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On a local uniqueness result for the
inverse Sturm-Liouville problem

Kim Knudsen

Abstract. A new and fairly elementary proof is given of the result by B. Simon [S], that
the potential in a Sturm-Liouville operator is determined by the asymptotics of the associated
m-function near —o0o. The proof given is based on relations between the classical transformation
operators and the m-function.

1. Introduction
In this paper we study the Sturm-Liouville operator
d2

H=-2_
dz?

+q

on L?([0,cc)) and the related Sturm-Liouville problem

d?u
(1) Hu(z)= —d—zg(x)+q(z)u(x) =Au(z), z€]0,00),
(2) u(0)=0.

We assume that g€ L!([0,00)) is real valued. Under these assumptions it is
well known (cf. [CL, p. 255, Problem 4]) that H is of limit-point type at infinity
and selfadjoint on the domain

D(H)={u€L2([0,oo))lu,u'eACbc([O,oo)), u(0)=0, —u"+que L*([0,00))}.

See [CL], [J] or [LS] for the theory of singular Sturm-Liouville problems. For a
modern treatment see [Pe].

The special solution to (1) defined by the conditions (2) and %'(0)=1 is called
the regular solution and denoted by ¢(z, A).
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Since H is of limit-point type at infinity we can for A¢o(H) define u(z. ) to
be the unique solution to (1) in L?([0, c0)) satisfying u(0, A)=1, the so-called Weyl
solution. Associated with (1) is the m-function defined by
(3) m(A;q) =u'(0,))
for A not an eigenvalue of H. Since the spectrum of H is real and bounded from
below ([LS, Theorem 3.1]) there is a constant C>0 such that the m-function is
defined for Ae C\[-C, o).

The main result of this paper is a new proof of the following uniqueness result.

Theorem 1.1. ([S]) Let q;,g2€L!([0,00)) be real potentials for two Sturm-
Liouville problems and let m, and mo be the associated m-functions. Assume there
is an a>0 such that

—ak(l—e))

m(—k%; q1) —m(—k?;q2) = o(e as k — oo,

for every €>0. Then q1(x)=q2(x) for a.e. x€ [O, %a].

As a corollary to Theorem 1.1 we recover the well-known result by [Bo)]. [{GL]
and [M] that the m-function (or equivalently the spectral measure associated with
(1) and (2)) determines the potential q.

Note that since two potentials ¢i.g2€ L} ([0.0c)) satisfying ¢, (r)=gq(z) for
a.e. €0, 3a] have associated m-functions satisfying

—ak(1-¢)) a5 k — oo,

m(—k?; q1) —m(—k*; g2) = o
for all £>0 (see [S, Theorem A.1.1]), Theorem 1.1 is valid under the less restrictive
assumption that ¢, g2€ L} ([0, 00)).

In the paper [S] a new mathematical object is introduced and by this new
formalism the result is proved. As observed in [GS2] this new object is closely
related to a certain transformation operator relating the regular solutions to dif-
ferent Sturm-Liouville problems, and the main idea in the present paper is to give
an elementary proof of Theorem 1.1 within the framework of these transformation
operators.

Recently Gesztesy and Simon [GS1] and Bennewitz [Be] have given different
new proofs, which are considerably shorter than the original proof.

The outline of the paper is the following: First we review the concept of trans-
formation operators and prove several estimates concerning these operators. Next
we derive an equation relating the Weyl solution to a particular transformation
kernel. This relation then gives a relation between the m-function and the kernel
through a kind of Laplace transform. At last we derive a relation between the dif-
ferent transformation kernels and by this relation and a uniqueness theorem for a
related hyperbolic partial differential equation with Cauchy-data we prove Theo-
rem 1.1.
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2. Transformation operators

Let g, and ¢2 be potentials and let ¢; and ¢o be the regular solutions to the
associated Sturm-Liouville problems. Then there exists a unique transformation
kernel K independent of A such that

(4) do(x, ) = ¢1(z, N+ /0 ) K(z.t)¢1(t. A) dt.

This is the Levitan-Povzner representation relating solutions to different Sturm-
Liouville problems ([Po] and [L]).

In the special case ¢;=0, the regular solution is ¢y(z. A)=sin(zvX)/vA, and
the kernel denoted by —L satisfies

sin(zvA) /"’r
5 —_—— = A)— L(x.t t.A)dt.
(5) 7 $1(z. ) | (z- )1 (t. A)
Similarly, when ¢; =0, the kernel is denoted by K and satisfies
sin(zvA) x sin(tv/A)
6 x,)\=*+/ K(x,t)——*+dt.

It is easily seen by inserting (4) in (1) and making use of the initial conditions
of ¢1 and ¢2 that the kernel K must solve the Goursat problem

ooz, )~ Rz, B+ (a1(t) — ga(@)) K (@.8) =0, (2.t} €D,
(7) 2(%:1?(1,1')=q2(a:)—q1(1), r>0.
K(x.0)=0. x>0,

where D={(z,t)eR?|0<t<z}.
The following lemma shows that the problem (7) is well posed.

Lemma 2.1. Assume q1,q2€L'([0,00)). Then (7) has a unique solution Ke

C°(D). Moreover, if q1,g2€C7([0,0)), then Ke€C+i(D) for j€Z,.
In any case we have the estimate

N (x+t)/2
R (2.1)] < / lg2(y) — 1 (9)] dy

(8) (z—t)/2 p(a+t)/2
xexp(/ / qu(r—l-s)—ql(r—s)]drds)
0 s
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for 0<t<zx.

The solution operator (ql,qQ)Hf( is a continuous map in the sense,~that if
@™, ¢{™) = (a1, a2), as n—00, in L1([0, 00)) x L1([0, 00)) then K™ (z,t)— K (z,t),
as n— oo, for (z,t)€D, uniformly on compact subsets.

Proof. The idea is to change coordinates and then formulate the problem as
a Volterra integral equation of the second kind. This equation is then solved by
iteration.
The change of variables z=£+17, t=£—n, defines the function
k(€,n)=K(E+n,€-n), 0<n<E,
which solves

2k
6—§8—n(£,n)—a(§+n,€—n)k(£,n)=0- 0<n<g,

d
%k(§,0)=f(§)» £>0,
k(§,§)=0, 6205

where a(z,t)=g¢2(z)—q,(t) and f(x)=2%(g2(x)—q:1(z)). Integration with respect to
n over the interval [0,7] and then integration with respect to & over the interval
[, €] yields the Volterra equation

£ rn 13
(9) k(€. m) = / [ ot e ot af a+ / f(u) du.
If we define the operator A on C(D) by
£
Ak(E,n) = / [ atenr €= k(e o) ' e
then the equation (9) has the form
(10) (I—A)k(&,m) = / " () du=F(& 7).

Since for c€ C(D) the inequality

oy i< sw o) 5 ([[ tarrsr-slaras)

sNs
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can be established by induction, the operator (/ — A) can be inverted by a convergent
Neumann series. The unique solution k is thus obtained from (10). Moreover, the
convergent Neumann series yields the estimate

@ weni<z(_sw_ € ) ew( [ [ iarrer—aiaras),

from which (8) follows.

The regularity of k(¢,7) and of K(z,y) is obtained from the integral equa-
tion (9).

Since both the right- and left-hand side of (10) depend continuously on g€
L*([0,00)), the solution operator is continuous in the specified sense. [

Next we study the special case of the transformation kernel L. In this case the
partial differential equation is given by

Lor(z,t)— Leg(z, t)+q(t) Lz, t) =0, (z,t)eD,
(13) 2%L(z,x)=q(x), x>0,
L(z,0)=0, z>0.
In the following lemma we exploit (8).

Lemma 2.2. Let g€ L([0,00)). Then
(14) |L(z,t)| <llqllz: exp(zllgllL:), 0<t<z.
Moreover, 2L:(2z,0)—q(x) is continuous and estimated by
(15) 12L¢(22,0)—q(x)| < llqliZ: exp(zllqllL1)
If g C4 ([0, 0)), then

(16) |Ly(z,t)| <Ce*Mler | 0<i<z,
(17) |Lu(z,t)| < Ceolaler, 0<t<q,

where the constant C may depend on q.

Proof. The problem (13) is identical to (7) with ¢;=q, ¢2=0 and K=-L.
Changing variables defines the function I(&,n)=L(£+n, £ —n) which because of
(9) solves the equation

§ 3
13) ey == [ [ ate=muieayan de+ [ ot
n n
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and because of (8) is estimated by

(19) i<z [ { wlaven( [ : otr—s)ldr ds).

Since for 0<n<¢,

/0”/: |(1(r—8)|drds=/0n/0£~3 |q(u)|duds=/:_n /Ov |q(u)|dudv§17/0€ lg(w)) du,

the estimate (19) yields

i< | ) |q<u)|duexp(n / ) du),

which implies (14) for ge L(]0, 00)).
Differentiating (18) yields a.e. that

K ! / / 1 — { — l
@) tten == [a—men)dn+ ja@ = [ atu(e ) dutga(6)
n 13 1
(21) ln(f,n)=/0 q(n—n’)l(n,n’)dn’—/ q(&' =m(¢',m) dg’ - 5.a(n)

] §—1 1
= [ atwtn.n—vydu= [ auiin-+nm) du—5a(n).

Hence l¢(€,n)—1¢(€) and 1,,(¢,n)+3q(n) are continuous functions. Since
1 r+t Tt 4+t -t
L@n)= 5(‘*5(7’ T) ”"(T’ T))

T 2x
2Lt(2x,0)—q(:c)=—2/0 Q(U)l($,$—u)du=—/0 q(3v)l(z,x—3v) dv,

we find

from which the continuity and (15) follow.
When geCE([0,0)) we also deduce

e (&, SCexp<n / ) du),
tutemi<Cenp(n [ ) )
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from which (16) follows. The estimate (17) follows similarly by differentiating (20)
and (21) once again, since

1 z+it -t z+t -t z+t -1
L“(z’t)zz(’“(T’T)*l""(T’T)'mf"(T’T))

and since ¢ and ¢’ are compactly supported. [

We now give a result about the Cauchy problem for the partial differential
equation in (7).

Lemma 2.3. Let Ap={(z,t)eR?|0<t<z, t+x<b} for b€[0,00). Let g1,¢2€
L([0,8)]), feC([0,b]), ge L' ([0,b]). Then

Koo (2, t) — Ky (2,1) +(q1(t) —ga(2)) K (2, ) =0, (z,t) € A,
K(z,0)=f(z), z€l0,b},
I?t(x,O)zg(z), z €10,b],

has a unique solution K €C(A,).

Proof. The proof follows the same lines as the proof of Lemma 2.1 (see [K] for
more details). O

3. Relation between the m-function and a transformation kernel

In this section we prove a relation between the Weyl solution and the transfor-
mation kernel L. This result leads to the connection between L and the m-function
given by

(22) m(—k%q)= —k—/ Li(z,0)e~%* dx.
0
Note that (22) can be seen as a combination of [S, equation (2.3)] and [GS2, equa-
tion (9.11)]. We give a direct proof below.
We now establish a relation between u and L when g€ C} ([0, 0)).

Lemma 3.1. Let geC}([0,00)) and let L be the transformation kernel (5).
Then for k>|iq||L1,

(23) u(t, —k?*) =e~tF ‘/x L(z,t)e %% dzx

t

is the Weyl solution to (1).
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Proof. Tt will be shown that ueL?([0,00)) and that u solves (1) as well as
u(0, —k2?)=1.

According to (14), |L(z,£)|<|lgllz+ exp(zlgllz), which implies that u(t. —k?)
is well defined by (23) for k> ||q||.:-

Since e~**€ L2([0, 00)) and

/tm”””’t)e_zkdx Tl

it follows that u(t, —k?)€ L2([0, 00)).
By Lemma 2.1 the assumption g€ C}(]0,00)) ensures that LeC?(D). Differ-
entiating (23) then yields

< e~tk=llall) e 12([0, 00)),

u'(t, —k?) = —ke L L(2, t)e_tk—/ Li(z, t)e~F dx,
t
(24) u"(t, —k?) = kZe*““+‘%L(t, t)e tk —kL(t, t)e * + Ly(t, t)e™t*

o
—/ Ltt(x,t)e_xk dl',
t

since the estimates (16) and (17) justify differentiating under the integration sign.
Since L solves (13), we have

o xX
(%) - / Ly(,t)e™" dz =~ / (Lza(z,t)+q(t)L(z,t))e~"* da,
t t
and integration by parts gives

—/ Lm(x,t)e_’”kda::LI(t,t)e"k—k/ Lz(x,t)e'””kdx
t t

o
(26) = L.(t,t)e”*—kL(t, t)e"k—kz/ L(z,t)e”"* dz.
b4
Inserting (25) and (26) in (24) gives

d > -
u”(t, —k%) = (k2+—d—tL(t, )+ Le(t, t)+ Lo (t, t))e‘”k—(k2+q(t))/ L(z,t)e " dx
t
= (kK*+q(t))u(t, —k?),

which is (1).

Moreover, u(0, —k?)=1 since L(x,0)=0. O

The above result is the main ingredient in the proof of the relation (22), but to
obtain the result for general g€ L!([0, 00)) we need the following continuity result.
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Lemma 3.2. Let ge L'([0, 00)) and suppose g, € L*([0,00)), lg—gnllz1 —0, as
n—oo0. Then m(k?;q,)—m(k?;q), as n—oo, pointwise for every k€C with Imk
sufficiently large.

Proof. For k€ C with Im k sufficiently large, the Weyl solution is given by

’LL(:L‘,]Cz) — f}(;i}cl;),

where f is the Jost solution to (1) and F is the Jost function (cf. {CS]). The result
follows since the map g f(z, k) is continuous on L!([0, o)) for fixed (z,k). O

We are now able to prove (22).
Lemma 3.3. For k>llg||L: the equation (22) is valid.

Proof. Assume geC}([0,00)). From (23) we have
u(t, —k%) = e_”°+/oo L(z,t)e % dx
t
which because of the estimate (15) gives
(27) u'(t,—k?) = —ke ™ —L(t, t)e_”“-&-/ac Le(z,t)e F da.

t

The result then follows by inserting t=0 in (27) since L(0.0)=0 and m is defined
by (3).

For general g€ L' ([0, 00)) let (gn)nez, be asequence in C§([0,00)) with ||ga |1 <
C <k such that lim, . |l¢g—gn|l1 =0. Because of (14)

/ Lt(x,();qn)e_xkdzﬁ‘/ Li(z.0;q)e*F dx, asn— oo,
0 0

by dominated convergence. The result then follows from Lemma 3.2. 0

4. Connection between different transformation kernels

In this section we give a result connecting the transformation kernels L; and

L, associated with two Sturm-Liouville problems and the relative transformation
kernel K.
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Lemma 4.1. Assume q1,q2€L([0,00)). Let L; be the transformation kernel
given by (5) associated with the problem

—u"(x)+qi(x)u(z) = Au(x).
u(0) =0,

i=1,2, and let K be the relative tmnsformatign kernel given by (4). If (L1):(z,0)=
(L2):(x,0) in L([0,a]) for some a>0, then K;(x,0)=0 in L'([0,a])-

Proof. The kernels Ly, Ly and K satisfy (5) and (4), respectively, that is

(28) ﬂ\/@qui(x,/\)—/olLi(x,t)qsi(t./\)dt, i=1,2,
(29) a2, ) = 1 (2, \) + /0 R(z,t)on(t. N dt.

Denote by K> the kernel associated with go given by (6), that is

B sin(VAx) z sin(vVAt)
(30) ol )= /O Kala. )2 o .

Combining (28) for i=1 with (30) and interchanging the order of integration
yields

P2(z, \) = 61(z, \) - /0 " L@ (e ) dt
+ /O " Ka(z.t) <¢1(t, A)— /0 t Ly(t.5)¢1(s. A) ds) dt
=p1(z, \)+ /0 ) <K2(:c,t)-L1(:r. t)— /t ’ Ky(z.s)Li(s,t) ds) o1(t, ) dt.
Since the kernel K is unique we find by (29) that
K(z,t)=Ka(z,t)—Ly(z.1)— /t ) Ka(z.s)L1(s,t) ds.

Hence

Ki(z,t) =(Ko)i(x,t) — (L) (z, 8)+ Ko (x. t) L1 {2, t)—/tx Ko(x,s){L1)e(s,t)ds
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for almost all (z,t)€ D, and since (Ly)(z,0)=(L2):(z.0) in L*([0.a]) and L;(0.0)=
0, we get

(31) Ki(x,0) = (K2)e(x,0)=(Lo)s(, 0)—/: Ko(x.5){L2):(s.0)ds

for almost all z€(0, a).
On the other hand combining (28) for i=2 with (30) yields

¢2($, /\) = ¢2($, )\)—/OI LQ(.’L’, t)(f)g(t. /\) dt

+/Ox Ka(z,t) (¢2(t7/\)*/0t La(t, s)pa(s, A) ds) dt,

and interchanging the order of integration gives
/Ow (Kg(l‘, t)— La(z, t)—/x Ky(x,8)La(s. 1) ds) d2(t. A) dt =0.
t
Using the fact that the generalized Fourier transform is unitary yields
Ky(z, t)— Loz, t)—/x Ko(x,8)La(s.t)ds=0, 0<t<u.
t

The result is now obtained by combining this equation with (31). O

5. The uniqueness theorem

The last ingredient before we give the new proof of Theorem 1.1 is an inversion
result for the Laplace transform.

Lemma 5.1. ([S]) Let feL'([0.a]) and assume that g(z):foa fly)e=*¥ dy sat-
isfies the relation

g(z)=o0(e~ =9y a5z .
for all e>0. Then f=0.
We are now able to prove the main theorem.

Proof of Theorem 1.1. By Lemma, 3.3

(32) m(-kQ;ql)—M(—kQ;qz)=/Ox((Ll)t(x-0)—(L2)t(:v-,0))€“lk dz

=o(e” 0= as k- o,

for all £>0.
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Since ge L*([0,00)) and |2(L;):(z.0)—¢: (3x)| <c1e%* by (15), we have for k>
C2 that

/ [(L1)e(z, 0)— (L2)e(x, 0)|e % dz = o(e~2¥1=9)),  as k— oo,
for all €>0. Hence (32) gives
(@0, 0)— (L), 0 da = ofe~k1-9), - as k>,
0

for all e>0. By Lemma 5.1 we get
(L1)e{z,0)—(L2)e(z,0)=0 for a.e. z€(0,a]

Lemma 4.1 now yields, that the relative transformation kernel K satisﬁeis K ¢(z,0)=
0 for a.e. z€[0,a]. Since K is the unique solution to (7), the function K, in partic-
ular, solves

Koo(z,t)— Ku(z, t)—(q1(z) —q2(t)) K (z,t) =0, (z,t)€D,
K(z,0)=0, z¢€[0,a],
Ki(2,0)=0, z€[0,a].

Since A, C D this problem has according to Lemma 2.3 a unique solution KeC(A,).
Hence K(z,t)=0, {z,t}€A,. Moreover, since K has a first order derivative almost
everywhere and

0= %I?(x,x) =q1(z)—go(z) for ae. z€0,1a],

we have the result. O
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