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On the uncertainty principle 
for M. Riesz potentials 

Dmitri B. Beliaev and Victor P. Havin(1) 

1. I n t r o d u c t i o n  

Let # be a Borel charge (real measure) in R d satisfying 

frt dl/zl(t) 
(1)  d l + l t l  d - ~  < + c ~  

for an aE(0,  d). We denote by U~ (or Us#) the M. Riesz potential of # of order a, 

(2) U~(s) = fR d~(t) u [ t - s l  d - ~ '  s E R  d. 

(Note that  U~(s )<+oc  m-a.e, in R d, where m = m d  is Lebesgue measure in Rd.) If 
# is m-absolutely continuous, i.e. #=f ro ,  then we write U 2 = U [  (or U~f).  

The following result is due to M. Riesz [10]: if (~ is not an even integer, then 
[#l and U v cannot vanish on the same nonvoid open set unless i t=0: 

(E is open, E # O ,  Itzl(E)--0, U~IE----0) ~ Iz----0. 

For d = l  this "uncertainty principle" applies to sets E c R  of positive length (not 
necessarily open) provided p = f m  and f is su]flciently smooth. To give a precise 
statement we need the following definition: a charge # in R is called small of order 

7 > 0  at the point soER if 

f(s dttLl(t---~) < +2. 
0--1.s0+l) It -s01 ~ 

(1) Research supported in part by RFFI, grant N 99-01-00720 and NSERC. 
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If 7>1  and # is small of order 7 at any point of a Borel set E, then Ip[(E)=0 (see 
[6], p. 513, for a proof), but not vice versa: ]#[(E)=0 does not imply the 7-smallness 
of # on E. 

T h e o r e m  1. (The uncertainty principle for the Riesz potentials on the line) 
Suppose E c R  is a Borel set, re (E)>0,  aE(0,  1), and # satisfies (1) with d = l .  If  
# is small of order 2 - a  at any point of E and U~[E=0, then #=0.  

(We put re=m1.) This theorem was proved in [5], see also [4], [6, pp. 516-518]. 

Coro l l a ry .  Let #, a and E be as in Theorem 1. Suppose #=f ro  in a neigh- 
borhood of E, f being a Hhlder function of order 1 - a + r  E>0. If fIE:VPa[E:O 
and m ( E ) > 0 ,  then t t=0.  

The smallness of p of order 2 - a  (instead of just I#[(E)=0) in Theorem 1 
and the H61der condition in Corollary look strange and make the impression of 
redundant technicalities due to the (possibly inadequate) method of proof. 

However, in the present paper we give a negative answer to the following ques- 
tion: is it possible to drop the Hhlder condition in the corollary, replacing it by the 
mere continuity of f? Our result is the following theorem. 

T h e o r e m  2. For any aE(0,  1) there exists a nonzero function f E C ( R )  such 
that 

(3) m ( { x :  f ( z )  = 0 } n { x  : V (x) = 0})  > 0. 

Thus the smallness condition imposed on # in Theorem 2 and the H61der con- 
dition imposed on f in its corollary are essential. Note that the M. Riesz potentials 
differ in this respect from their "limit case" (as a / ~ l ) ,  namely, from the logarithmic 
potentials U~, 

V~(s) = JR l~ - t l  dp(t) 

(we assume flti>21ogltldlp[(t)<+oc): if [tt[(E)=0, UI~[E=0, and re(E)>0,  then 
p=0.  No extra smallness of # is needed here unlike in Theorem 1. (If p = f m  and f 
is, say, continuous, then the derivative of U~ coincides with the Hilbert transform 
of f ,  and our assertion reduces to the classical boundary uniqueness theorems for 
functions analytic in the upper half-plane; for the general case see [8]). 

Theorem 2 generalizes easily to any value of d (see Section 12 below). However 
we mainly concentrate on the case d=  1. It is of special interest, since it is only 
in this case that  our result exhibits the sharpness of a uniqueness theorem (our 
Theorem 1). The validity of multidimensional analogs of Theorem 1 is an open 
question. Let us briefly discuss the most important particular case d_>2 and a= 1 
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when U~ can be extended to the ambient space R d+l (Rd =  { (s l, ..., sa, 0 ) � 9  R a+l }) 
as the Newtonian potential (with respect to R d+l) of the charge # carried by the 
hyperplane R d. From this point of view U~IRa and f become the Cauchy data  of 
the function U~ harmonic in the upper half-space R d+ 1 = { ( ( s 1,..., sa+ 1 ): Sd+ 1 > 0 }: 
f is the normal derivative OU/OSd+a of U=U[ on R d (up to a constant factor). 
Our question is now the uniqueness of the solution of the Cauchy problem for the 
Laplace equation: for which sets E c R  d do the Cauchy data  UIE and OU/Osd+l IE 
uniquely determine the harmonic function U? Bourgain and Wolff proved in [3] 
that  there exists a nonzero function UECI(Rd+IuRa),  harmonic in R d+l, and 
such that  U and grad U vanish on the same subset of R d, whose d-dimensional 
Lebesgue measure is positive. It is not known for which values of r such an example 
is possible with uCCr(Rd+IuRd);  it is an open question whether r can be 2 or 
even +0o. The one-dimensional result of this paper combined with Theorem 1 
suggests that  this question probably has a negative answer. (Note that  in fact 
the function U constructed in [3] can be written as U[ with an f eC(Rd) . )  The 
uniqueness properties of the Cauchy problem for the Laplace equation are the theme 
of [7], [6, part II, Chapter V], and of papers by Mergelyan, Landis, M. M. Lavrent'ev, 
and N. Rao quoted therein. The theme is closely related to the uniqueness problems 
for the gradients of harmonic functions, see [12], [1] and [2]. 

Our proof of Theorem 2 is an adaptation of the method of [3], a nice version of 
a "correction scheme" used in [9], [1], [2] and going back to Men'shov (see historical 
remarks in [12]). The method applies smoothly to the formal inverse of U~ (see, 
however, Remark 1 in Section 10). The case d=2 and ~ =  1 coincides in fact with the 
subject of [3]. But even in this classical case it is useful to deal with convolutions 
("potentials") in R d rather than harmonic functions in R d+l  . This point of view 
simplifies and clarifies the choice of the special functions F~ of [3], making it almost 
compulsory (this choice presented a serious difficulty in the initial version of the 
path breaking paper [12]; it was simplified in [1], but our approach makes it quite 
easy). 

Our proof of Theorem 2 yields a function f whose modulus of continuity wf 
satisfies 

03f(6) : 0(5  c/log[log6[), 5 --+ 0, 

with a positive e. We believe f can be made just  HSlder, but  the cost is a more 
complicated construction in the spirit of [12] and [2]. For the time being we prefer 
a simpler scheme of [3]. 

Acknowledgment. We are grateful to Paul Koosis who read the manuscript and 
pointed out some misprints and minor mistakes. 
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2. The  operator  Wa 

We start with some notation. We need operators D, Va and W~ defined as 
follows: 

(Dh)(s) = h'(s), 

(V~h)(s) ~ f ~ ~ t )  = - h(t) s dr, 
Ol v c  

(4) W.  = DV~ 

(the factor a -1  will be convenient in what follows). The operator V~ will be defined 
on compactly supported C~162 

dom Vo = dom Wa = C~ r (R). 

In our proof of Theorem 2 we deal with W~ rather than with Uo as defined in 
Section 1 (see (2) with d=l; we assume that  the domain of Ua is domUa={fE  
C ( R ) : p = f m  satisfies (1) for d = l } .  

L e m m a  1. The operator W~ is the right inverse of U~ in the following sense: 

(5a) 
(Sb) 

Wo (C~ (R)) C dora Ua; 

U.W.r162 for anyCeC~(R), c = c ( ~ ) r  

This fact is well known. It is a particular case of much more general inversion 
formulae for the M. Riesz potentials [11] and can be proved by the Fourier transform. 
We sketch here a direct proof. First, 

sgn x 
(6) aW~r = - D e *  ixl~ , r E dom W~, 

and 

(7) (w~r C e d o m W ~ ,  s C s u p p r  ~ = a + l ,  

whence w~(r Is]-++~, and (5a) follows. It is sufficient to prove 
(5b) for s=0.  We have 

(8) 
(U~W~r lim f N  dx 

N ~ + ~  J - N  W.(C)(x)  ixll_~ - 

1 /_~  1 sgn (x -y )  dx. 
KN(~) := ~ N I~l 1 - ~  Ix-W 

lira / R r  dy, 
N . - - + + o c  
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N y Suppose y > 0  and write KN(y) as ( f -~  + fs )+f~u. Setting x=ty we see that  the 

sum in brackets is bounded uniformly in N and y; its limit (as N--++ec) and fuy 
do not depend on y; KN is odd whence limg_~+~c KN(y)=const . sgny,  y ER.  In 
fact 

cons t=  lim K N ( 1 ) = p . v .  1 sgnx 
N - - , + ~  ~ i x _ l l X _ ,  ~ i x l o  dx 

l f o ~ 1 ( {  1 1 ) 
o~ ~ x_-i-ii_, ~ ix+l{l_~ ' dx>O. 

We conclude from (8) that  U~W~ =const  frt ~'(Y)sgny dy, and we are done. 
An advantage of W~ (compared to Us) is its homogeneity of positive order c~. 

Denote by CA the A-contraction of the argument: 

(9) (Cxr tGR, A>O. 

The identity 

(10) W~C~ = A~Cx Wo 

and the shift invariance of W~ are almost all we need for the proof of Theorem 2. 

3. General plan of the proof 
From now on aE(0 ,  1) will be fixed, and we write U and W instead of Us and 

W~. W e p u t  i = (  1 1 3, ~)" 
~C Given a small number a > 0  we are going to construct a sequence (gn)n=l in 

C ~ ( R )  and a decreasing sequence (V~)~= 1 of subsets of I such that  
(A) s u p p g ~ c 3 I ,  n = l , 2 ,  ..., and g,=-gl in 3I\I ,  gl~0 ,  g l - 0  in I; 
(B) ~n~__l l supp(g~+l -g~) l<a  (we write IAI instead of re(A)); 
(C) the sequence (fn)n~162 , where 

(11) fn = Wg~, 

converges uniformly on R to a (continuous!) function f � 9  U, and 

(12) lira (Uf~)(t) = U(f)(t), t �9 R; 
n --..4 fx~ 

(D) { � 9  n - - l , 2 ,  ..., and l i m n - ~  fv, {f~lPdm=O, where p is a positive 
number depending only on a. 
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Suppose this program has been fulfilled. Then we see from (C) and (D) that 

f]v=O, w h e r e V = N  Vn, ]Yl_>l-a.  
n = l  

Now, by Lemma 1, cg,~=Ufn (where c is the constant from (5b)), and by (C), 
l i m , ~  cg,~=Uf pointwise on R, whence by (A) 

U f -  0 on I \  5 supp(gn+l-gn), 
~q=l 

i.e. on a part of I of length at least 1 - a  (see (B)). Hence 

1 [ { x : f ( x ) - - 0 } N ( x : U f ( x ) = 0 } [ > l - 2 a > 0  if o n l y a < 3 .  

Note that f~0 ,  since Uf=limn-+~ gr~-gl on 31\I (by (A)). 

4. S o m e  i n t e g r a l  m e a n s  

In the process of constructing (gn)n~=l and (Vn)~=l the size of various functions 
appearing underway will often be measured by their integral means. We call 

MQ(h)= ~ Ihl p 

the integral mean of order p of hEC(R) over the interval Q (p does not figure in 
the notation, since our pE(0, 1) will remain fixed). Note that k[Q(h)=h(c) for a 
ceQ, whence for any L,>0, 

(13) sup JhJ _< ]tlQ(h)+oscQ h, 
Q 

where oscq h=sup{Ih(t )-h(u)l:t, ueQ}. And 

(14) 

We will use the inequality 

IQI = MQ(h)p [hlP dm" 

MQ(h+k) p <<_ MQ(h)P + MQ(k) p. 
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5. P a r a m e t e r s  def in ing  the  construction.  The operator h~-+hQ 

Our inductive procedure should be preceded by a choice of the following pa- 
rameters: the positive numbers A, B (big), A and p (small), and three sequences of 

positive numb ers ~--= ( ~ n) n~-_ 1, ~= ( 5n ) n~= 1, ~ = ( Kn ) ~= 1" 
The parameters could be explicitly defined just now, but to make their choice 

natural and understandable we postpone the definitions to the moments when they 
will be really needed and thus explained. We only mention here that  g, ~" and K - i  
are infinitesimals, ~- i  and K~ growing not too fast (as some powers of n); 1/Sn 
will be positive integers, 1/5n+1 being a multiple of 1/Sn. These numbers will be 
defined inductively (with (I1--1). We denote by Hn a family of 1/5~ disjoint open 
subintervals of I of length (~n each. Every Q�9 is contained in a unique Q* �9  
Let h be a function defined on R. For a positive e and an interval Q we put 

[ t-cQ 
(15) h~=!C1/~h, hQ( t )=h~ [ - -~ ) ,  tER ,  

cQ denotes the center of Q. "The gauge parameter" A (to be chosen later, but 
fixed throughout the proof) is incorporated into the definition of hQ, but we do not 
include it in the notation. Note an obvious (but important) identity 

(16) Mq(hQ) = U),-,l(h). 

6. The sequences (gn), (Vn): description of  the recursive process 

We start with VI=I and a nonzero glEC~C(R) with the support in 3I\I .  At 
the n-th step we will have constructed gnEC~(R) and a family GncHn of "good" 
intervals of length 5n. The set V~ =[JQeG. Q is supposed to satisfy 

(17~) Jvn Ifn]p dm< APq up, q = (1-B)~) 1/2p < 1 

(we assume G1 =H1 ={I}) .  We define 

(18) G,~+I = {Q E H~+I : q c Q* �9 G~ and MQ(fn) <_ gn+lqn}.  

Clearly V~+ICVn. Suppose QEHn+I\Gn+I, Q c V  n. Then by (14) and (18), [QI<_ 
K~_~lq-nPfQ ]f,]P dm. Summing over all these Q's and using (17~) we see that  

Ap n n+l 
(19) IV \V +ll< 7- and Ix\v +ll<_ _,lVk\Vk+ll<AP  1 - -  _ p ' 

Kn+l k=l k=l Kn+l 
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Figure 1. 

SO that  II\V.+ll is small whenever ~-'~k~__l K~ -p is small, and Gn+l~0 .  To define ~" 
put 81 =1, and assuming f .  has already been defined, find a positive ~n+l satisfying 

(20) Wfn(hn+l)< Oqn n = l . 2  . . . . .  
Kn+l ' 

where a;i~ is the modulus of continuity of f , .  The small constant 0 depending only 
on A and B will be gradually specified in the process of proof. Note that  by (20) 

(20') oscQ fn < Oq----~n Q E H,+I ,  n = 1, 2, . . . .  
Kn+l 

Now we are ready to define g.+l and get (17.+1). We subtract a correcting term 
rn from gn 

gn+l -~ gn --rn, 

SO as to make the means MQ(fn+l), QEGn+I, small, whereas Isuppgn+lNI I in- 
creases only slightly compared with Isupp g.  NI I. To define r~ first choose a mollifier 
CeC~(R) with s u p p r  and f r tCdm=l  and put 

(21) r~= ~ (A~n+,)of.(cQ)0~,,Q 
QEG~+I 

(r162 see (15)), so that  

(22) f n + , = f . - W ( r n ) = f n -  ~ fn(cQ)F[o ~n]. F[~]=WCe 
QEG,, + I 

(we have used the homogeneity of W, see (10)). Thus r .  and W~ are linear combina- 

tions of the building blocks r and F~  "], respectively. We have tried to visualize 

them (very approximately) in Figure 1. It is interesting to note that  F H  tends to 
Ixl -;~, as e".~0, (i.e. to the dotted graph in the left picture), but very reluctantly, 
diving deep under the x-axis at the origin. This fact does not prevent F H  from 
being close to Ixl -z  in every LP(-N,  N) with p<l /3 .  
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- 1  Now, s u p p r ,  is contained in the union of at most 5,+ 1 intervals of length 
Ae,Sn+l each, and 

(23) I supp g ,+;  N I I < I supp g ,  ;311 + en 

(we assume A<I) .  Applying (13) and (20) to h=f ,  we get 

(24) Ifn(cQ) I < 2K~+lq ~, Q E G,+I ,  

(we assume 0<�89 and K , + I > I ) .  

7. Deduct ion  of  (17n+1) from (17n): some philosophy 

Our main concern is to pass from (17,~) to (17n+1) (by a proper choice of 
5n+1)- We have to compare f,~+l with f,~, which satisfies (17n). First note that 
FM(t)-e-~F[1](t/e) (see (22) and (10)), and by (7), F [1] is a bounded function 
satisfying IF[1](t)i<citl -~, tER ,  c=c(O,(~). Hence 

,F[~l(t)l<Cmin{ lz,  l ~ }  , t # O ,  

(25) sup IF[Q~] I < c 
R - -  el3' 

IFL4 (t~, < c(A(~-+,) ~ (4 ~ :'-- [t_cQlZ ' t~Q, QEH,~+,, 1 3 = a + l .  

The last estimate means that F ~  ] is "almost concentrated" on Q decaying fast 
enough as its argument moves away from Q. This observation suggests that on a 
QEGn+I, 

(26) fn+l ~ fn -fn(cQ)F~ ]. 

The error of this approximation (to be measured in the "weak" LP-metric with a 
pE (0, 1)) is likely to be small, since the contributions of intervals Q' E G,+I  \{Q} to 
rn (i.e. "the tails" of f,~(cQ)F~? ]) are negligible on Q (see Lemma 3 below). The 
right-hand side in (26) is 

(fn - fn(cQ) )+ fn(CQ)(1 - F~"]).  

The first bracket can be made arbitrarily (and uniformly) small on Q if 5n+1 = ]QI is 
small enough. The LP-estimate of the second bracket is the heart of the construction 
(as in [3], [12], [1] and [2]). It turns out that for any interval Q, 

(27) MQ(1-F~ 1) < q2 
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for a constant B=B(a)  and all A<A(a),  r162  (see Lemma 2 below). So sub- 
tracting F~  ] from 1 reduces the mean MQ(1)=I by a factor q2 strictly less than 1. 

Thus F~  1 acts as if it were the characteristic function Xr of a large portion Q of Q, 
although it is very different from any X~). 

8. Main lemma: a generalization of  (27) 

We may replace 1 in (27) by any constant h just multiplying F~  ] and q2 by h. 
This version of (27) can be generalized even to a function h provided OSCQ h~ ]h(cQ)] 
is majorized by a small constant. 

L e m m a  2. There exist positive numbers )~((~), p=p(e~)E(O, 1/~), and B= 
B((~) such that A(c0B< 1 and for any AE (0, A((~)) and cE (0, ~(A)), 

(28) MQ(h-h(cQ)F[Q ~]) <_ q~lh(cQ)l, q-- (1-B)~) 1/2p, 

for any bounded interval Q and hEC(Q) satisfying 

(29) OSCQ h ~_ (AB)'/PIh(cQ)I. 

This is a quantitative property of the functions F [~1 (or rather of the function 
F [1] depending only on r see Section 7). The proof is based on some quite concrete 
preliminary computations. 

Proof. Put F[~ F [~1 is now defined for any nonnegative ~, and 

c 
(30) ~--,olimF[Q~l(t)=F[~ [F[~l(t)]<_ ~-~, t # 0 ,  ~>0,_ 

(the equality follows from (7) with r162 and the inequality from (25)). Put  

J(p) = .]((I 1 - F  [~ p -  1) din, 

(31) J(p,A,s)=f_li(il-F[~llP-1)dm,_.. A>0,  r  

L = / R  l~ 1-F[~ 

All integrals are finite, since p ~ < l  and the integrals are majorized by citi-vz 
if I t] is small and by citI -~ if [t I is large, see (25). Now, 

lim J(p) = L (32) p%0 p 
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((aP-1)/p is monotone in p for any a>0 and tends to loga as p",~0). But L is 
negative: 

1 f l  1-x~ d x + f  ~n----J0 i o g - - - - ~  j l " l ~  

=-3~ollogxdx-4-~ollog(1-x~)dxA-/l~clog(1--j)dx 
 1/01 

= 3 -  E -k x ~k dx-  -k x~k 
k=l k=l 

= 3 _ E  23 = r cot ~ <0, 
k=l k2~2 - 1 

s ince/~=l+aE(1,2) .  By (32), J (p)<0 if p<l/3 is small enough (depending only 
on a). From now on p is supposed to be fixed and satisfy this condition. For any 
A>O, 

(33) lira J(p, .X, r = J(p, )~, O) 
r 

by (30) and the dominated convergence theorem. Clearly lim~-~o J(p,)~,O)=J(p) 
whence J(p,$,O)<�89 for $<$(a) ,  and by (33), 

(34) J(p,A,e) < �89 )re (0, A(c0), e e  (0,e(c0). 

Now we are ready to prove (28) (if (29) is fulfilled). Raising the left part of (28) to 
the power p we get 

x : =  MQ(h-h(cQ)F  J)P < MQ(h-h(cQ))P+Ih(eQ)I'MQ(1-F  I)  
< (OSCQ h)P+lh(cQ)lPMx-,I(1-F[~]) p 

(we have used (16)). It is easy to see that M~-I I (1 -  F [e])p = 1 +AJ(p, )~, ~). We may 
assume h(CQ)#0 (otherwise OSCQ h=0 by (29)). Put B=�88 and continue: if 
Ae(0, A(cr)) and ce(0, e(c0) , then, by (34), 

X < [h(cQ)IP(I + ( ~ h )P+ AJ(p,A,r 
Ih(co)l 

< Ih(cq)lP ( I + A ~  +A-~)= [h (CQ) IP ( I - -BA) ,  

and we get (28). 

Remark. The integral J(p) is computed explicitly in [1] for any p in (0, 1/fl). 
We prefer our easy reduction to L, since we need only one p making J(p) negative. 
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9. Just i f icat ion of  (26) 

Here we estimate (following [3]) the contribution of "the tails" of fn(cQ')F~, "] 
to W(r~) on a QEG~+I where Q'EG~+I(Q):=Gn+I\{Q}. Put  

TnQ+l=W(rn)-fn(cQ)Fg n]= E fn(CQ')gg 21" 
Q ' E G n + I ( Q )  

L e m m a  3. For tEQ and QEG,+I, 

(35) IT~+~ (t)l <_ c(~)A~(IA(cQ)l +3q ~) 

provided (20) is fulfilled. 
Proof. Recall the elementary fact that if OEC([0, +oo)) is nonnegative and 

decreasing, then 

~0 § (a6) ~ ~(j) < ~(0)+ ~(t) dr. 
j=0 

For a Q>0 we denote by G+(Q) (G- (Q)) the set of all Q'EGn+I(Q) lying to the right 
(to the left) of Q and satisfying dist(cQ,, Q)~Q. Put  

+ -- +d-(7~. (7 0 
Q ' E G •  

Using (25) we get 
(~n+l 

~(t) < c ~ + ,  ~ (cQ,-t)~" 
Q'EG+(O)  

+ oc (~ �9 Let Q* be the first (i.e. the closest to Q) element of G o . The last sum is ~j=o (3), 
where r + S n + l x - t )  z, whence by (36), 

0.+ < e/~Sn~+l ( (~n+l + f+::x: du ) 
\(co" - t ) z  Jo ((ce'- t)+u) ~ 

1 (we have used the estimates CQ.-t>_56n+l and CQ.--t>Q). A similar estimate 
holds for a~ (t), and 
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Now, for any M>O and tEQ, 

IT'?+l(t)l <-- E 
Q'EG(ltlS~+I) 

If,~(CQ')l IF~,~+'] (t)l 

235 

+ ~ If.(eQ,)l Ig~,"+ll(t)l �9 
Q'EG,,+I(Q)\G(M6n+I ) 

From (37) and (24) we conclude that 

2c(a)K,~+lqn)~ ~ 
E Ifn(cQ,)[ [F~,~ _< 2K,~+lqno'M~.+, <_ 

M 
Q'EG(~ISn+I ) 

(we have used the obvious estimate dist(cQ,, Q) 1 t _>~5.+1, O cGn+l(O)). 
Q'EG,,+I(Q)\G(MSn+I), then [CQ-CQ,[<_(M+l)~n+l and if M>2,  

[f,~(CQ,) -fn(cQ)[ < wi. ( (M+ 1)5,~+1) < (Al+2)wf~ ((~.+1) <_ 2Mwl,~ (5n+1), 

so that [fn(cQ,)[ < [fn(cQ)l+2Mwy" (5n+1). We get (again by (37)) 

Ifn(cQ, )l IF~,n+~](t)l _< c(c02'~A~[If,~(eQ)l+ 2M~I,, (~n+l)] 
Q'~C,~+x(O)\C(Ma~+~) 

and thus for any M>2,  

ITQ+I(t)I < 2c(a)A z (If~(cQ)l+2Mwy ((~n-t-1)-'I- K~+lqn 
- o 3 - /  ] 

Now recall that wy, (Sn+1)<_Knllq n, see (20). Choosing M=K,~+I we get (35). 

Remark. Suppose t E R \  V~+I. Then 

If~+~(t)-f~(t)l <_2Kn+lq ~ ~ ]F~l(t)l <c(~)A~K.+xq ~, 
QEG.+I 

since the sum can be estimated as in (37) and dist(t, cQ)> 1 
_ ~5n+1 for any QEG,~+I. 

If tEQ and QcGn+I, then by (25) and (35), 

If~+l(t)-A(t)t < If,~(cQ)l IF~"I(t)I+IT~+ll < c(~)K~+lq~AZ 
_ _ C ~ n  

Now, if 
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10. D e d u c t i o n  o f  (17n+1) f r o m  (17n):  t h e  proof 

Now we realize the vague program sketched in Section 7. Assume (17,) and 
show that (20) entails (17n+1) if the parameters A, O=O(A,B) and A have been 
defined properly. 

l Divide G~+I into two parts Gn+ 1 and G~+ 1 on which fn is "large" or "small" 
compared with qn, 

l G~+, = {Q ~ c~+1: If~(cQ)l >_ q"}, a~+, = a .+ l  \G~+I. 

(a) Estimate of MQ(f~+I) for l QEGn+I. We prove 

(38) -MQ(fn+t) <_ ql"25MQ(fn). 

It is at this stage that we make the final choice of A. For z QEGn+ 1 put PQ+I = 
fn- fn(CQ)F;  en] so that 

f n + I = P2+ I + TQ+ I = P + T 

for short. The function P is the principal term of this decomposition off an excep- 
tional part of Q. In fact P is quite small on a "bad" part Qb of Q where F ~ " ] ~ I  

(recall that  F~n]=l at some points (see Figure 1)). We define 

Qb={teQ:lF~nl(t)-ll<)~"/2}, Qg=Q\Qb.  

Luckily [Qbl/[Q[ can be made small if A is small, so that the bad part Qb contributes 
very little to MQ(f~). To see this, note that for #E(0,  1), 

R ~ : =  {t: IF [~] ( t ) -  11 < #} C {t: [F [~ ( t ) -  1[ < 2#} U{t: IF [~] ( t ) - F  [~ (t)[ > #}. 

But  

]{ t : ]F i~  < 2#} 1 _<Cl(a), and ]{ t : ]FM(t) -F[~ >#}]  < 1  

if r #) (since fI [ F[~ - F M  [p dm+fR\ l  [F[~ I dm-+O, as r see (30)). 

Hence [R~[<C(a) for r  For #=A ~/2, 

and 

(39) 

Qb c { t :  I F ~ ] ( t ) -  11 < ~} -- AIQIRy§ 

IQbl < C(a)~lQI 
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(we assume ~n <c(~,  #), n = l ,  2, ...). We need the estimate 

(40) oscQ f .  < OIf.(cQ)l, Q ~ t en+l, 

implied by (20), (20') and the definition of G l For ,+1. QEGn+I and tEQg we have 
(41) 

o:/2 1 o:/2 1 o:/2 ]P(t)]>lf.(cQ)l]l-F~l(t)l-OSCQf,~>tf.(CQ)l(A_ - ~ A  ) =  ~lf.(cQ)lA 

if O<�89 0:/2, and, by (35), 

(42) ]f"+l(t)]='P(t)' l+~ l<- 'P( t ) ' (1H c(~)'~['f"(CQ)]+3qn]�89 0:/2 ) 

<_ IP( t )l( l +c' ( a ))d+o:/2), 

since the square bracket is <_4If,(CQ) t. So far we stayed in Qg. If tEQb and O<A, 
then 

I A+I (t)l p < I P(t)l p+ [T(t) l p 

(43) -< IF (eQ) I'~ o:p/2 + (oscQ I.)P + 4 p I f .  (cQ) IPc(~)P~ ~ 
<_ e'(a)lf~(cQ)lPA ~p, 

where "y is a positive number. Combining (41) and (43) we obtain (for any QEG~+ 1) 

Y : =  fQ 'fn+lIPdm= f 'f"+llPdrn+/Qb 'f"+llPdm 
JQa 

< (t-t-ct'(oz))t 1+o:/2) fQ IPIP dm+c'(a)vl.f.(co)lVA'YVlQbl. 

Now, fQ IPIPdm can be estimated using (28) (with f .  as h) provided OP<AB 
(see (29) with h=f., and (20')). 

Taking (39) into account we get 

Y < (I+c"(a)AI+O:I2)Plfn(cQ)[Pq2PIQI+c'(a)PIf,(cQ)IPA~PAIQ I 
< q2p]A(CQ)F]QI(I+f(a)AI+~) 

for a ~>0 (we assume A < I B ,  so that  q-2P=(1-BA)-I<2; we have also used 
(l+c"(c~)Al+o:/2)p<l+pc"(c~))~l+o:/2). By (13) and (40), 

(1-O)lf~(cQ) ] < iQ( f . ) ,  
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whence [f~ (CQ)I <~ q-0"5 I~IQ (fn) if 0 is small, and 

(44) -]tiQ(fn+l) = ~ [q l  ] <- ql'51~lQ(fn)(l§176 

The last bracket in (44) is 1+O(A1+~), whereas q-~176 
o(,X), as A'N0 (c=0.125B/p). Hence the last bracket in (44) is less than q-0.25 if 
A<A(a), and we get (38). 

Remark. In the proof of (38) we have deviated from [3] where no distinction is 
made between the "bad" and "good" zones Qb and Qg" We were unable to follow 
the argument on p. 258 of that  beautiful paper. 

(b) Suppose QEG~+ 1. Then on Q, 

I f~+: l  p = If,(eQ)(1-F;:"l)+(f,--f,(eQ))+T,Q+ltP 

< q~P[1 - F~"][P + (oscQ f , )P + c(a)PAZV4Pq "p 

< q"p(I 1 - F ~  ~ IP+5) 

(we have used the estimates c(a)A~<l ,  lf,,(CQ)l<q" and OSCQf,<qn). Hence 
by (27), 

(45) fQ [f,~+l[ p dm< q"P(q2P+5)IQI < 6q"PIQI, Q E GSn+l �9 

At last, using (38), (45), and (17n) we get 

fVn 'fnq-llPdm: y~ /Q "r~q-xlPdm§ ~ /Q "nq-llPdm 
+: QEG~ +: QE .+1 

< q1.25p E [ _  ]f'lP dm+6q'P 
QeGI.+I J td 

<_ ql.25pAPqnP§ = APq(n+l)p(q~247 < APq( n+l)p, 

if A is sufficiently big (depending on q, i.e. on h. B and p). Thus we have proved 
(:7~+:). 

Remark. Let us review the order of choice of our parameters. We first choose 
p=p(a) (as in Section 8, see the estimate following (32)) thus fixing B=�88 
Our next step is to choose A (see Section 8 and the end of the proof of (38)) and thus 
determine q (see (17~)) and 0. Then we choose A so as to make q~ 
not forgetting fl  ]fl[P dm<Aq to start the process. We have yet to specify g'and K.  
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11. Final  s teps  

Let us go back to our general plan (Section 3). Part (A) is fulfilled. Now, 
supp(gn+l -gn )  C UOeHn (cO ~-Cn(~nI) and card H~ = 1/6,, so that  ]supp(gn+l -g~)[_< 
5~r and we need only 

~ n  ~0" 
n+l 

to get (B). We prove (C). By the remark at the end of Section 9, 

lfn+l--fnl _ <  - -  

cKn+ ] qn 

d 

whereas Kn+lCn~:O(n A) for a positive A. The series 

fl-[- ~"~(fn-l-I-- fn) 
n=l 

converges uniformly on R to an f E C ( R ) ,  f = l i m . ~ r  fn- Now, 

QCGn+I 

2K~+lq ~ max Ir 

En 

the supports of 0eQ's being disjoint. Hence (gn)n~_--i converges uniformly on R, 
and suppgnC3I, n=l, 2, .... From the identity f~=Ugn we conclude that  Ifn(t)l+ 
If(t)}<constltl -~ for [tl>4 so that  f E d o m U  and for any t 

I f ~ ( s ) l  c c 
ls_ttl------ ~ < t s t l + o l ~ t l _ ~  - s2  

if Isl>21t h H > 4 ,  n = l ,  2, .... This estimate justifies the passage to the limit in the 
integrals fR fn(s ) l t - s l l -~ds  as n--+c~, and we get (12). And, at last, (D) follows 
from (17n) and (19) if 

Ap ~ 1 ---p--- < a. 
= gn+l 

To finish the proof let us specify g'=(cn-~)~_l and K=(n~/c)~_l, where "~>l/p 
and c is sufficiently small. 
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12. C o n c l u d i n g  r e m a r k s  

(a) Here we sketch an estimate of wf. First DF[Qd=5~lt~-~-I(DF[1])Q, QE 
H~+I, and DF[1](t)=O(Itl-~-l), it]-+~c, whence 

c c5~+1 
'DF[Q~l(t)l ~-min{ sn~+l ' lt_cQ[~+l }" 

As in Section 9 we deduce [(TQ+l)ri~_CKn+lqn/5.+l on QEG.+I, and 

](fn+l--f.)q <If.(CQ)I I ~] Q ' CKn+lq n CKn+ lqn < CK.+tq" 
- IFQ ]+I(T~+I) I--~ ( i n+ lC n  ~+1  J[- ( in+ l  --  ( i n + l E n  ~+1 

on Q and actually everywhere (see the remark at the end of Section 9). Hence 

(46) max If',+11 < max If'[-~ C'K"+lqn 
- -  s  x �9 

n U n + l  

P u t  (~n+l --1 n =OKn+,q /maxlf~l to satisfy (20). By (46) 

( KS, 
maxl f ' ,+ l [<  _ l + ~ + ~ ] m a x l f ' l < - n C m a x l f & l '  n = 1 , 2 , . . . ,  

so that  max I f ' l  --- (n!)c max I f~ I < nr n, n_> 2. Now take a small 5 > 0 and suppose 
It'-t"l<_(i. Then 

I f ( t ' ) -  f(t")l <_ 5 m a x  I L I + ~ - - "  ~ Ifk+x (t)-- fk(t)l <--nc'"5+q'~, 
k = n  

where 0<ql  <1. Choose n so as to make n~XnS=ql ', i.e. 

_n n _ 1 1 1 / c ~  
log logu r = q l  �9 r r clr 0 

If x log x=y and y is large, then x~y/log y. Thus n.~c~ log(1/6)/log log(1/(i) as (i~,~ 
0, and If(t')-f(t")I <_c3 exp(c4 log(f/log [log(i]), c3, c4 >0. To get rid of the double 
logarithm in this exponent (that is to get a H51der f )  would require an essential 
change in the construction. 

On the other hand it is not hard to see that  UfEC ~. This can be shown by 
simple estimates of the H61der norms IIUf~tt~ using the uniform boundedness and 
decay of f~'s at infinity. But we also can deduce this result from the inequalities 

IIg.+l-g.ll~ <_2K.+,q"~(i~.+l ~ II4'~,,QII,~, 
Q E G n + I  

s  l A 
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and 

dist(suppr Q' ~Q", 

whence Ilgn+l-gnll=O(q'~) for a qlE(0, 1). 

(b) Theorem 2 generalizes easily to the M. Riesz potentials in R d for c~E (0, d): 
there is a nonzero function f e d o r a  Us such that md( {x: f(x) =Usf(X)--O} ) >0. The 
construction is quite similar to the case d=  1. The role of I is played by the cube 
of side one centered at the origin, and Hn is now the set of equal subcubes of 
I of volumes 54. We only have to write down Ws, "the inverse" of Us, a well- 
known operator (see [11]) which we heuristically describe here for the convenience 
of the reader. Denote by 9 r the Fourier transform in R d. Clearly ~'(U~h)(~)= 
cJZ(h)(~)/l~l ~, whence 

(47) 3r(Wsh)(()=cl(lsJZ(h)((), hEC~(Rd), ~ E R  d. 

If d is even, d=2m, then writing I~lo=](ldl(p -d gives 

(48) W~(h)=AmUd_~. 

If d = 2 m + l ,  then Wo can be written using the Riesz transform (multiplication by 
the vector ~/1~1 in the Fourier coordinates), A and div. But we prefer a simpler 
formula. Note that  even a ' s  are of no interest for us, since Akf and U2kAkf=cf 
both vanish on the interior of {x:f(x)=O}, feC~(R~), k = l ,  2, ... ,m. Suppose k 
is an integer, 0 < k < m ,  and 2k<a<2k+2. Then I~r:l~12k+2/l~l 2k+2-c*, and (47) 
gives 

(48 r) B~ = cAk+lUd_(2k+2_s). 

We need Ws only on C~C(Rd), but let us heuristically try the sign of 

L = / R u  log Ii-cWshl drag. 

From (48) and (48') we easily conclude that  (with a due c and positive C) 

L= /Ra lOg'l-,x,-(d+~) . dx =C fo~ lOg,l-r-(d+S)' dr d 

= C 9~0 ~ log]l --u--(dwa)/d I du, 
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and l< (d+cz ) /d<2 .  Applying the computat ion from the proof of Lemma 2 we see 
tha t  L < 0 .  Therefore 

J(p) = / R ( I I - c W ~ 5 1  p -  1) dmd < 0 

if p > 0  is small. Now we spread the point mass (f slightly, replacing it by a r and 
get 

/ R  ( l l -F i C l l P -1 )dr nd< O,  F[~I=WCE, 0 < ~ < ~ ( ( ~ ) .  

Recall tha t  J(p) is computed in [1]. 
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