 ([0, c~)) then ~[(n)(x, t)--+~[(x, t), 
as n--+ oc , for ( x, t ) E D , uniformly on compact subsets. 

Proof. The idea is to change coordinates and then formulate the problem as 
a Volterra integral equation of the second kind. This equation is then solved by 
iteration. 

The change of variables x=~+r/ ,  t = ~ - r / ,  defines the function 

which solves 

r/)= 

O~k 
- - , ( ~ ,  r / ) -a(~+r/ ,  ~-r/)k(~, r / )=0,  0 < r /<~,  
O(Or/ 

d 
~ k ( ~ , O ) = f ( ~ ) ,  ~>_0, 

k(~, ~) = o, ~ >_ o, 

where a(x, t )=q2(x) -q l  (t) and f ( x )=�89  (x)). Integration with respect to 
7/ over the interval [0, r/] and then integration with respect to ~ over the interval 
Jr/, ~] yields the Volterra equation 

(9) k(~, 7/) = a(~'+r/' ,  ~ '-r/ ' )k(~' ,  r/') dr~' d~' + f(u)  du. 

If we define the operator A on C(D) by 

/Z Ak(~, 71) = a(~'+r/' ,  ~ ' -  r/')k(~', r/') dr/' d~', 

then the equation (9) has the form 

/: (10) ( I - A ) k ( ~ ,  r/) = f (u)  du = F(~, r/). 

Since for cEC(D) the inequality 

(11) [mnc(~,r/)[ ~ ( sup Ic(~',r/')[)n.! [a ( r+s , r - s ) [drds  
\o<v'_<~:'_<r 
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can be established by induction, the operator ( I - A )  can be inverted by a convergent 
Neumann series. The unique solution k is thus obtained from (10). Moreover, the 
convergent Neumann series yields the estimate 

- -  \ O < _ r l ' < _ ( ' < g  \ J O  , I s  

from which (8) follows. 
The regularity of k(~, ~) and of K(x, y) is obtained from the integral equa- 

tion (9). 
Since both the right- and left-hand side of (10) depend continuously on qE 

LI([0, oc)), the solution operator is continuous in the specified sense. [] 

Next we study the special case of the transformation kernel L. In this case the 
partial differential equation is given by 

L,~(x , t ) -Lt t (x , t )+q( t )L(x , t )=O,  (x,t) eD ,  

(13) 2 d L ( x , x ) = q ( x ) ,  x>O, 

L(x, O) = O, x >_ O. 

In the following lemma we exploit (8). 

L e m m a  2.2. Let qELl([O, oo)). Then 

(14) IL(x,t)[ < [[q[[L' exp(x[[q[[L,), O < t < x .  

Moreover, 2Lt(2x, O)-q(x) is continuous and estimated by 

(15) [2Lt(2x, 0)-q(x)[ <_ [[q[[~l exp(x[[q[[L,) 

Iy qeCl([o, co)), then 

(16) ILt(x,t)l_<Ce =llqllL', 0 < t < x ,  

(17) ILtt(x,t)l<Ce xllqllc', 0 < t < x ,  

where the constant C may depend on q. 

Pro@ The problem (13) is identical to (7) with ql =q, (/2=0 and ~ ' = - L .  
Changing variables defines the function I(~, r/)=L((+rl, ~-r/) which because of 

(9) solves the equation 

( i s )  l ( L v )  = - q(~'-r/)l(~',v')dv'dg'+-~ du 
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and because of (8) is estimated by 

/0' (/07/ ) (19) II(~, ~/)1 ~ 2 ]q(u)l du exp Iq(r-s)l drds . 

Since for 0<7/_<~, 

- -  J 0  J 0  - - r /  

the estimate (19) yields 

/o' (/0 ~ ) II(~,n)l- I q ( u ) l d u e x p  7? Iq (u ) ldu  , 

which implies (14) for qELI([0, oc)). 
Differentiating (18) yields a.e. that 

(20) 

(21) 

f n  , , , 1  ~ 1 l~(~,~)=- q(~-71)l(~,o )d~l +-~q(~)=- _ q(u)l(~,~-u)du+ q(~), 

l,(~, ~) = q(71-v')l(y, rl') drl'- q(~'-rl)l(~', 7?) c~'- ~q(y) 

// fo,~ 1 -= q(u)l(Th O-u) du- q(u)l(rl+u, 7?) du- ~q(o). 

fo 2x /o ' ' 
2Lt(2x, O)-q(x) = - 2  q(u)l(x,x-u)du=- q(~v)l(x,x--~v) dr, 

from which the continuity and (15) follow. 
When qEC~([0, c~)) we also deduce 

]l~(~, Y)' <_ C exp(Tl f~  ]q(u)] du) , 

'lu(~,~)] <_C exp(~ /~  ]q(u)' d u) 

we find 

Hence l~((, r/)- �89 and lu(~, rj)+ �89 are continuous functions. Since 

Lt(x , t )=l( l~(x2t ,  x - t~  l fx+t  
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from which (16) follows. The estimate (17) follows similarly by differentiating (20) 
and (21) once again, since 

Ltt (x, t) = -~ 2 ' ' 

and since q and qP are compactly supported. [] 

We now give a result about the Cauchy problem for the partial differential 
equation in (7). 

L e m m a  2.3. Let A b = { ( x , t ) E R 2 i O < t < x ,  t+x<b}  for bE[O, oc). Let ql,q2E 
Ll([0, b]), fEC([O,b]), geLl([O,b]). Then 

B:~x(x, t ) - K u ( x ,  t )+(q l ( t ) -q2(x ) )K(x ,  t) = O, (x, t) E Ab, 

~'(x, 0) = f (x ) ,  x E [0, b], 

B[t(x,O)=g(x), x E [0, b], 

has a unique solution h'EC(/~b).  

Proof. The proof follows the same lines as the proof of Lemma 2.1 (see [K] for 
more details). [] 

3. R e l a t i o n  b e t w e e n  t h e  m - f u n c t i o n  and  a t r a n s f o r m a t i o n  kerne l  

In this section we prove a relation between the Weyl solution and the transfor- 
mation kernel L. This result leads to the connection between L and the m-function 
given by 

// (22) m( -k2 ;  q) = - k -  Lt(x, O)e -xk dx. 

Note that  (22) can be seen as a combination of IS, equation (2.3)] and [GS2, equa- 
tion (9.11)]. We give a direct proof below. 

We now establish a relation between u and L when qeC~ ([0, oc)). 
L e m m a  3.1. Let qEC~([0, cx~)) and let L be the transformation kernel (5). 

Then for k> IIq{IL 1 , 

(23) u(t, - k  2) = e -tk - L(x, t)e -~k dx 
Jt 

is the Weyl solution to (1). 
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Proof. It will be shown that uEL2([O, c~)) and that u solves (1) as well as 
u (0 , -k2)= l .  

According to (14), IL(z,t)t<IIqlIL, exp(xllqllL, ), which implies that u( t , - k  2) 
is well defined by (23) for k>IMIL1. 

Since e-tk E L 2 ( [0, c~)) and 

f ~ t)e -xk dx 1 e -t(k-IIqHL') E L2([O, c~)), 
L(x, <- k-IlqtlL--------~ 

it follows that u(t,-k2)EL2([0, oo)). 
By Lemma 2.1 the assumption qeCl([0, cc)) ensures that LEC2(D). Differ- 

entiating (23) then yields 

u'(t, - k  2) = -ke  -tk +L(t, t)e -tk - Lt(x, t)e -xk dx, 

(24) u"( t , - k  2) = k 2 e - t k + d  L(t , t )e- tk-kL(t , t )e- tk+Lt( t , t )e- tk  

-fit -~c- Ltt(x,t)e -xk dx, 

since the estimates (16) and (17) justify differentiating under the integration sign. 
Since L solves (13), we have 

(25) - f t~ 

and integration by parts gives 

- ~ L~(x, t)e -xk d~= L~(t, t)e-~k-~ f f  L~(x, t)e-~ ex 

(26) = Lx(t, t)e -xk-kL( t ,  t)e - ~ k - k  2 g(x, t)e -~k dx. 

Inserting (25) and (26) in (24) gives 

u"( t , -k2)= ( k 2 + d  L(t , t )+Lt( t , t )+Lx(t , t ) )e-~k-(k2+q(t))  ~t~L(x, t)e-Xk dx 

= (k2+q(t))u(t,-k2), 

which is (1). 
Moreover, u ( 0 , - k 2 ) = l  since L(x,0)=0. [] 

The above result is the main ingredient in the proof of the relation (22), but to 
obtain the result for general qELI([0, oc)) we need the following continuity result. 
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L e m m a  3.2. Let qELI([0, cr and suppose qnCLl([O, co)), Itq-qnllLl-+O, as 
n--~co. Then m(kZ;qn)-+m(k2;q), as n-+co, pointwise for every k E C  with Imk 
sufficiently large. 

Proof. For kEC with Im k sufficiently large, the Weyl solution is given by 

u(x, k 2) = f ( x ,  k) 
F(k) ' 

where f is the Jost solution to (1) and F is the Jost function (cf. [CS]). The result 
follows since the map q~-~f(x, k) is continuous on LI([0, co)) for fixed (x, k). [] 

We are now able to prove (22). 

L e m m a  3.3. For k>l]qiiL~ the equation (22) is valid. 

Proof. Assume qEC01([0, co)). From (23) we have 

u(t, - k  2) = e -tk + L(x,  t)e -xk dx 

which because of the estimate (15) gives 

(27) u'(t, - k  2) = - k e  - tk - L ( t ,  t)e-tk + Lt(x, t)e -xk dx. 

The result then follows by inserting t = 0  in (27) since L(0, 0)=0 and m is defined 
by (3). 

For general qELI([0, co)) let (qn)nez+ be a sequence in C1([0, cr with IIq,~II1 < 
C < k  such that  lim.__,~ IIq-qnlll =0. Because of (14) 

/0 /0 Lt(x,O;qn)e-Xk dx-+ Lt(x,O;q)e-Xk dx, as n--+co, 

by dominated convergence. The result then follows from Lemma 3.2. [] 

4. C o n n e c t i o n  b e t w e e n  d i f fe ren t  t r a n s f o r m a t i o n  kerne l s  

In this section we give a result connecting the transformation kernels LI and 
L2 associated with two Sturm-Liouville problems and the relative transformation 
kernel .~. 
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Lemma 4.1. Assume ql, q2ELl([0, oc)). Let Li be the transformation kernel 
given by (5) associated with the problem 

-~"(x) +q,(x)u(x) = ~u(x), 

u(0) =0. 

i-----1, 2, and let f(  be the relative transformation kernel given by (4). If ( L1)t ( x, O) = 
(L2)t(x,O) in LI([0, a]) for some a>0, then h't(x,0)--0 in Ll([0, a]). 

Proof. The kernels L1, L2 and K satisfy (5) and (4), respectively, that is 

(28) sin(v~x) fro x v/~ - r ~ ) -  Li(x,t)Oi(t.~)dt. i =  1,2, 

L (29) r I) = 01(x, I )+  K(x,t)Ol(t,,X)dt. 

Denote by//2 the kernel associated with q2 given by (6), that is 

s in(v~x) sin(v'~t) 
(30) ,2(x, ~) = f f  v~ ~ g2(x,t) v~ dt. 

Combining (28) for i= 1 with (30) and interchanging the order of integration 
yields 

i; r Ll(X,t)Ol(t,)t)dt 

+ ffoXK2(x,t)(Ol(t,A)-iotLi(t,s)cbl(s.)~)ds) dt 

= Ol(x,)~)+So x (K2(x, t ) -Ll(x , t ) - i tXK2(x,S)Ll(S, t )ds)Ol( t ,A)  dt. 

Since the kernel .~ is unique we find by (29) that 

l D2(z , t )=K2(z , t ) -Ll (x , t ) -  K2(x,s)Ll(s,t)ds. 

Hence 

St x ~[t(x,t)=(K2)t(x, t)-(L1)t(x, t)+K2(x,t)Ll(t , t)-  K2(x,s)(L1)t(s,t)ds 
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for almost all (x, t )ED, and since (L1)t(x, O)=(L2)t(x, O) in L ~ ([0. a]) and L~ (0, 0)= 
O, we get 

/ ;  (31) Kt(x,O)=(K2)t(x,O)-(L2)t(x,O)- K2(x,s)(L2)t(s,O)ds 

for almost all x E [0, a]. 
On the other hand combining (28) for i=2  with (30) yields 

/o x 02(x, A) = r ~)-- L2(x, t)02(t, A) dt 

+~h�89 dt, 

and interchanging the order of integration gives 

]ix (K2(x,t)-L2(x,t)-  ft~K2(x,s)L2(s,t)ds)• 

Using the fact that  the generalized Fourier transform is unitary yields 

f" K2(x,t)-L2(x,t)- K~(x,s)L2(s,t)ds=O, 0 < t < x .  

The result is now obtained by combining this equation with (31). [] 

5. T h e  un iquenes s  t h e o r e m  

The last ingredient before we give the new proof of Theorem 1.1 is an inversion 
result for the Laplace transform, 

L e m m a  5.1. ([S]) Let f c L 1 ([0, a]) and assume that g(z)= fo f(Y)e-ZY dy sat- 
isfies the relation 

g(x)=o(e-ax(1-e)), as x-+~c. 

for all 6>0. Then f=~O. 

We are now able to prove the main theorem. 

Proof of Theorem 1.1. By Lemma 3.3 

(32) m(-k~;ql)-rn(-k2;q2) = ((L1)t(x'O)-(L2)t(x'O))e-Xk dx 

=o(e-ak/1-~)), as k--+~c, 

for all ~>0. 
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Since qeLl([0,  oo))and 12(Li)t(x,O)-q~(�89 <cle c2z by (15), we have for k>  
c2 that  

f ~  I(L1)~(x,O)-(n2)t(x,O)le -~k dx =o(e-ak(l-~)), k--+ a s  

for all c>0.  Hence (32) gives 

~oa((nl)tix, O)-(n2)t(x,O))e-~k dx=o(e-ak(1-E)), as k--+c~, 

for all s >0. By Lemma 5.1 we get 

(L1)t(x,O)-(L2)t(x,O) =0 for a.e. z 6  [0, el. 

Lemma 4.1 now yields, that  the relative transformation kernel K satisfies ~[t(x, O)= 
0 for a.e. x6[0, a]. Since K is the unique solution to (7), the function K,  in partic- 
ular, solves 

I(~ix,  t)-~[ttix, t)-iql(x)-q2it))~[ix, t) =0 ,  ix, t) e D, 
K(x,0)  =0 ,  x e [0, a], 

Kt(x ,0 )  = 0 ,  x e [0, a]. 

Since A~ C D this problem has according to Lemma 2.3 a unique solution K E C ( / ~ ) .  
Hence/~(x,  t ) - 0 ,  ( x, t)CA~. Moreover, since K has a first order derivative almost 
everywhere and 

~-~[(X,X)-~ql(x)--q2(x) for a.e. x e  [0, �89 0 =  

we have the result. V7 
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