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On the number of bound states for SchrSdinger 
operators with operator-valued potentials 

Dirk Hundertmark 

A b s t r a c t .  Cwikel's bound is extended to an operator-valued setting. One application of this 
result is a semi-classical bound for the number of negative bound states for SchrSdinger operators 
with operator-valued potentials. We recover Cwikel's bound for the Lieb-Thirring constant Lo,3 
which is far worse than the best available by Lieb (for scalar potentials). However, it leads to 
a uniform bound (in the dimension d>3) for the quotient Lo,d/L~l,d, where L~ia is the so-called 
classical constant. This gives some improvement in large dimensions. 

1. I n t r o d u c t i o n  

The Lieb Thirring inequalities bound certain moments of the negative eigen- 
values of a one-particle SchrSdinger operator by the corresponding classical phase 
space moment. More precisely, for "nice enough" potentials one has 

(1) trc~cR~)(-• ~_ <_ ~ ~ (~2+v(~))~ az~. 

Here and in the following, (x)_ : i E(Ixl-x) is the negative part of a real number or 

a selfadjoint operator. Doing the ~ integration explicitly with the help of scaling, 

the above inequality is equivalent to its more often used form 

(2) trL2(Rd)(--A+V) 7 _ <_L%d ~ ~ j _  a x ,  

C L d with the classical where the Lieb Thirring constant LT,d is given by LT,d = 7,d 7,d 
Lieb Thirring constant 

(3) c~ i /R 
L.r, d _ (2~) d a( 1_p2)~+ dp.  
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This integral is, of course, explicitly given by a quotient of Gamma functions, but 
we will have no need for this. The Lieb Thirring inequalities are valid as soon as 
the potential V is in L "~+d/2 (Rd). 

These inequalities are important  tools in the spectral theory of Schr6dinger 
operators and they are known to hold if and only if 7 >  �89 if d = l ,  7>0 ,  if d=2,  and 
7>0 ,  if d>3.  The bound for the critical case 7=0 ,  that  is, the bound for the number 
of negative eigenvalues of a Schr6dinger operator in three or more dimensions is the 
celebrated Cwikel Lieb Rozenblum bound [6], [17], [26]. Later, different proofs for 
this were given by Conlon and Li and Yau [5], [16]. The remaining case 7 = !  in 2 
d=  1 was settled in [32]. The well-known Weyl asymptotic formula 

lim t r ( -A+ /~V)~  = L~l,d [ V(x)~ +d/2 dx 
/~ ~ cx:~ J R  d 

immediately gives the lower bound C~,d > 1. There are certain refined lower bounds 
[21], [9] for small values o f% In particulm', one always has C.~,d>l for 7<1;  see [9]. 
In one dimension this even happens for 7 <  3, and in two dimensions, one always 
has C L2>I  [21]. 

Depending on the dimension there are certain conjectures for the optimal value 
of the constants in these inequalities [20], [21]. One part of the conjectures on the 
Lieb Thirring constants is that,  indeed, C~,d=l for d>3  and moments 7 > 1. For the 
physically most important case 7 = 1, d=  3 this would imply, via a duality argument, 
that the kinetic energy of fermions is bounded below by the Thomas Fermi ansatz 
for the kinetic energy, which in turn has certain consequences for the energy of large 
quantum Coulomb systems [17], [20]. 

Laptev and Weidl [14] realized that an, at first glance, purely technical ex- 
tension of the Lieb-Thirring inequality from scalar to operator-valued potentials 
already suggested in [12] is a key in proving at least a part of the Lieb Thirring 
conjecture. It allowed them to show that Cv,d=l for all d E N  as long as 7_> 3. To 
prove this they considered Schr6dinger operators of the form --A| on the 
Hilbert space L2(R d, g), where V now is an operator-valued potential with values 
V(x) in the set of bounded self-adjoint operators on the auxiliary Hilbert space g. 
In this case the Lieb-Thirring inequalities (1) and (2) are modified to 

(4) trL2(Rd,g)(--A| <_ ~ JR d ./Rdtrg(p2+g(X))~ dzdp, 

or, again doing the ~ integral explicitly with the help of the spectral theorem and 
scaling, 

(5) trL2(aa,g ) ( - A @ l g  +V)  ~ < L%d JRfd trg (V(x)2 +d/2) dx. 
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Here we abused the notat ion slightly in using the same symbol for the constants as 
in the scalar case. But in the following, we will only consider the operator-valued 
case anyway. Laptev and Weidl realized that  this extension of the Lieb-Thirr ing 
inequality gives rise to the possibility of an inductive proof for C3/2,d=1 as long as 
one has the a priori information C3/2,1 =1 for operator-valued potentials. This idea 
together with ideas in [11] was then later used in [10] to prove improved bounds on 

1 3. C~,d in the range ~ < 7 <  ~, in particular, it was shown that  Cl,d--<2 uniformly in 
dEN.  

Unlike the scalar case, however, the range of parameters  7 and d for which (4), 
or equivalently (5), holds is not known. The results in [10] only show that  these 
inequalities are true for 7_> 1 and all d c N .  This shortcoming has to do with the 
way the Lieb-Thirr ing estimates are proven for operator-valued potentials: First, 
the estimate is shown to hold in one dimension. Then a suitable induction proof, 
using the one-dimensional result, is set up to prove the full result in all dimensions. 
This turns out to give good estimates for the coefficients Cv,d in the Lieb-Thirr ing 
inequality, for example, they are independent of the dimension. However, moments  

1 below ~ cannot be addressed with this method, since the a priori estimate fails 
already for scalar potentials. 

This led Ari Laptev [13], see also [15], to ask the question whether, in par- 
ticular, the Cwikel Lieb-Rozenblum estimate holds for SchrSdinger operators with 
operator-valued potentials. In this note we answer his question affirmatively, that  
is, the Lieb Thirring inequalities for operator-valued potentials are shown to hold 
also for 7 = 0  as long as d_>3 and then, by a monotonicity argument also for all 7>0 .  
More precisely, we want to show that  Cwikel's proof of the Cwike~Lieb-Rozenblum 
bound can be adapted to the operator-valued setting. However, the bound for Co,d 
is far from being optimal since we use Cwikel's approach. But, nevertheless, rea- 
soning similarly to Laptev and Weidl, any a priori bound on Co,3 implies the bound 
Co,d-<Co,a for d_>3, thus giving a uniform bound in the dimension, whereas the 
best available bound in the scalar case due to Lieb [17] grows like x / ~ ,  see [21]. 

2. S t a t e m e n t  o f  t h e  r e s u l t s  

Let ~ be a (separable) Hilbert space with norm I1" IIg, scalar product  ( . , . ) g ,  
and let l g  be the identity operator on ~. We follow the convention that  scalar 

products are linear in the second component.  Furthermore, B(~) is the Banach 

space of bounded operators equipped with the operator norm II " I1~(~> and/~(G) the 
(separable) ideal of the compact  operators on G. For a compact  operator  AC~(~ ) ,  
the singular values #,~(A), n C N ,  are the eigenvalues of IAI :=(A'A) 1/2 arranged in 
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decreasing order counting multiplicity, A* is the adjoint of A. We let S q ( ~ )  denote 
the ideal of compact operators AC/C(G) whose singular values are q-summable, 
that  is, ~ n e N  #n(A) q<~ In particular, SI(G) and 82(~) are the trace class and 
Hilbert Schmidt operators on G. We will often write B, /C, and 8q if there is no 
ambiguity. Of course, AE8 q if and only if trG(lAIq)=tr6((A*A) q/2) <ec,  where tr6 
is the trace on 6. 

The Hilbert space L2(R d, ~) is the space of all measurable functions r Rd-+~  
such that  

O(3 

and the Sobolev space HI(R d, ~) consists of all functions ~ E L 2 ( R  d, G) with finite 
norm 

d 
2 2 I1~11~1 (Rd~):= E II0z~IIL~(R~ ~)+ IIr 

l = l  

As in the scalar case, the quadratic form 

d 

h0(~, ~):= ~ 0 II ;~IIL~<R~,~> 
1 1 

is closed in L2(R d, ~) on the domain H ~ (R d, ~). Naturally, this form corresponds 
to the Laplacian - A |  G on L2(R d, ~). 

We let Lq(Rd,13(U)) be the space of operator-valued functions f:  Rd--+B(G) 
with finite norm 

Ilfllq q = Ilfll~q(R~ B(~)):= fRd ]l/(X) llq(~)dx, 

and Lq(R d, 8~(~)) the space of operator-valued functions f whose norm 

Ilfllq'~ q / R  = IlfllLq(Rd,S,-(~)):= trG(If(x)l~') q/~ dx 
d 

is finite. A potential is a function VCLq(R d, B(~)) such that  V(x) is a symmetric 
operator for almost every x c R  d. If 

q_>l for d = l ,  

q > l  for d = 2 ,  

q_>�89 f o r d > 3 ,  
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one sees, using Sobolev embedding theorems as in the scalar case, that  the real- 
valued quadratic tbrm 

v[~, ~] := fR~ (~(~)' v ( x ) ~ ( ~ ) ) ~  dx 

is infinitesimally form-bounded with respect to h0. Hence the form sum 

h[r ~] := h0[~, ~] +v[r ~] 

is closed and semi-bounded from below on H 1 (R d, G) and thus generates the self- 
adjoint operator 

H = - A ~ I ~  + V  

on L2(R d, G) by the Kato Lax-Lions Milgram Nelson theorem [22]. It is easy to 
see that  any potential VELq(Ra,B(6)) satisfying (6), ibr which V(z)E]C(6) for 
ahnost every x E R  d, is relatively form compact with respect to h0. Hence by Weyl's 
theorem for such potentials, the negative eigenvalues E 0 < E  1_<E2<...<0 are at 
most a countable set with accumulation point zero and their eigenspaces are finite- 
dimensional. In particular, this is the case for potentials VELq(R a, S~(G)). 

Our first result is a generalized version of a basic observation of Laptev and 
Weidl: The two versions (4) and (5) of the Lieb-Thirring inequality give rise to two 
different monotonicity properties of Cv,a in d. 

T h e o r e m  2.1. (Sub-nmltiplicativity of C~/,d. ) If, for dimensions n and d - n ,  
the Lieb Thirring inequality holds for operator-valued potentials then it also holds 
in dimension d. Moreover, 

(7) 
(8) 

Remarks 2.2. (i) In the scalar case Aizenman and Lieb [1] showed that  the 
L cl map 7~+C~,a= ~,a/L~, d is decreasing. This monotonicity holds also in the general 

case, so, in fact, (8) implies (7). The monotonicity in 7 is most easily seen in the 
phase space picture: By scaling one has, for 7 >70->0, 

fo ~ (s +t)~_ ~ = (s)~ B(7-7o,  7o + 1), t~-~o-1 dt 

where B(a,/3)=f~ t ~ - l ( 1 - t )  ~-1 d~ is the Beta function. In other words, for each 
choice of 7>-7o_>0 there exists a positive measure # on R+ with 

(s) ~ _ = f ,~ ( s + t )  ~~ du(t).  
+ 
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Using this, the functional calculus, and the Fubini Tonelli theorem, we immediately 
get 

// trL2(Rd,G)(A| = trL2(Rd,@(A| ~ d#(t) 

< ~ ~ tr~(~2+V(x)+t)7_ ~ dx d~ d#(t) 

- C'/~ trG(~2+V(x)+t)7_ ~ d#(t) dx d~ 

C"/o,d 

-(2 y find fl d 
(ii) Theorem 2.1 is a slight extension of a very nice observation of Laptev and 

Weidl [12], [14]. They used it to show • , d = l  as long as 7 >  3. Basically this 
follows immediately by induction and the above monotonieity from (7) for n = l  
once one knows that  C3/2,1 =1. The beauty of this observation is that  this bound is 
well known in the scalar case [21] and Laptev and Weidl gave a proof for it in the 
general case. See also [2] for an elegant alternative proof which avoids the proof of 
Buslaev-Fadeev-Zhakarov type sum rules for matrix-valued potentials. 

(iii) Using C~,d=I for 7_>~- and (8), we get the bound 

G,d -< G,3 

in d>3  for all 7>0 .  In particular, this implies a uniform bound (in d) ibr the 
constant in the Cwikel-Lieb Rozenblum bound as soon as such an estimate is es- 
tablished in dimension three for operator-valued potentials. Below we will recover 
Cwikel's bound C0,3<34=81, see Corollary 2.4. It is, already ibr scalar potentials, 
known, that  C 0 , 3 - > 8 / ~  >4.6188, [7], [21, equation (4.24)] (see also the discussion 
in [31, pp. 96 97]); in fact, it is conjectured to be the correct value [7], [21], [30]. In 
the scalar case Lieb's proof [17] of the CLR-bound gives by far the best estimate, 

scalar C~, 3 <6.87. However, Lieb's estimate grows like ~ for large dimensions [21, 
equation (5 .5) ] . (1 )  While we get a quite large bound on Co,3 this at least furnishes 
the uniform bound C0,g_<81 for all d_>3. It would be nice to extend Lieb's or even 
Conlon's proof [5] of the CLR-bound to operator-valued potentials. 

To state our second result, Cwikel's bound in the operator-valued case, we need 
q d some more notation: Lq(Rd,13(~)) ,  the analog of the weak Lq-space L ~ ( R  ), is 

given by all operator-valued functions 9: Ra-+B(~)  for which 

Hgllq,w = IlgllLg~(Ra,g(~)) := sup tl{~ : IIg(~) I1~(~) > ~}11/q < ~"  
t>O 

(1) Note added  in proof, For an excellent discussion of Lieb's  me t hod  see, for example,  
Chapte r  3.4 in Roepstorff  [25]. 
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Here IBI is the d-dimensional Lebesgue measure of a Borel set B c R  d. Note that  
II " [1~,~ is not a norm since it fails to obey the triangle inequality already for scalar g. 

q d. But, as in the scalar case, one can give a norm on Lw(R , B(U)) which is equivalent 
to II �9 II~q(rtd;~(6)). However, we will not need this. 

By p we abbreviate the operator - i V  and similarly to the scalar case we define 
the operator f(x)g(p) to be 

--~ f(x)g(p)~(x) = f(x)  (2%)d/2 d eiX~9(~)~(~) d~, 

that  is, f (x)g(p)=MfF-1My-T with Mf and My being the "multiplication" opera- 
tors by f (x)  and g(~) and F the Fourier transform. A priori, f(x)g(p) is well-defined 
only for simple functions, but it will turn out to be a compact operator for rather 
general "functions" f and g. The extension of Cwikel's bound to the operator-valued 
case is the following result. 

T h e o r e m  2.3. (Cwikel's bound, operator-valued case.) Let f and g be opera- 
tor-valued functions on an auxiliary H ilbert space G. Assume that f E Lq(R  d, S q ( ~ ) ) 
and gEL~(Ra,13(G)) for some q>2. Then f(x)g(p) is a compact operator on 
L2(R d, G). In fact, it is in the weak operator ideal Sq(L2(R  d, ~)) and, moreove~5 

(9) II f(x)g(P)I1~,,~ := sup nl/qp,,(f(x)g(p)) <_ Kq [[flla,,~llgll~,,~, 

where the constant fs is given by 

1 q( 8 ~1--2/ql/ 2 ~l/q 
Kq--(27c)d/q2\~_2 ]| ~ l + q _ - ~ )  . 

As in the scalar case Theorem 2.3 gives a bound for the number of negative 
eigenvalues of Schr6dinger operators with operator-valued potentials. 

C o r o l l a r y  2.4. Let ~ be some auxiliary Hilbert space and V a potential in 
Ld/2(Iz~d, sd/2(~)). Then the opera tor -AQ16+V has a finite number N of nega- 
tive eigenvalues. Furthermore, we have the bound 

with 

that is, Co,d <_ (2Ir I ~ d )  d .  

N < L o d  f tr~(V(x)~/2)dx 
- -  , j R  d 

Lo,d <_ (2~ lfd)dL~ld, 
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Pro@ For completeness we explicitly derive the estimate for the number of neg- 
ative eigenvalues o f - A |  fi'om Theorem 2.3. Replacing V with - (V)  if nec- 
essary and using the min-max principle, we can assume V to be non-positive. Let N 
be the number of negative eigenvalues of - A |  and put Y:=IVIU2(IpI-I| 
By the Birman-Schwinger principle [3], [28], [4], [29], [23] one has 

l_<,~(Y). 

But @->1{I l |  has weak Ld(Rd,13(~))-norm 1/d r d , rd being the volume of the 
unit ball in R d. With Theorem 2.3 we arrive at 

that  is, 

~/d 
1 <_ Kd~-d , , , ,  ,,llIvl~/~lld,JV-~/d' 

N _< K~a  II IVl~/~ll~,d = (2rcKd)dL;1,d/R d trG(lV(x)l d/2) dx, 

since L;'d=rd/(2rc) d. [] 

Remark 2.5. Corollary 2.4 gives the a priori bound Co,d<_(2rrKd) d for d>3. 
Using Theorem 2.1 and the fact that  Cv,d=l if ~>~ ,  [14], we know that  CO,d < - 
min,~=3 ..... d C0,,> Since the a priori bound given in Corollary 2.4 increases rather 
fast in the dimension, the best we can conclude is Co,d_< (27r K3) 3 =34 =81. 

3. P r o o f  of the  sub-mult ip l i cat iv i ty  of th e  L ieb-Thirr ing  constants  

We proceed very similarly to [14], but freeze the first n<d variables. Let 
x< =(x l ,  ..., x , ) ,  x> =(xn+l ,  ..., Xd) and ~<, ~> similarly defined. Put  

w(x<) := (-zx> +v(x< , .  ))_, 

where A> is the Laplacian in the x> variables. Clearly, by assumption on V, W 
is a non-negative compact operator on L2(Rd-n,G) for almost all x < E R  ~ and, 
moreover, 

trL2(Re,6) (--Aq-V) ~' <-- trL2(Rn,Le(Ra ",6)) (--A< -- W) ~_ 

(10) f. <_ ~ . . . .  LrL2(Rd r~,G)(~2<-W(x<))~ dx< d~<. 

Since ( t - ( s ) _ ) _ = ( t + s ) _  for t>0,  s e a ,  the spectral theorem gives 

2 trL2(Ra-=,g ) (~< --W(x<))~ = trL2(Rd-n,G)(~2< _ A> +V(x<,  �9 ))~_ 

C'yd-n /R  JR trG(~2< 2 ~/ , +~>+V(x<,x>))  dx> <> 
<- (2~)d-~ ~ n ~ ~ 

This together with (10) and the Fubini-Tonelli theorem shows (7). 
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For the other inequality we use the more usual form (5) of the Lieb Thirring 
inequality. Again, freezing the first n coordinates and proceeding as before, we 
immediately get 

(11) L.y,d ~ L.y,nL.~+n/2,d n, 

where L.y+n/2,d_ n e n t e r s  now because in the first application of the Lieb Thirring 
inequality (5) the exponent is raised from 7 to 7 +  in .  Using the definition (3) for 
the classical Lieb Thirring constant together with the Fubini Tonelli theorem and 
scaling, one easily sees 

L~l,d = JR (IPl~-- 1> ~_ dp 

_ Lcl rcl  =/R, (Ip<12- i)~ dp</R~_ (IP>12-- l)n_ +n/e dp>- ~,n~+~/2,d_n. 

This together with (11) proves (8) and thus Theorem 2.1. 

4. P r o o f  o f  Cwike l ' s  b o u n d  

The proof of Theorem 2.3 follows closely Cwikel's original proof. We first need 
a criterion for f(x)g(p) to be a Hilbert Schmidt operator. 

L e m m a  4.1. Let f E L 2 ( R  d, S2(G)) and assume g obeys IIg<" >H~<~> eL2(Rd)  �9 
Then the operator f(x)g(p) is Hilbert Sehmidt and we have the estimate 

1 

IIf(x)g(P)ll~s -- (2~r) d /R~ / R  cz tr6(g*(~)f(x)* f(x)g(~) ) dx d~ 

_< ~ ~ t ra( l f (x) l  2) dx d IIg(~)ll~ d~. 

Proof. In the scalar case this is well known and is usually shown by noting that  
in this case f(x)g(p) is a convolution operator. Another proof is by changing the 
basis: Let ~ be the Fourier transform on L2(R d, ~), that  is, 

1 /R e-~'Xu(x) dx. 
f ~ ( ~ )  : -  (2~)d/2 d 
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Then the Hilbert Schmidt norms of f(z)9(p) and MfF-1Mg are equal. The opera- 
tor Mfy:- lMg has "kernel" (2~r)-a/2eiX'~f(x)g(~) and thus by [24, Theorem VI.23] 
or [8, Section III.9], 

Ilf (x)9(p) II~s = Ilf (x)5-19(~) II~s 
1 

-(27r)d JR a JR atr~(gt~)*f(x)*ftx)g(~))dxd~ 

1 -(2~)d iRd iRd tr~(If(x)121g(r162 
1 -< 7777 JR~ SR~ tr~/If(x)12)llg/~)ll5 d~d~ 
1/. s 

- (27r) d ~ tr~(If(x)12)dx dllg(~)ll~d~" [] 

The first step rests on splitting the operator f(x)g(p) (which is a priori only 
defined on simple functions) into manageable pieces. Fix t>0,  r > l  and assume 
that f and 9 are non-negative, in particular, self-adjoint, operator-valued functions. 
For a Borel subset B of R let XB(I(x)) and xB(g(~)) be the spectral projection 
operators of f (x)  and g(~), respectively. By the functional calculus we have 

f(x) -- Z f(~)~(,.,_l,~.~ (f(x)) = Z f,(x), 
(12) *ez zcz 

g(~) = ~ g(~)~<' ~,~-'1 (g(~)) = ~ g,(4), 
1cZ lEZ 

where fl (resp., gin) are mutually orthogonal operators. We use this decomposition 
of f and g to split the operator f(x)g(p) into 

(13) f(x)9(p) = Bt +Ht 

with Bt := }-~4+.~<1 fl (x)g,~ (p), lit :=~t+.~>1 fl (x)g,~ (p). Note that  this decompo- 
sition of f(x)g(p) is slightly different from the one used by Cwikel. We have the 
following result. 

L e m m a  4.2. Let f and 9 be non-negative operator-valued functions. If q>2 
and feLq(Rd, Sq(~)), 9eLq(Rd,  B(G)) with Ilfllq,q=l and NgNq,~=l then 

(a) Bt is a bounded operator with operator norm bounded by 
r 

IIBtlIL~(Rd,6) <--tl_ r 1; 

(b) Ht is a Hilbert-Schmidt operator with Hilbert Schmidt norm bounded by 

1 1 + ~  IIHtll~s _< (2~)dtq_~ 
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Remarks 4.3. (i) Due to our choice of Be and Ht the bound in Lemma 4.2(b) 
is independent of r and in (a) it is easy to see that  the choice r = 2  is optimal. 

(ii) This lemma also shows that  f(x)9(p ) is a compact operator since it is the 
norm limit for t--+0 of the Hilbert Schmidt operators He. 

Pro@ Part (a) follows completely Cwikel's original proof: Since the fz (resp., 
g-~) are orthogonal operators for different indices we get, for simple functions r and 
r say, 

l + m < l  

-< ~ <  Z II ~-(" "~)f~-~(*)~ll211~-~v-~(v)~ll ~ 
s < l  rnCZ 

( m ~ Z  , 1 / 2 /  , 1 / 2  X 2 T m 2 - < E <  II, ~ c*-'~)fs-,,~()vii2) ( E  II >~(v)+l12) 
s < l  / \ m E Z  

= ~ r ~ ~ r (~ "~)fs_~(x)~ ~ r-mg,~(p)r 
s < l  HrncZ 2 m c Z  2 

r 

--< l _ r _  l t l l<l  I1r 

since ~ l c z  r-lfl  (x)<_ tl  G and ~ , ~ e z  r-'~g',~ ({)-< 1G- Thus Bt extends to a bounded 
operator on L2(R a, G) with the given bound for its norm. 

To prove part (b) observe that  by Lemma 4.1 and the cyclicity of the trace, we 
have 

t-.l- rr~,> 1 

Assume for x, { c R  d the operator inequality 

(14) fz(x)g.~(g)e f , (x )  <~ (llg(g)Nf(x)x(t,~)(lIg(g)H f ( x ) ) )  2 = :  h(x, ~)2 
/ + m > l  

on the Hilbert space G. Note that  the projection operator X(,,oo)(llg(r (on G) 
commutes with f(x) for all x, { E R d. Let ;~j (x) be the j t h  ordered eigenvalue of f(x), 
and Ej (a) :=  {{: II.q({)Iikj ({)>c t}. Each Ej has 2d dimensional Lebesgue measure 

bEj(~)12d= ~ : Hg(~)H > dx < - -  ~j(x)q dx, 
d d - -  o z q  d 
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since 1{911q,~=l by assumption. Thus we see 

1 /R J i  tr6(h(x'~)2)dxd~ 

- (27c)d 2 IEj(max(a,t))]2dada 
j=0  

- (2~r)d 2 IEj(t)l=dC~da+~2 IEj(c~)jzdc~dc~ 
j=0  

< 1 ( 1 +  2 

j=0  

1 ( q _ ~ 2 2 )  
- / z  ) r~Tc'd'q-2 1+ 

since Ej~_o f Aj(z) q dz=llfllq,q=l by assumption. It remains to prove (14): Again, 
let s=l+m and note that  the g.m.({)=g({))i(,..rr~ 1,.~rq(g({)) are orthogonal operators 
for different indices. As operators on ~, 

E 
/+m> 1 

f,(x)g~,(r = ~ ~ f~(z)g~ ~(r 
lcZ s>2 

= E fl (x)g(r z,oc)(g(~))ft (x) 
lEZ 

E iF/ (X) Ilg(~) ll~(7 -1 z,~) (llg(~) II)fl (x) 
lCZ 

= f(x)2]lg(~)ll~ E;~(~  z,~)([lg(~)ll)xt(~-l,rz](f(x)) 
ICZ 

<- f(x) 2 Ilg(~) II~x(t,o~) (llg(() Ilf(x)) E Xt(r~-z,~q (f(x)) 
lEZ 

= / ( X )  2 I[g(~)II~X(t,o~)([[g(~)[1 f ( x ) ) ,  

where we used that  

in the last inequality which proves (14) and hence the lemma. [] 
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Given the above bounds the proof of Theorem 2.3 is by now a s tandard inter- 
polation argument.  We give this argument  for the sake of completeness: 

Proof of Theorem 2.3. First, without loss of generality assume that  f and 9 are 
non-negative operator-valued functions. Indeed, let b e be the Fourier t ransform and 

Mf  and My the operators of "multiplication" by f and g and note that  f(x)g(p) 
and M/.T-1M~ have the same singular values. With  the polar decompositions 

f (x )=Ul(X) l f (x ) l  and g(g)=lg*(g)lU~(g) in the Hilbert space ~ we have 

Mf,~'-I M9 = UI MIfI.T-1MIg. IU:~ , 

where Uj, j = l ,  2, are fibered partial  isometries in the space L2(R d, Cj), ibr exmnple, 

(UI~)(x)=UI(X)~(x) .  Hence the singular values of f(x)g(p) are bounded by the 

singular values of Mlflbe 1Mig. I and [[[g* IHq,~---IIgllq,~.* * 
By one of the consequences of Ky Fan's inequality [8] we have 

~n(f(x)g(p)) = pn (B t§  < p l (B t )§  <_ IIB~II+ ! IIH IIHN 

r 1 / 2 \1/2 1 

using Lemma 4.2. Choosing t and r (=2) optimally gives 

#,~(f(x)9(p)) <_ - -  
2 ~l/q 1 

1 q ( 8 kll--2/q 1~_~2 ) Tt 1/q 
(2 )d/q 2 \ q -  2 / 

which proves Theorem 2.3. [] 
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