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Complete interpolating sequences
for Fourier transforms supported
by convex symmetric polygons

Yurii I. Lyubarskii and Alexander Rashkovskii

1. Introduction

We study sampling and interpolation for two-dimensional Fourier transforms.
Given a convex domain M CR2, consider the corresponding Paley—Wiener space

(1) PWy = {f;f(z) = /M 8 (¢) dme, ¢eL2<M)}

endowed with the L?(R?)-norm. Here R2 is considered as the real plane in C2,
dm stands for the plane Lebesgue measure, and (-,-) is the C?-scalar product:
(z,0)=211+22C for z=(21,22), (=((1,(2)€C

Following [2] and [8] we say that a sequence Q={w}CR? is interpolating for
PWy if for each a={a,, }wea €12(2) there exists f € PW)y solving the interpolation
problem

(2) fwy=a,, weq.

If the solution to this problem is always unique we say that £ is a complete inter-
polating sequence for PWy,. It follows from the Banach inverse operator theorem
that in this case  is also a sampling sequence, i.e.

Al{f@)He < fllpwa < BILf W), S € PWar,

for some A4, B>0 independent of f. These notions admit a natural image processing
interpretation. The sampling property implies stability of the reconstruction of an
image (two-dimensional signal) with spectra located in M via its sample values
{f(w)}weq, and the interpolation property implies non-redundancy of the set Q.
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Thus a complete interpolating sequence provides both stable and non-redundant
sampling of images with spectra in M. What makes the problem interesting besides
the image processing interpretation is the connection with multiple Fourier series.
A simple duality reasoning (see e.g. [7] in the one-dimensional case) shows that,
if 2 is a complete interpolating sequence, the corresponding system of exponential
functions

Q)= {e ) ;weq}

is a Riesz basis in L#(M). This means that functions from L?(M) can be expanded
in multiple Fourier series similar to the classical ones.

The problem of describing complete interpolating sequences for one-dimension-
al Paley—Wiener spaces has been studied very intensively, starting from the classical
works [17], [3], [2]. A full description of real complete interpolating sequences (as
zero sets of certain entire functions) was obtained in [22]. See [15], [7], [14], [13] for
further developments as well as for a historic survey. We also refer the reader to
[6], [1] for references concerning applications to signal analysis.

Interpolation from discrete subsets of C™ was studied in [5], [11], [25] for entire
functions f of given exponential type 0>0, ||f|1»®n)<co. For spaces of entire
functions of finite order with growth controlled by a given indicator, a similar in-
terpolation problem was considered in [24], [18], [19], [20]. The topology of those
spaces is generated by a countable family of norms and interpolation is possible
only from sets of non-uniqueness. The notion of complete interpolating sequences
does not make sense for those spaces. The only examples of complete interpolating
sequences in several variables known to the authors concern the spaces PWj,s with
rectangular (or parallelogram) domains M. For such domains a complete interpo-
lating sequence may be realized as, say, a lattice, the proof of this fact is just a
“direct product” of the corresponding one-dimensional proofs.

For more general M’s the question is to find at least some complete interpolat-
ing sequences for a given M, rather than to obtain their complete description. In
the present article we answer this question for the case when M is a convex poly-
gon, which is symmetric with respect to the origin. The problem of constructing
complete interpolating sequences for the spaces PWj,; with polygonal domains M
was mentioned to the first author by V. P. Palamodov during a conference at the
University of Bordeaux I in 1995. Another feature of polygonal M is that in this
case PWy, consists of functions of completely regular growth with respect to the
supporting function of M [26]. We restrict ourselves to the two-dimensional case
only; in higher dimensions additional symmetries for each side of the supporting do-
main are needed for our approach. The objectives are to show that this case can still
be handled with in essence one-dimensional machinery. The key words are entire
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functions with plane zeros, i.e. functions whose zero sets are unions of hyperplanes.
Such functions were studied in [4]. They were applied to interpolation problems
in [20], [25] (interpolation with indicator control), and then in [21] (interpolation
from unions of hyperplanes). Being of a quite simple nature, these functions make
it possible to avoid “standard” difficulties related to division of analytic functions
of several variables.

We construct entire functions with plane zeros in C?2, generating complete
interpolating sequences for the space PW,,. Being of complex dimension 1, the zero
set Z of an entire function in C? itself cannot form such a sequence (in contrast to
the one-dimensional case), however it produces a discrete set QCZ which fits our
needs, namely the collection of all pairwise intersections of the zero hyperplanes. In
our construction QCR? and, if being uniformly separated (i.e. the distance between
each pair of distinct points is uniformly bounded off zero), it forms the desired
complete interpolating sequence. Such an idea was exploited for example in [25].

If Q is not uniformly separated, the interpolation problem (2) can have no
solution. One has to modify it by introducing a corresponding block interpolation
procedure with simultaneous interpolation at bunches of points which are located
close to each other. In this procedure the assumption {a,}€i? should be replaced
by a more complicated one (see below, Section 6).

The article is organized as follows. The next section contains preliminary in-
formation on spaces of analytic functions and also on Riesz bases. Construction of
a complete interpolating sequence € is given in Section 3. In Section 4 we prove
that € is a set of uniqueness. If being uniformly separated this set is a complete
interpolating sequence for PWj,. This is proved in Section 5, which completes “the
simpler part” of the article. For the case of non-separated Q (which is considered
in Section 6) we need some heavier machinery. In particular we obtain a special
integral representation for rational functions (see Lemma 6.3) which seems to be of
some independent interest.

2, Preliminary information

We start with a multi-dimensional analog of the classical Paley—Wiener theo-
rem.

Let
Hi(y) = sup (y,£)
ceM

be the support function of M.
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Theorem A. (See e.g. [23].) In order that an entire function F(z),zcC?,
belong to PWay it is necessary and sufficient that F€ L?(R?) and

log | F’ 'R
sup limsup 28 F@HiRY)]

<Hum(y), yeR”
zcR?2 R R

The following statements are straightforward consequences of the representa-
tion (1).

Proposition 2.1. Let x€R?. Then, for each F € PWyr, we have(!)
F(-+ix)e PWy  and ||F(-+ix)||=<|F],

the constants in the equivalence relation depend only upon ||.

In particular, for any H >0 and f€ PWyy,

H H s} o'}
(3) / / / / |f(w1+z'y1,w2+iy2)|2dx1 dzs dy; dys < Const Hf“2
—HJ—HJ—00J—00

Recall that, given a number 0>0, we denote by PW, the classical Paley-
Wiener space in one variable. This space consists of all entire functions of the
form

Ge " drydn, pelX(—0,0),

—a

Proposition 2.2. Let vectors b,ccR? be given. Then, for each FEPW,y
the function F(b+c(), C€C, belongs to the one-dimensional Paley—Wiener space
PWeyi(o)-

Proposition 2.3. Let v, and 2 be two smooth closed curves located in the
strip {¢;|Im | < H}. Then, for each FEPW,y,

(1) / F (G, C2) PP 1y 1dGa| < Const | [ [ Fl3ur,,
Y2 YY1

The constant is independent of Fe PWy,.
Proof. Set
xm(z) :/ '8 dme.
M

(1) Here and in the sequel the sign = means that the ratio of the two sides lies between two
positive constants.
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The Plancherel equality yields

F(z) = /R €z ) dime.
Therefore
IFOI< Il pwas lxa0(C = )l pw, < Const | Fll pw, ,
where the constant is independent of F. Inequality (4) is now straightforward.

Now we recall some basic facts concerning complete interpolating sequences
in one-dimensional Paley—Wiener spaces. We refer the reader to (7], [10], {13] for
complete proofs.

A sequence of points {(x}CR is called a complete interpolation sequence for
PW, if the interpolation problem

flC)=ar, kcZ,

has a unique solution f€ PW, for each {ay}€(?. A complete interpolating sequence
is a sampling set, i.e. there exists K >0 such that

®) ‘;?”{f((k)}”il? < llpw, < KIH{F(C) e

for all fe PW,.
A special case of complete interpolating sequences is due to Levin [9].

Definition 1. An entire function S(¢) is called a sine-type function of type o if
all its zeros {(y} are simple and real(?), and also
(i) the zero set {(x} is uniformly separated:

(6) inf |GGl =0°>0;

(ii) there exists a constant C'>0 such that

. é<|S(C)|6_OHmC|<C for dist(¢, {Ck}) > 9.

(?) Both in [22] and [9], a more general class consisting of sequences located in a horizontal
strip is considered. For our purposes it suffices to consider the real sequences only.
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Theorem B. Let S({) be a sine-type function of type o and {Cx} be its zero
set. Then {Cxr} is a complete interpolating sequence for PW, and the constant K
in (5) depends only upon & and C in (6) and (7).

We also need some basic information concerning Riesz bases {rom subspaces.
Let a Hilbert space H and a sequence of its subspaces { Xy} be given. Denote
by 2({X,}) the space of sequences {zy}, #1€ X}, such that

{zr ey = el < o
k

Definition 2. The sequence { X} forms a Riesz basis in H if each heH admits
a unique representation of the form

h:Zxk, xr € Xk,
%

and
1212 =< e i xep)-

We shall use the following criteria for a sequence of subspaces to be a Riesz
basis (see [16, Lecture VI]).

Theorem C. Let Span({X}) be dense in H. In order that {Xi} be a Riesz
basts in H it is necessary and sufficient that
(i) for each sequence {x;}€l>({Xy}) the series >, xi converges in H and

>

k

2
< Const |[{zx 1 (x,3):

where the constant is independent of the choice of {xi};
(ii) there exist projectors P.):H— Xy, PE X,=0, £k, PP|x, =id and, for
each heH, {P® R} el2({Xy}).

We also need some facts about Hardy spaces in two variables. Let
R% = {u=(u1,us2) € R?;4uq, +us >0},

and consider the spaces

HE = {¢ $6(C) = / e g(u) dmy, s€ L%Ri)}-
R3
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Standard arguments show that ¢CH™* if and only if it is analytic in R?+iR3%
and

® sup { [ totein)f ame | <o
neRi R?
One can also see that the dual space of H* can be realized as H~ with the
form of functional

Ly@®)= [ oep(e) ame

and ([ Ly = ([9]l3- -

An important example of functions in ‘H* comes from rational functions. Let
vectors b, 6D eR2, 0<arg b <argb® <Lz and numbers s1,s:€R, B1, B2>0 be
given. Then functions of the form

1
({¢, 6®) — 5141 ) (¢, b@) — 52-+i32)
(as well as their linear combinations) belong to H*.

We also need several versions of embedding theorems for spaces of analytic
functions.

P(() =

Proposition 2.4. Let a sequence {{®=¢®) +in®™}CR?+iR?, with nF) =
(ﬁik),nék)), be such that

(9) s<n® <A
for some 0<6<A<oo independent of k, and also

1 dinf [ 0> 0.
(10) nf IC ¢ >0
Then, for each he Ht,

> R(CHN)[2 < Const [|Alf3,+,
k

where the constant is independent of h.

Proof. Tt follows from the hypothesis that there exists a sequence of disjoint
balls { By} centered at ¢'®) and of fixed radii r (depending upon 4, A, and d only),
located in R?44R2. Subharmonicity of |h| yields

P < S [ IO dme

pd
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(here m stands for the Lebesgue measure in C?). Therefore
Co t
Z|h (&) |2<Z e / ()I?‘dm<<Const/ |h(C)I? dmy.
R2+44[0,A+r]
Together with (8) thls yields the proposition.
A similar inequality holds for functions in PWy,.

Proposition 2.5. Let a sequence of points {C*)} satisfy (9) and (10). Then,
for each Fe PW;y,

D IF(C®) < Const | Fllpw,,
k
where the constant is independent of F.

Proposition 2.6. Let numbers a,b€R, ab£0 and 81,00>0 be given. Then,
for each he H—,

Z/ h(a&+bn—idy, € —idy)[? dé < Const ||h]|2,-,

where the constant is independent of h.

Proof. Let, for definiteness, 5>0. Fix a number s with 0<s< % min{b, 61,92}
Using subharmonicity we obtain

/oo |h(a&+bn—id;, £E—idy)|? d€

— 00

SConst/ / |h(a€+2z1+bn—idy, € —idy)|* dm,, d&
[z1]<s

2
gCOnst/ // |h(a€+21+bn—idy, E4+se'® —iy)|* dm., dO dE.
]zﬂ<5

Consider the closed domain
I, = {(aé+2z1 +bn—i6y, E+se" —idy) ;|21 <5, 0€[0,2n], £€R}.
It belongs to the tube domain {(¢1,(2)€C?;|Im (;+4;|<s, j=1, 2}, each point of
I1,, can be obtained by at most two choices of the parameters z1, 6, £, and also
{ D(Cl: 61’ 9??)
D(¢1,¢1, 62, G2
Besides I1,,NT1L,, =0, m#n. Therefore
Z/ aE+bn—idy, ¢ —762)]2d§<Const//1m<1+51|<slh (1, Ga)| dme

[ Im{a+d2{<s

< < Const .

and it remains to apply (8).

The lemma below will be used in Section 6 for the block interpolation.
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Lemma 2.1. Let a sequence of points {(,} CC,. be given satisfying
0<d<inf(Im¢,) <A< o0,

and
d=inf |, — Gl > 0.

Let also {1} be rational functions of degree at most s (s does not depend on n)
vanishing al infinity and such that all poles of v, are located in e-neighbourhoods
of (n, €< min(d,d). Then

(/Z 5 al®

Proof. Without loss of generality we may assume the sequence {t,} to be
finite. Let p,(¢) be polynomials with leading coefficients 1, whose zeros coincide
with the poles of v,,. For simplicity we assume deg p,=s for all n. Clearly

0<al¢—Gal® <Ipn(OI <AIG=Cnl®, I |¢=Cnl> 2,

2 ds)m < Const(; / Z G d§>1/2.

where a and A are independent of n. Letting ¢, =1, ({)pn(() we see that

(11) ¥nllr2@m) < lenl-

Let v, ={¢;|{—¢n|=3e}. We have

[Yn(O)<cn, (€L,

and, besides,

1 &
=5 [ w02 cer

Now since 9, € H2(C_),

</O:O ;wn(ﬁ) 2d§>1/2=sup{1/_o:o h(g);%(g) d¢

Evaluation of the latter integral is straightforward:

I:U: h(f)injwé)d&]:%;/z he) [ unle)

- LI R S
-y / Qg / RGFE25 3 RAGIOLS

.he HX(C,), uhngl}.
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Therefore

2

1< Z( / () d<)1/2 ( / sl dc)l/
< Const (Z / )P dc)m (Z / () dc)m

and it remains to use (11) and also the fact that the linear measure concentrated
on |JT',, is a Carleson measure.

3. Construction of a complete interpolating sequence

Let M CR? be a convex polygon which is symmetric with respect to the origin.
It has an even number of vertices. Denote them a®), k=1, 2,...,2N according to
the counterclockwise order in which they appear on the boundary of M. We have
a®)=—g+N) k=1 .. N. Define the vectors b*) cR? by

ombF) = gt B p—1 . N.

Then by induction on N,

M= [-mb® 7b®] = {160+ 4+t s 1y, € [—mr, 7]}

Mz

ol
Il

1

The supporting function of M is now explicit

—n<tp<mw

N N
(12) Huy(x)= sup {Z (b x} Z A
k=1 k=1
Set
(13) H sin(w((z, b)) —ay)), z€C?,

where the real constants oy will be specified later. This function will generate the
desired complete interpolating sequence for PWj,, and we summarize here some of
its properties.
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Proposition 3.1.
(i) Given 0>0, the function S satisfies

(14)  |S(2)|<exp(Ha(y)) for dist({z,b®))—ay,Z)>8, k=1,..,N;
(i) the zero set Z of the function S is the union of the hyperplanes
plEm) — {z€C?; {2, V)Y =n+az}, neZ, k=1,...,N;

(iii) the set Q of the points wk1m)(k2m2) which are pairwise intersections of
the hyperplanes P¥*um) gnd plkanz) n. n.eZ, ki#ko, is a subset of R?;

(iv) 2 contains no multiple points (i.e. no triple of zero hyperplanes PEM) has
nonempty intersection) for all a=(cn,...,an)ERN\Ey, Ey being the union of a
denumerable collection of (real) hyperplanes in the parameter space Ré\é) and hence
of zero Lebesgue measure;

(v) 2 is uniformly separated if and only if sgk)/s,(ﬁ) €Q for all k,l,meZ; here

w__ 1

15 ERNITONG)]

and ®) €R? is the unit normal vector to b which turns into b® /|b(F)| if being

rotated by %71‘ in the clockwise direction.

Proof. Relation (14) follows from (12) and a direct estimate of each factor
in (13).

The zero set of the k-th factor sin(m((z,b%*))—ay)) in (13) is the union of
the disjoint hyperplanes P*™ ={zc€C?;(z,b(®))=n+ay}, n€Z. Each such plane
admits the representation

pn) = Lz =plkr) 4 K¢ e C).

Here
bk

b = (ntaw) s

is the normal vector to P**™ dropped from the origin. We shall also consider the

“real” and “imaginary” parts of P(¥:n);

RE™ = {r—p®) LBz e R}, TE™ = {z=p%" 1ic®y .y cR}.

For ky#ksy, the set PFum)nPk2n2) congists of the unique point w(k171)(k2.n2)
satisfying the equation

wikrm)znz) = plhima) ok = plkama) R0y, ¢, G e C,
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This equation (with respect to {3 and ¢;) has only one solution, which is real. We

denote it by
kl,nl) =G (ka,m2) =(o.

(kz,nz) (k1,m1) =
We also let
Q™) = fulm)n) gy xR = gl e gy,
QUem1) — U Q](C’funOCRknm), X (k1na) — U X,i’““”l),
k#k: k#ky

so that the set
o= |J a*mcr

k1=1,...,.N
ni€Z

The condition w{k:m1)(k2n2) =, (k1,m)(ksms) with (ky,n9)7# (k3, ng) implies cer-
tain linear relation between n +oy,, ne+ag, and ng+ag, and thus defines a hyper-
plane in the parameter space Rfi ) The union of such hyperplanes for all (k1,n1),
(k2,m2) and (k3,n3) forms the exceptional set Fy CRN.

A direct calculation shows that each sequence X ,gkl’"l)

gression of the step length sfckl) defined by (15). Therefore, the points of X; (k1)
(k1) (kl)

is an arithmetic pro-

X {frma) , I#m, are uniformly separated if and only if the steps s;"'’ and sm
commensurable, i.e. their quotient is rational.

The proof is complete.

are

In the next sections we will show that if Q is uniformly separated, then it is a
complete interpolating sequence for PWy,.
Let the numbers ﬂkl’"l be chosen so that the function

L™ (¢) =sina((p®, )¢ - gErm)
vanishes at X ,ikl’nl). Then

L= I 5@, Cec,

ktky
is the generating function of X171 je. an entire function whose zero set is
(k1,m1)
X
Let
N
(16) o) = (), k).

The function L(1:171) gatisfies

L) () ™1l disg (¢, X *0m0) > 60,
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Proposition 3.2. X*0m) s o uniqueness set in PW_gyy. If XFomi) gs
uniformly separated, then it is a complete interpolating sequence for PW ;).

Proof. Fix 6>0. For (=£+ineC we have

N
L (@)= exp alal 316, 4

k=1

(17) (wZI b, In( b(kw>+c<kl>o>l) = exp(H(Im(c)0)),

k=1

if dist(¢, Xk1m1)) >4,

Let f€PW, ) and f|xx.ny =0, then ()= f(¢)/LF+™)(() is an entire func-
tion. Now a standard reasoning (see e.g. {10, Lecture 18]) shows that (17) implies
$=0. That X*1™) is a complete interpolating sequence for PW,_ ;) in the case
when it is uniformly separated, follows now from Theorem B.

4. A uniqueness theorem

Theorem 1. Let Q be as in Proposition 3.1, a¢ Eyy, and fEPWyy, fla=0.
Then f=0.

Proof. For each k1=1,..., N and ny€Z consider the trace of f on the hyper-
plane P(kim1)
fEmIQ) = FpE ™) +cM0), - CeC.

It follows from Proposition 2.2 that f<k1’"1)€PWg(k1), here o(*1) is defined in (16).
The assumption of the theorem yields f(*1:m1) | x#1.,n1) =0 and, by Proposition 3.2,
f(kh"l)(g“)zo, CeC, ie. f|pw.nn=0. Tt means that the zero set of f contains
the zero set Z(S) of S. Furthermore, since the multiplicity of zeros of S (which is
defined on the set of regular points of Z{(S), i.e. on Z(S)\?) equals 1, f divides S
(see e.g. [23]), so

f(2) 2
P(2)= C
(Z) S(Z) ? z E ’
is an entire function. On the other hand the Riemann—Lebesgue lemma yields
|f(z+(i,4))|—0, as 00, ze R while |S(z+(i,1))|<1. Therefore ®(x+(i,%))—0,
as £—00. One can also see that |®(z)] is bounded. Indeed, by (14), for any §>0
there exists Cs>0 such that log |®(2)|<Cs for

z={z2€ C?;dist({(z, ™Y —qay, Z) > 6, k=1,..,N},
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and plurisubharmonicity arguments for log |®(z)| extend this to any 2¢C?2.
Now the Liouville theorem yields ®=0 and hence f=0, which completes the
proof.

5. Solution to the interpolation problem

In this section we solve the interpolation problem (2) under the assumption
that ¢ Epr and €2 is uniformly separated.
For each w=w®-m1)(k2.m2) € ) define

(18) Pu(z)= ] sin(r((z,5%)=0x))r, m (2)7%,m5 (2),
k#ky ka2

where
_sin(m(z, bRy — )

Ten(2) = ({(z, b)) —n—ay)

The function ¢,, vanishes on Q\ {w}, and also

Cw ::|¢w(w)|X1a w e,

as follows from the fact that €2 is uniformly separated.
Theorem 2. Let a¢ Ey and the sei 2 be uniformly separated. Then, given a
sequence a={a, }€1*(Q), the solution f=f,€PW to the interpolation problem
f(w) =ay,, well,

exists and has the form

(19) fa(z):Z Z—:QSW(Z), zeC?,

we2

The series converges in PWyr norm and also uniformly on compact sets in C2.

Proof. It suffices to assume that a,#0 for a finite number of w’s only and
prove that the function f,, represented by (19) (for finite @ no convergence problems
appear) satisfies

o]l < Const [|al]2 (o).

For arbitrary a€l?(€2) the statement will then follow as a limit case.
Further we may fix some k1, ka€{1, ..., N}, k1 #£k2, and assume that all nonzero
a,, correspond to points w of the form w=wk1m)k2.m2) ) noeZ. This is because
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each a can be represented as a union of at most %N (N+1) such sequences with
pairwise disjoint supports.
Now (after fixing k; and kp) set

_(k1,n1),(k2,n2) _ _
Wny,ny =W ’ an1,n2 - awnl,n2 ’ Cnyi,ng = Cwnl,nQ -

Taking (18) into account, we have

fe)={ I sinla(teb) - bou(a),

k#ky ko
where
Qny,n
()= T 7m0} = 3 Vo (6 e )
T ng V172 1
and

Any,ng Sin(ﬂ-<c‘ak2 ))
Cni,ng < —Ng—Qf,

Vo, ()= € PW,.

n2

Set, a(n1):{an1,n2}nzez' We have a(n1)€l2, and an Ha(n1)||2:Ha’||2 By The-
orem B,

[Vay iz2(ry < Const ||agn,)lli2(z),

and

Z Vo 72y < Const [lafqy-

ny

Now assume for simplicity that 5(2) is directed along the z,-axis (one can always
achieve this by an appropriate affine transformation) and apply Theorem B once
again. We obtain

| Jaut@) dm.
-L.1.

< Const / D Vo (2™ daa < Const Y [Vay 132 m) < Nl
P

i

2
dzydzs

(ko) SI(m(2165%) £ 2205 )
Zvnl(meQ ) A
2107 1 0blF) 1o
ny 1Y 2Uo 1 k1
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This completes the proof of the theorem.

In the general case the sequence (1, as constructed above, need not be uni-
formly separated. This forces one to implement the block interpolation procedure
as presented in Section 6. Another approach is to modify the generating function S.
One can easily see that reasoning is still valid if each of the k-th factors in (13) be
replaced by si((z, b)), where s;(¢) is a sine-type function of type = with real
zeros. We do not know whether it is possible to find the factors si(¢) in a way to
make the corresponding set §2 uniformly separated.

In view of possible image analysis applications, it may be important to ap-
proximate the original polygon by one with a separation property. To this end the
following approximation procedure can be proposed.

Proposition 5.1. Any convex symmetric polygon can be approrimated, from
both inside and outside, by polygons with the separation property.

Proof. By Proposition 3.1, a polygon M produces a uniformly separated inter-
polating sequence €2 if and only if for each k; the steps s,(c V) n (15) are commensu-
rable.

Denote by S the set of all reals x such that sinz€Q and cosz€Q. It forms a
dense subgroup of the (additive) group R, since

212+ 2lm

So k+alcs in—m—————
2 2012 L2lm+m?

sk,l,me Z}.

Given a polygon M and £>0, put @(®) =0 and choose @(!) such that |6 —a(})|<
%5 and |&(1)|€Q. Then, assuming the vertices a+1) be already constructed for
j<k<N-1, denote by 7; the angle between a7+ -l and a@) —gt-Y, j>1,
and choose @**1) such that |a*+D — g+ |<le) a1 —a(*M) | Q and 7, €8. Tt
gives us the values of all the new steps

(20) i erqQ

except for possibly k=N and k; =N. Now we can shift the points ), 1<j<N, by
he (0, 5¢) along the vector &1 with no changes in @) —a¥~Y) and 7; for j<N, the
value h being chosen to provide the angle 7y €S (by the definition, @M+ =—a1).
It gives us automatically [aN+Y) —g(M)|eQ, and so for the polygon M with the
vertices @) we have (20) with all k and k.

As can be easily seen from the construction, the points al¥) can be chosen such
that M CM as well as MO M.

The proof is complete.

By applying a standard duality reasoning (see e.g. [7]), one can read Theorem 2
as one about Fourier series expansions in M.
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Theorem 3. Under the assumptions of Theorem 2 each function ¢p€L?(M)
admits an expansion

B(a) =Y cu(9)e ™).

weD
The series converges in L2(M)-norm, and

9172000y = Y lew (@)%

we

6. Block interpolation procedure

Main lemmas

In this section we consider the case when the sequence Q is not uniformly
separated, but still contains no multiple points, i.e. a¢ Exy.

Then, for each A>1 there exists gg=¢0(d)>0 and A=A(A)>0 with the fol-
lowing property.

For each e<eq one can represent £ as

(21) Q= Cj o
=1

such that

(22) dist(, Q) > max{e, Adiam Q;, AdiamQ,,}, [#m,
and

(23) diam Q; < Ae.

Such a partition can be obtained in several steps. Fix an >0 and take
e-neighbourhoods of all points from 2. If they are disjoint, we are done. If
not, split their union into connected components A} and let Qi =ALNQ. Take
max(e, A diam Q2 )-neighbourhoods of each ;. If they are disjoint, we are done.
If not, take the connected components of their union and repeat the procedure. It
is easy to see that, if the initial £ was small enough, then after a finite number of
steps the procedure will be completed with the desired partition.

We shall call such a representation an (¢, A)-partition of Q, keeping in mind its
main characteristics: ¢ — the order of the sizes of the blocks, and A — the relative
distance between the blocks.



156 Yurii I. Lyubarskii and Alexander Rashkovskii

We may also assume ¢ to be chosen small enough such that, given kp,ka€
{1,...,N}, each Q; contains at most one point of the form w(*1:m1)(k2.m2) " and the
condition wk1m)(k2n2) y(kz2m2)(ksns) € ) jmplies w0k ms) cQy =1, 2,....

Given such an (g, A)-partition (22), we consider the subspaces

X ={f €PWu; flova,, =0}
It follows from the uniqueness theorem that
dim X,, = #Qn

and Span({J,, Xrm) is dense in PWy,.

Theorem 4. There exists Ag>0 such that, for A>Ag and e<eo(A), the
spaces {X,,} form a Riesz basis from subspaces in PWy.

The proof consists of two parts. According to Theorem C it suffices to prove
the following two lemmas.

Lemma 6.1. Let a sequence of functions {fn}€1?({Xm}) be given. Then the
series Zm fm converges in PWyy and

(24) H; fn

where the constant is independent of {fm}.

2

< Const Z ||fm||2PWM7
PWar -

Lemma 6.2. For each m there exists a projector
P PWay — X

such that
p(m)|Xm =id, p(m)|Xl =0, l#m,

and, for each fe PWyy,
(25) (PO Y eP({Xn)).

Before proving the lemmas we need to fix a convenient parameterization of
the set {,,}. First note that in the case when Q,, consists of one point, the
construction of P(™ as well as the verification of (24) related to such §,,’s are
quite straightforward and similar to the one-dimensional case. We omit the details.
We say that §2,,, is a bunch if it contains more than one point. Each such bunch is a



Complete interpolating sequences for Fourier transforms 157

union of pairwise intersections of the lines R(k1:m1) Rk2:m2) R(ksm2)  where the
indices k1, kg, ..., ks are pairwise distinct. The collection {kq, ko, ..., ks} defines the
type of the bunch. Given the type, one can define the bunch uniquely just by fixing
one of its points, wk1:m)(ksms) gav So each bunch is defined uniquely by its type
{k1, ka,...,ks} and a pair of indices. Since the total number of possible different
types is finite, we may assume that all bunches have the same type {1, 2,...,s}.

Making a change of variables if necessary, we may reduce the problem to the
case

(26) 0=argbV) <argh® < ... <argb(® = Lz

1
2
We also need some additional notation. Let

M={(ny,n,) € Z? ;™G QL for some m =m(ny,ns)}.

Now, given (ng,ns)€Z?, set

Mﬁ}f ={ns;{(n1,ns) € M}, Mﬁfj ={n1;(ni,ns) € M},

and
MU ={n ;MO 20}, MO ={ng ;M) £0}.
For (ni1,ns)eM, we may introduce the set {ns,...,ns_1} of complementary

indices such that
Dy = |J  {w@m)@my,

1<p<g<s

For 1<p<s we denote by n,(n1,n,) the corresponding complementary index. Thus
the functions in X,,, have the form

(nl ans)

f(z)=5(z) Z ks z€C?,

|<peg<s (<Z,b@))—np—ap)((z’b(Q)>,nq_aq)a

Series convergence (proof of Lemma 6.1)

Lemma 6.1 will follow from the statement below.
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Given a finite sequence {f("l’”s)}(nhns)eM, the following relation holds

2
Z Flmans) < Const Z [T HQL"‘(RZ)'

(n1,ms)EM L2(R?) (n1,ns)EM

(27)

Set »2=(1,1). According to Proposition 2.1 it suffices to obtain (27) in the
norm of L#(R?+is). Since

|S(€+ix)| <1, €€R?

we may switch to the rational functions

() = . e
Z (¢, b)) — ™) (¢, b(@) —7"))

=np+ap—18, with

Bp=(,bP) >0, p=1,..,s,

(nl ;”s)
(nq

here 7( 2

where the inequality follows from (26). The norm of -, . e $(m1me) should be
estimated in L?(R?). One can see directly that ¢("1™) belongs to H*. Therefore

Z ¢(n1,ns) sup{}/ h(&) Z ¢(’ﬂ1,ns)(§) dmg 7h€8(7—[*)}7
L2(R2) R2

(n1,ns)eM (n1,ms)EM
where B(7{~) denotes the unit ball in H~. We have

(n1me) _ (n1,m0)
Lo X e @dme= Y [RGESRIGT

(n1,ms)EM (ni,ms)EM
= Z [lmms)
(n1,ms)EM
and
e 10— [ [ hiee o g dg
1’21<p<q<s<<s b)) =) (€, by =)

For p=2,...,s we let g,=(&,b(P))= §1b1p)+§2bgp) and consider the function of two
variables

bgp)
(29) Cipy(&1,0) = ‘@Q—mﬁl-
P b

This function satisfies the relation ((£1, () (&1,0)),b®)=p. The inner integrand

in (28) is a rational function which has its poles when Op= ( "), p=2,...,s, that
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Is at the points (2 p=((p) ({hfypn”)). The imaginary parts of these points Im (3 ,=
—l—bg) / bé,z) are all different, since b(p )b 9 b(Q) 5 ) #0 when p+#q. Therefore

(30) J(rime) — Z I;[()nl,ns),

1<p<s

where

o
Irome) — / P G (™)) Res ¢, &) de.
—c0 Ea=Cpy (E1vp )

For each p=2, ..., s we estimate
DREEE DD o
(n1,ns)EM N np(ni,ns)=n,
(31) ZZ/ (&1, ¢y (61,75)) Res @™ (€1, 65) dEy.
np Y T &2=Cp) (€17 7))

It follows from (29), that, for p=s, h(£1, () (§1,71(,"”))) is holomorphic for all &,

Im&; <0. For p=2,...,s—1 this function is holomorphic in the strip 0>Im§&; >
1—b§p)/b§p).
Let now

T}(}m,ns)(&): Res ) ¢("1’"S)(f17§2)-
E2=Cp) (&1, ©7)

These are rational functions of degree at most s—1. They decay at infinity and their

poles are located at points zi; which satisfy ((£;,&2), b)) = 'yz()n”) and ((£1,&), @)=

'yénq). The corresponding points (xi1,&2)+ belong to the same bunch Qnna),

Therefore all poles of r,(,nl’"s) are located in a disk of diameter at most Ae.

On the other hand n; is different for different summands in (31). Since each
('rLl,nS

has pole at the point &; satisfying b( &=y, assuming ¢ taken small

ns)

enough we obtam that all poles of r ("1’ are located in small disks around the

points fy("l / b1 D Applying now Lemma 2.1 we obtain for sufficiently small ¢,
— 00

np(ny,ng)=ny
In order to estimate each Ip

2
Do G i)

np(ni,ns)=np

(n1.m2) we need two more inequalities. The inequality

HT;(;M’”S)(' —10)|l2(r)y < Const [[p(maoms)

RZ
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follows from the definition of ré"l’"s) , and the triangle inequality.

The inequality

> [

MNp=—00

—i8, (i) (E1—16,75")))|? d€1 < Const ||h||3,-

follows from Proposition 2.6.
Now it remains to change the path of integration in (30) to R—id and then

apply the Cauchy inequality twice,

n1,'n5 _ Z /_ (& —id, () (&4 — i, ’7( p))) Z

’I“I()nl’ns) (51 —Z(S)

np(nyne)=ny
1/2

( JLGE G <"v>>>|2d§1)
2 1/2
> i (6-id) d&)
np(n1,ms)=np

1/2
/ h(€1 6. iy (€1 —i6, W))Pdél)

2 1/2
d&)

oo
< Z
—o0
oo
X (
—00
S (
Tp=—00

(= [

Np=—00

1/2
< Const ||} ( Z > H¢(”“”S>II%2(R2)>

Np=—00n,(n1,ns)=ny
1/2
2
WM M

< Const ”h”H( Z Z | £ |15

Np=—00 np(nl!ns):np

[e)

T}()nl’ns) (fl —’L(S)

(nl,ns)—np

This completes the proof of Lemma 6.1.

Construction and estimate of projectors (proof of Lemma 6.2)

The main step in the proof of Lemma, 6.2 is a construction of the projector plm)

Let a bunch €, be fixed. As in Lemma 6.1 we assume for definiteness that
its type is {1, 2,...,s} and the corresponding indices are {ni, ng,...,nsy. The
corresponding space X, is
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where S(z) is the generating function (see (13)), and Y, is the space of rational
functions of the form

(33) = Y

1<p<q<s ((2,60) —ny — ) ({2,6@0) —ng—ag)’

We start by clarifying the block condition, i.e. we express the fact that all
points of £2,,, are located in a disk of diameter at most diam 2. Consider the linear
forms

(34) M(2) = AT () = (2 6Dy —qy, 1=1, 2,5

Each such form vanishes at the points w®m)(®P"2) p=L]  Since diam(),,,) < Ae, we
have

(35) [Ai(2) <es
when dist(z, Q,,)<10¢, say. The constant ¢ can be chosen independent of m.

We need an additional construction. Fix j€{2,...,s}. Then each vector b®
admits a (unique) representation

(36) b =1 1 (5)bD ¢,

Similarly we have

(37) A(€) =10 () M) e di (O +myu,
where

(38) nj=c1(J)(ni+oa)+cj i (nj+aoj)—(m+ar).
Let

K—sulp{|01 1D leal}

9,
It follows from (35) and (37) that

Injil <2Kce,

the estimate still being independent of the block number.
We also note that (keeping j fixed) we can take A; and A; as independent
variables. Then ¢(=¢U)(Aq, A ;) is the solution to the equations

A=A A(Q) =y

Let O0<r<R<oco be some numbers, that will be specified later, and ¢,,=
max{e, diam Q,,}. Let

Ty =1 = {()\1, D EC? A= Rem, [Aj|=rem}.

Given a function 1/1(( , we put

m dA;dA
( )¢ )\la )) L !

(A (2)=A)(A(z) =)
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Lemma 6.3. There exist 0<r<R<oo and a>0 such that

(39) Y(z)= Y QMy(2)

1<y<s
for all Y€Yy, and z€C? satisfying
(40) 1S(2) e HM(2) > ge,

The numbers r, R and a can be chosen to be the same for all bunches Q,,

Proof. Let €Y, have the form (33). We have

(m) - 1 dA\1
Q; ¢(Z)W/ > apgdng M -A

Ml=Rem 1<pag<s

where

J :/ dX; ‘
PE i mrem A€ (A0, A))AG(CH (A1, A7) (A5 (2) = Xy)

In the integral J,, we have |A\;|=Re,,. Relation (37) yields

1Al = lerp (D A| = K[Aj|—2Kce
for p#£j, 1. Taking R and r so that

Rrrllin fe, ()] > 2K (r+2¢)
J

we see that for p£j, A,(¢Y)(A1, )})), if considered as a function with respect to A;,
does not vanish in |A;|<rey,. Take a>2R. Relation (40) yields A;(z)—A;%0 for
\Aj|<rem,. Therefore Jpo=01if j#p, ¢, and the only summands we are left with are
those for which either p or ¢ equals j.

Up to now the coefficients a,, have been defined for p<q only. Set agzp=ap,.
Then

d/\1
41 Ql™(z) “Jl / .
( ) J ( M |=Rem ]l ) )\1

1<l<
5

where
1 1 dX;

Ijj= 4 .
" 2in g l=rem MALCD (A1, A5)) Aj(2) =X
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Let {>1. We use the identity

1 - 1 <icjl>
/\j>\l /\[—-le/\j )\j /\l ’

If =M\ (CW (A1, A;)), relation (37) yields

1 1 1 C'l> ;
42 = . —— 2, =MD 0L 0)).
(12) e (2 ) At
Back to (41) we obtain
oL d,
720 Sy ren M(en(DAa rr) (G (2)=A)
1 ¢t dA;
27 )5, 1=renn MCD (AL, ) (e1() A +n50) (A (2) = Ag)

1
Aj(2)en()A+ng)’

here the first summand in the middle expression is evaluated by the residue theorem
while the second just vanishes since A\;(¢()(A1,;))#0 when |\j|<re,, and |A\i|=
Re,,. Besides, a straightforward calculation gives

1
Hyj=————.
()
Now
(m) . alj/ d)\l
; Z)=——
QJ w( ) 2im [A1|=Rem AlA( )()‘1( )7)\1)
(llj / d)\l
1<£<5 Pil=Ren A2 (e +n;0 (A (2) = A1)
I#£5

Consider the two factors ¢1;(j) A1 +n; and A1 (2) — A1 as functions with respect to A;.
One of them vanishes outside while the second vanishes inside the circle |A1|=Rep,.
Therefore

Q" () = 5 a” G 2 3 a”

Ai(2) G2, M@ en(i) Mz +ng)
I#7
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Summing this up we obtain

(m) a1;
ST Qy(z) ZA ;

1<j<s 1<j<s

1 1
43 + a ( + >
) 2 N SE@on T B ey OME )

Now we observe that
culJ) 1 i
m () =— = gy = -t
(44) c1;(1) o Clj il L5 ci
Therefore, for Ay =A1(2), A;=X;(2), A=X;(2), we get
1 N 1 _ ! _ Cjt
(45) (cu@M+n)X;  (cyy(DAi+ng)A (cu(A+n)A;  (culf)A+ni)h
1
TN

The latter equality follows from (42). Substitution of this into (43) yields the desired
relation (39).

In what follows we need to locate the points (€C? which correspond to the
points (Aq, A<)€T(m). Given a bunch {1, of the type (ki, ..., k), set

T(m) {C C(k )(Ak17>\k ) |)\k1|:REM7 |/\kj|:75m}a

T = U 7;(m), and T = D T

m=1
Since the choice of r and R is independent of A, we can now find Ay such that,
for each (g, A)-partition with A>Ag, we have

(46) dist(7, Z(S)) >0,
here Z(S) is the zero set of the function S. Besides
{47) L:=sup{|Imz|;2€ T} <.
Now define
s(m)
(48) Qim =%~ g™
j=2
and
(49) P feu §(2)Q™) (g) (2);

the right-hand side of (49) is well-defined for z satisfying (40). Actually, it has an
extension to the whole C2.
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Lemma 6.4. For any f€PWay the function P f can be extended to a func-
tion from PWhyy.

Proof. We start by giving an explicit expression for P Let fePWyy and 2z
satisfy (40). We keep the notation of Lemma 6.3,

(N L _ A
Qj <S> (Z) % /Al—Rsm JJ (Z) )‘1(2)7)‘1 7

_ FEDOLN)  dN
25 [Aj]|=rem S(C(J) ()\1’ A])) )\J(z)ﬁAJ

where

J;(2)

Let )
(C(J) ()‘17 )‘])) )

S
Si(A1, Ag) = X
As was noticed in the proof of Lemma 6.3, the functions \,(¢) (A1, A;)), p#J,
do not vanish on {(A1,A;);|A1|=Rem, |A;|<ren}, and so the same is true for the
function S;. Therefore,

L/ JED L N)  d) F(¢9(M\,0))
[Xj|=rem

Ji(z) = ASiALA) A=A A8 (A1, 00 (2)

T 2um

here ¢(9)(\y,0) is the unique solution to the system

(50) MO =X, A(0)=0,
and so,

m (fNN 1 S (M\,0)  d
e (§)e- g e 55,0000 (2) MM

The integrand in (51) has its singularities at the zeros of the function S;(As,0).
It follows from (50) that these are precisely A\i((7), ¢/ =w™)Uma) | 145, Besides,
relations (34) and (36)—(38) imply

Cl,j(l):—%j(lj).
Thus
oy ([  [lwm)Gna)) () (G,my)
o ()= K DA

>1
I#j
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with
1

A2 (2) =M (N850
Here, by direct calculation, s;=S5,(0,0)#0 and

Aji(z) =

sj=mc1 (] H sin g (Wm0 Ena)y,
k#£7,1

In particular, by (44), s; ;=—s;:/c¢;;. Therefore,

Ai(z)= : - =- it ;
’ A(2) (M (2) g /e (DM )s; M) (Mz)+na/ei(@)A (G )s)

and, in view of (45),
(53) A+ Ay (e) = )

Now (52) and (53) give

1,n ,n
Q(m)< > Z f (l nl)(],nj))( ( +Al] Z f u)( 1) ]))
1<j<i<s 1<j<s )SJ
Z f w(l ny)(J, ng Cll Z f w(l n1)(J, n]))
1<j<i<s Sjl 1<j<s )SJ

Therefore, if |S(z)|>ae,

(51) POy ( Z f w(1 n1)(4,m;) Z f( u,(l n)(d, "J))Cu(j))

1<5<s 53 1<j<i<s (2)Mi(2)s;u

Representation (54) implies that P f can be extended to an entire function in C2.
A direct estimate shows that P("™ f& PWy,. The proof of Lemma 6.4 is complete.

The operator P(™) thus constructed is the desired projector. Indeed, it follows
from Lemma 6.3 that P(™)|y, =id. On the other hand, (54) yields that P(™ f=0
for all f€PW), satisfying flq,, =0. In particular PU™|x, =0, m#k.

Now we prove (25). Let »=(1,1). Tt suffices to prove that

Z ||P(m)f||%2(R2+2iLx) < Const || fl172(ray-
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Consider the set
E,={2€R*+2iLx;|S(2)| > ac}.

This set consists of the whole plane R%?+2iLs from which small strips around
intersections of this plane with Z(S) are eliminated. For z€ E,, one can use repre-
sentation (48), (47), and (41).
On the other hand, E, is relatively dense in R?42¢Lsr, that is there exist 4A>0
and §>0 such that
mes(QaNE,) >4

for each square Q4 CR?+2iLsc with side length A. It now follows from [12] that,
for fePWy,
(71l 2(R2 421100 < Const || fllL2(5,)-

So (25) will follow from

(55) Z ||77(m)||%2(15a) < Const || 172 (ra)-
m

Fix a number m. We have

s(m)
P =5() Y o (L))

=2

and since |S(z)|<Const, 2€R2+2iL, one can replace P(™ by Q™) in (55). Fur-
thermore we have

s(m)
o)=Y o (L)@, zem,
j=2

and

OIEAYINE DA, M) d)jdA
% (S>( )= @iy /T;m S A7) (=)= A1) (Aa(z) = A1)’

Now the triangle inequality yields

o (9., 4

< =
L2(B) 2im 7™

S(CD (A1, A7)

) ldA1] |dA,]

1
(Aj(2)=A)(Ai(z) — A1)

X sup
(A a)ers™

Lz(Ea)'
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The second factor on the right-hand side is uniformly bounded. In order to estimate
the first factor we note that (46) and (47) yield

|S(2)| =<1, =zeT.

Therefore

FICD (A, ) _ ) | |
/T]-(”” )\;)) ‘ |[dA1[[dA;] A/T]W S (A1, A5)| [dA1 ] |dAs]

S(g(j) (A1,

1/2
<Const( [ 1FED 0 A lanil 1)

1/2
< Const ( /T o f(C)|2dm<> .

Finally we have
S IR i iz < Const - [ 1R dme
and it remains to apply the inequality

Z/Tgm) F(Q)2 dm¢ < Const [ f[[2yy,,, fe€PWar.

The proof of this inequality is similar to that in Proposition 2.6. It follows from
subharmonicity arguments combined with estimate (3).

Now given a function f€PWy, set f,,=P™ f. By Lemma 6.2 we have
> fmll? <o, and by Lemma 6.1 the series

9(2) =3 ful2)

converges both in L?(R?)-norm and compactwise. It follows that (g— f)|o=0, so
by Theorem 1, g=f. This completes the proof of Theorem 4.
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