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Complete interpolating sequences 
for Fourier transforms supported 

by convex symmetric polygons 

Yurii I. Lyubarskii and Alexander Rashkovskii 

1. I n t r o d u c t i o n  

We study sampling and interpolation for two-dimensional Fourier transforms. 
Given a convex domain M C R 2, consider the corresponding Paley-Wiener space 

(1) PWM= { f  ;f(z)=/Mei@'~)O(~)dm ~, C E L 2 ( M ) }  

endowed with the L2(R2)-norm. Here R 2 is considered as the real plane in C 2, 
dm stands for the plane Lebesgue measure, and {. , .  } is the C2-scalar product: 

(~, C> =~1 r +~2r for ~ ;  (~1, ~2), C---- (C1, r ~ C 2 
Following [2] and [8] we say that  a sequence f~={aJ}cR 2 is interpolating for 

PWM if for each a={a~}~ea  ~12(ft) there exists fEPWM solving the interpolation 
problem 

(2) f ( w ) = a ~ ,  wCft .  

If the solution to this problem is always unique we say that  ft is a complete inter- 
polating sequence for PWM. It follows from the Banach inverse operator theorem 
that  in this case t2 is also a sampling sequence, i.e. 

All{f(cJ)}llz2 <_ ItfllPwM _<Bll{f(cv)}lll2, fCPWM, 

for some A, B > 0  independent of f .  These notions admit a natural image processing 
interpretation. The sampling property implies stability of the reconstruction of an 
image (two-dimensional signal) with spectra located in M via its sample values 
{f(co)}~ea , and the interpolation property implies non-redundancy of the set ft. 
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Thus a complete interpolating sequence provides both stable and non-redundant 
sampling of images with spectra in M. What  makes the problem interesting besides 
the image processing interpretation is the connection with multiple Fourier series. 
A simple duality reasoning (see e.g. [7] in the one-dimensional case) shows that,  
if ft is a complete interpolating sequence, the corresponding system of exponential 
functions 

is a Riesz basis in L2(M). This means that  functions fl'om L2(M) can be expanded 
in multiple Fourier series similar to the classical ones. 

The problem of describing complete interpolating sequences for one-dimension- 
al Pa le~Wiener  spaces has been studied very intensively, starting from the classical 
works [17], [3], [2]. A full description of real complete interpolating sequences (as 
zero sets of certain entire functions) was obtained in [22]. See [15], [7], [14], [13] for 
further developments as well as for a historic survey. We also refer the reader to 
[6], [1] for references concerning applications to signal analysis. 

Interpolation from discrete subsets of C ~ was studied in [5], [11], [25] for entire 
functions f of given exponential type a > 0 ,  Ilfllz~(R-,~)<ec. For spaces of entire 
functions of finite order with growth controlled by a given indicator, a similar in- 
terpolation problem was considered in [24], [18], [19], [20]. The topology of those 
spaces is generated by a countable family of norms and interpolation is possible 
only from sets of non-uniqueness. The notion of complete interpolating sequences 
does not make sense for those spaces. The only examples of complete interpolating 
sequences in several variables known to the authors concern the spaces PWM with 
rectangular (or parallelogram) domains M. For such domains a complete interpo- 
lating sequence may be realized as, say, a lattice, the proof of this fact is just a 
"direct product" of the corresponding one-dimensional proofs. 

For more general M's  the question is to find at least some complete interpolat- 
ing sequences for a given M, rather than to obtain their complete description. In 
the present article we answer this question for the case when M is a convex poly- 
gon, which is symmetric with respect to the origin. The problem of constructing 
complete interpolating sequences for the spaces PWM with polygonal domains M 
was mentioned to the first author by V. P. Palamodov during a conference at the 
University of Bordeaux I in 1995. Another feature of polygonal M is that  in this 
c a s e  PWM consists of functions of completely regular growth with respect to the 
supporting function of M [26]. We restrict ourselves to the two-dimensional case 
only; in higher dimensions additional symmetries for each side of the supporting do- 
main are needed for our approach. The objectives are to show that  this case can still 
be handled with in essence one-dimensional machinery. The key words are entire 
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functions with plane zeros, i.e. functions whose zero sets are unions of hyperplanes. 
Such functions were studied in [4]. They were applied to interpolation problems 
in [20], [25] (interpolation with indicator control), and then in [21] (interpolation 
fl'om unions of hyperplanes). Being of a quite simple nature, these functions make 
it possible to avoid "standard" difficulties related to division of analytic functions 
of several variables. 

We construct entire functions with plane zeros in C 2, generating complete 
interpolating sequences for the space PVV- M. Being of complex dimension 1, the zero 
set Z of an entire function in C 2 itself cannot form such a sequence (in contrast  to 

the one-dimensional case), however it produces a discrete set f ~ c Z  which fits our 
needs, namely the collection of all pairwise intersections of the zero hyperplanes. In 
our construction f~ c R  2 and, if being uniformly separated (i.e. the distance between 
each pair of distinct points is uniformly bounded off zero), it forms the desired 
complete interpolating sequence. Such an idea was exploited for example in [25]. 

If ft is not uniformly separated, the interpolation problem (2) can have no 

solution. One has to modify it by introducing a corresponding block interpolation 
procedure with simultaneous interpolation at bunches of points which are located 
close to each other. In this procedure the assumption {a~}c l  2 should be replaced 
by a more complicated one (see below, Section 6). 

The article is organized as follows. The next section contains preliminary in- 
formation on spaces of analytic functions and also on Riesz bases. Construction of 
a complete interpolating sequence f~ is given in Section 3. In Section 4 we prove 

tha t  f~ is a set of uniqueness. If being uniformly separated this set is a complete 
interpolating sequence for PWM. This is proved in Section 5, which completes "the 
simpler part" of the article. For the case of non-separated ft (which is considered 
in Section 6) we need some heavier machinery. In particular we obtain a special 
integral representation for rational functions (see Lemma 6.3) which seems to be of 
some independent interest. 

2. Prel iminary information 

We star t  with a multi-dimensional analog of the classical Paley-Wiener  theo- 
reITL 

Let 

 M(y) = sup (y, 
~EM 

be the support  function of M. 
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T h e o r e m  A. (See e.g. [23].) In order that an entire function F(z), z c C  2, 
belong to P W M  it is necessary and sufficient that F E L 2 ( R  2) and 

sup limsup log IF(x+iRy)l ~ HM(y), yE R 2. 
xCR 2 R-+c~ R 

The following statements are straightforward consequences of the representa- 
tion (1). 

P ropos i t i on  2.1. Let ~4ER 2. Then, .for each FCPWM, we have(1) 

F( .  +i~) c P W M  and IIY(. +i~)ll ~ IIFH, 

the constants in the equivalence relation depend only upon I~1. 

In particular, for any H > 0  and f ~ P W M ,  

(3) If(Xl~-iyl ,  X2 ~-iy2)]2 dxl dx2 dyl dy2 < C o n s t  Ikf]] 2. 
~ H  J--H ~ o z  oz 

Recall that, given a number ~>0, we denote by PW~ the classical Paley- 
Wiener space in one variable. This space consists of all entire functions of the 
form 

// f(r ei'r d% r E L2(-a ,  ~). 
(Y 

Propos i t i on  2.2. Let vectors b, cCR 2 be given. Then, for each FEPWM 
the function F(b+c~), (EC,  belongs to the one-dimensional Paley Wiener space 
PWHM(c). 

Propos i t i on  2.3. Let 71 and "Y2 be two smooth closed curves located in the 
strip {~;I Imr  Then, for each FEPWM,  

(4) ~ / ~  ]F(r ]dr id~2I <_Const iTxl i72I iiFii~wM. 

The constant is independent of FEPWM.  

Pro@ Set 

XM(Z) = / M  ei(Z'~) dm~. 

(1) Here and in the  sequel the  sign ~ means  tha t  the  ratio of the  two sides lies between two 
posit ive constants .  
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T h e  Plancherel  equal i ty  yields 

Therefore  

IF(r _< HFIIPwM IIxM(r )llPw. < Const I l r l lpw~,  

where the  cons tant  is independent  of F .  Inequal i ty  (4) is now s t ra ightforward.  

Now we recall some basic facts concerning complete  in terpola t ing  sequences 
in one-dimensional  P a t e y - W i e n e r  spaces.  We refer the  r e M e r  to [7], [10], [la] fol. 
comple te  proofs. 

A sequence of points  { r  is called a comple te  in terpola t ion  sequence for 

PW~ if the  in terpola t ion  p rob lem 

f(r  = ak, k < Z, 

has a unique solution f E P W ~  for each {ak} El 2. A comple te  in terpola t ing  sequence 
is a sampl ing  set, i.e. there  exists K > 0  such tha t  

(5) ~- II{f(r _< Ilfl]p~o _< xIl{f(r 

for all f c PW, .  
A special  case of comple te  in terpola t ing  sequences is due to Levin [9]. 

Definition 1. An entire funct ion S(C) is called a sine-type function of type ~ if 
ai1 its zeros {r are s imple and real(2), and Mso 

(i) the  zero set {(k} is uni formly separa ted:  

(6) inf ICk-r = 6 > 0; 
kr 

(ii) there  exists a, cons tant  C > O  such tha t  

1 
(7) ~ < IS(r ~ - <  ~m<l < C  for dist(r {(k}) > ~0 6. 

(2) Both in [22] and [9], a more general class consisting of sequences located in a horizontal 
strip is considered. For our purposes it suffices to consider the real sequences only. 
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T h e o r e m  B. Let S(()  be a sine-type function of type a and {~k} be its zero 
set. Then {(k} is a complete interpolating sequence for PW~ and the constant K 
in (5) depends only upon 5 and C in (6) and (7). 

We also need some basic information concerning Riesz bases from subspaces. 
Let a Hilbert space ~ and a sequence of its subspaces {Xk} be given. Denote 

by 12({Xk}) the space of sequences {xk}, xk c Xk,  such that  

k 

Definition 2. The sequence {Xk} forms a Riesz basis in 7-/if each h c ~  admits 
a unique representation of the form 

h = E xk, xk C Xk~ 
k 

and 
ilhll2  2 

We shall use the following criteria for a sequence of subspaces to be a Riesz 
basis (see [16, Lecture VII). 

T h e o r e m  C. Let Span({Xk}) be dense in 7t. In order that {Xk} be a Riesz 
basis in 7-[ it is necessary and sufficient that 

(i) for each sequence {xk}~12({Xk}) the series E k  xk converges in ?t and 

2 
~ x k  < Const 2 II{xk}lll ( xk ), 

where the constant is independent of the choice of {xk}; 
(ii) there exist projectors :P(~):~-+Xk, 7)(k)Xl=O, l r  7)(k)lXk 

each h E ~ ,  {79(k)h}c12({Xk}). 
=id and, for 

We also need some facts about Hardy spaces in two variables. Let 

R2L = {u = (u l ,  u2) C R 2 ; ~2Ul, Q-u2 > 0}, 

and consider the spaces 

e~(;'~)s(u) dm~, s EL2(R~=)}. 
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and 

(8) 

Standard arguments show that  OCT-I • if and only if it is analytic in R 2 + i R  2, 

sup ~ f  Ir 
rl~R~: I. J R  2 

One can also see that  the dual space of 7/+ can be realized as 7/-  with the 
form of functional / *  

dm~ 

and I I s 1 6 2 2 1 5 1 6 2  i 

An important  example of functions in 7-I + comes from rational functions. Let 
vectors b(1), b(2) c R 2 ' 0 _< arg b(1) < arg b (2) _< �89 7r and numbers s l, s2 E R, B1,/32 > 0 be 
given. Then functions of the form 

1 
r  = 

({4, b(1)}--81~-i/~1)((~, b (2)} -82@i/~2) 

(as well as their linear combinations) belong to 7-I +. 
We also need several versions of embedding theorems for spaces of analytic 

functions. 

P r o p o s i t i o n  2.4. Let a sequence {~(k)=~(k)+i@k)}cR2+iR2+, with r] (k)= 

(r/~k),r](k)), be such that 

for some 0 < 5 < A < o o  independent of k, and also 

d =  inf I~(k)-~(01 >0 .  
k~l 

(]o) 

Then, for each hE7/+, 

Ih(C(k/)I 2 < Const llhll +, 
k 

where the constant is independent of h. 

Proof. It follows from the hypothesis that  there exists a sequence of disjoint 
balls {Bk} centered at ~(k) and of fixed radii r (depending upon (~, A, and d only), 
located in R2+iR2+. Subharmonicity of Ihl yields 

Const./B lh(~)I ~ d~ 
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(here m stands for the Lebesgue measure in C2). Therefore 

ih(((k))12 _< ~ Const r4 [h(C)l 2 din< < Const f ]h(( ) [2 drag. 
k k (k) JR2+i[O,A+r] 

Together with (8) this yields the proposition. 

A similar inequality holds for functions in PWM. 

P r o p o s i t i o n  2.5. Let a sequence of points {((k)} satisfy (9) and (10). Then, 
for each FEPWM, 

E IF(((k))12 ~ Const IIFII2wM, 
k 

where the constant is independent of F. 

P r o p o s i t i o n  2.6. Let numbers a, bCR, abT~O and 51,52>0 be given. Then, 
for each hET-I , 

/ ' ~  Ih(a[ +bn-i51'[-i52)12 d4 <-C~ llhH~ , 

where the constant is independent of h. 

Proof. Let, for definiteness, b>0. Fix a number s with 0 < s <  10 min{b, 51,52}. 
Using subharmonicity we obtain 

/ ~ lh(a4+bn i51, d4 4-i52)12 

_< Const ]h(a4 + z1+bn-i51,4-i52)12 drnzl d4 
J --00 1]<8 

S/oTz < Const ]h(a~+zl +bn-i51,4+se i~ ]2 dm~l dO d4. 
~ o e  ll<s 

Consider the closed domain 

IIn={(a4+zl+bn-i51,4+se i~ i52);Izll_<s, 06[0,27r3, 4 e R } .  

It belongs to the tube domain {((1,C2)~C2;llm(j+Sjl<s, j = l ,  2}, each point of 
II~ can be obtained by at most two choices of the parameters Zl, 0, 4, and also 

D((1, (1,0, 4) 
D(<l,57 -j  _< Const. 

Besides IInNH,~=0, mr Therefore 

E Ih(a4 +bn i5~,4-i52)12d4 <-C~ hn~l+511<~ ]h((1,(2)ldm( 
n oo J J ]  I1~1 (2@(~21<8 

and it remains to apply (8). 

The lemma below will be used in Section 6 for the block interpolation. 
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L e m m a  2.1. Let a sequence of points { ( ~ } c C +  be given satisfying 

0 < 5 < inf(Im (n) < A < oc, 

147 

d = inf I~,n--(,~ I >0 .  

Let also {~n} be rational functions of degree at most s (s does not depend on n) 
vanishing at infinity and such that all poles of "~, are located in s-neighbourhoods 
of (n, s < ~0 min((~, d). Then 

( i ~  n ~ 12 ,1/2 ~ Const ~ ~ '2 d~)1/2. 

Proof. Without loss of generality we may assume the sequence {g?n} to be 
finite. Let p~(() be polynomials with leading coefficients 1, whose zeros coincide 
with the poles of ~,~. For simplicity we assume degpn = s  for all n. Clearly 

0<a l ( -~ ,~ l  ~ < l p n ( ( ) l < A l ( - ( n l  s, i f l s  

where a and A are independent of n. Letting Cn=~n(()P~(()  we see that  

(11) l l~nlh~(m • I~,~l. 

Let % ~ - - { ( ; l ( - G l - - a d .  We have 

and, besides, 
1 n 

Now since ~ n c H 2 ( C  ), 

Evaluation of the latter integral is straightforward: 

i =  h(~) ?~(~) = ~  h(~) ~n(r _ d~ 
n n oo n 

.~,, 1 / -  ~ A ; 
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Therefore 

IIl <_ ~(Jrn lh(~)12 d~)l/2 (fr, I~n(~)12 d~)l/2 

and it remains to use (11) and also the fact t ha t  the linear measure concentra ted  

on [J Fn is a Carleson measure. 

3. C o n s t r u c t i o n  of  a c o m p l e t e  i n t e r p o l a t i n g  s e q u e n c e  

Let M c R  2 be a convex polygon which is symmetr ic  with respect to the  origin. 

It  has an even number  of vertices. Denote  them a (k), k = l ,  2, ..., 2 N  according to 

the counterclockwise order in which they  appear  on the bounda ry  of M.  We have 
a (k) = - a  (k+N), k = l ,  ..., N .  Define the  vectors b (k) E R  2 by 

27cb (k) = a  (k+l) a (k), k 1 , . . . , N .  

Then  by induct ion on N,  

N 

M = E[--Tcb(k),  7cb (k)] {tlb(1)+...d-tNb(N);tk E [--7c, 7c]}. 
k = l  

The suppor t ing  function of M is now explicit 

N N 

(12) H M ( X ) =  sup ~Etk(b(k),x)}=~El(b(k),x)]. 
--sr<--tk <--7c I 'k=l  k = l  

Set 

N 

(13) s(z) [ I  sin( ((z, C 2, 
h 1 

where the real constants  c~k will be specified later. This funct ion will generate  the 

desired complete interpolat ing sequence for PI/VM, and we summarize  here some of 
its properties.  
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Proposit ion 3.1. 
(i) Given 5>0, the function S satisfies 

(14) IS ( z ) ]~exp(HM(y) )  for d i s t ( ( z , b ( k ) ) - a k , Z ) > 5 ,  k = l , . . . , N ;  

(ii) the zero set Z of the function S is the union of the hyperplanes 

P ( k " ~ ) = { z C C 2 ; ( z , b ( k ) } = n + a k } ,  n C Z ,  k = l , . . . , N ;  

(iii) the set f~ of the points aJ(k1,~l)(k2,~) which are pairwise intersections of 
the hyperplanes p(k~,n~) and p(k~,~2), n l , n 2 E Z ,  k i c k 2 ,  is a subset of R2; 

(iv) f~ contains no multiple points (i.e. no triple of zero hyperplanes p(k,~) has 
nonempty intersection) for all c~=(Ctl, ..., C~N)ERN\EM, EM being the union of a 
denumerable collection of (real) hyperplanes in the parameter space R ~ )  and hence 
of zero Lebesgue measure; 

(k), (k)EQ for all k , l , m E Z ;  here (v) ft is uniformly separated if and only if s t /s,~ 

(15) 1 
I(b(J), 

and c (k) c R  2 is the unit normal vector to b (k) which turns into b(k)/Ib(k) I if being 
rotated by ~rl in the clockwise direction. 

Proof. Relation (14) follows from (12) and a direct estimate of each factor 
in (13). 

The zero set of the k-th factor sin(1r((z,b(k)}--ak)) in (13) is the union of 
the disjoint hyperplanes P(k 'n)={zEC2;(z~b(k)}=n+ak} ,  nEZ .  Each such plane 
admits the representation 

p(k,,~) = {z = b (k'n) +c(k)~ ; ~ c C}. 

Here 
b(k) 

b (k'~) ---- (n§ ib(k ) 12 

is the normal vector to p(k,~) dropped from the origin. We shall also consider the 
"real" and "imaginary" parts of p(k,n): 

R (k'~) = {z = b (k'n) +c(~)x ; x E R}, I (k'~) = {z = b (k'~) +ic(k)y ; y c R}. 

For k17dk2, the set P(kl'n~)AP(k2'n2) consists of the unique point w (kl,n~)(k2'n2) 
satisfying the equation 

~(k~,,~1)(~2,~2) __ b(kl,n~)+c(k~)C1 __b(k2,n2)+c(k2)(2 ~ C1, (2 E C. 
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This equation (with respect to r and r has only one solution, which is real. We 
denote it by 

X(~l'nl) ----r --(~2'n2) ----~2 ~ (k2,-2) x(kl,~l) 
We also let 

ft(kkl,n~) = {W(kl,nx)(k,n) ;n E Z}, 

f~kl,nl) C R (kl'nl), 
k#kl 

SO that  the set 

Xk(k~,*~) ~_(k~,*~). n C Z}, : tx(k,n) , 

X ( k l ' n l )  : U x~kl 'T~l) '  

k~kl  

vanishes at X~ h ' ~ ) .  Then 

r(k~'ni)(r r  L(~1'~1)(r : I I  ~ 
k#k~ 

is the generating function of X (kl''~), i.e. an entire function whose zero set is 
X~kl ,nl)  

Let 

(16) 
N 

O -(~1) = 7]- E I(b(~)' C(~1)}1' 
k 1 

The function L (k~'n~) satisfies 

IL(kl,nl) (~) I ~ e~(k~)l Im r dist (~, X(kl,~)) > 6 > O. 

U ~(k~,n~) C R 2. 
l% ~l , . . . ,N 

nlEZ 

The condition w (h,nl)(k . . . .  )--w (kl,nl)(k3'n3) with (k2, n2)/t(k3, n3) implies cer- 
tain linear relation between nl + a  h , n2 +ak2 and n3 +ak3 and thus defines a hyper- 
plane in the parameter space R ~ ) .  The union of such hyperplanes for all (kl, n J ,  

(k2, n2) and (k3, ha) forms the exceptional set EM c R  N. 
A direct calculation shows that  each sequence X (kl'nl) is an arithmetic pro- 

gression of the step length s (kl) defined by (15). Therefore, the points of X}h 'n l )u  

X(~ ~'~1), l r  are uniformly separated if and only if the steps s} k~) and s(,~ ~) are 
commensurable, i.e. their quotient is rational. 

The proof is complete. 

In the next sections we will show that  if ~ is uniformly separated, then it is a 
complete interpolating sequence for PWM. 

Let the numbers/3~ ~'n~ be chosen so that  the function 
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P r o p o s i t i o n  3.2. X (k1'~1) is a uniqueness set in PW~(<). If X (~*'n,) is 
uniformly separated, then it is a complete interpolating sequence for PW~(k~). 

Pro@ Fix 5>0. For ( = ~ + i r / E C  we have 

N 

k = l  

N 

(17) = exp (It E '  <b(~)' l][~l(b(~l'ltl)-~c(kl)~))l) 
" k = l  

= exp(HM(Im(c(k~)~))), 

if dist((, X(kl'nl)) >(~. 
Let fcPW~(<) and flx(~l.,~)=0, then ~(~)=f(()/L(<,n~)(r is an entire func- 

tion. Now a standard reasoning (see e.g. [10, Lecture 18]) shows that  (17) implies 
r  That  X (k~''~) is a complete interpolating sequence for PW~(k~) in the case 
when it is uniformly separated, follows now from Theorem B. 

4. A u n i q u e n e s s  t h e o r e m  

T h e o r e m  1. Let f~ be as in Proposition 3.1, a~EM,  and f C P W M ,  f i n = 0 .  
Then f = 0 .  

Proof. For each k l = l ,  ..., N and n l E Z  consider the trace of f on the hyper- 
plane p(kl,nl) 

f(<'n~)(~):,f(b(<'nl)+c(<)~), CeC.  

It follows fl'om Proposition 2.2 that  f (k l , ,~)cPW~(~) ,  here a(kl) is defined in (16). 
The assumption of the theorem yields f(<'~)Ix(k~.~l) = 0  and, by Proposition 3.2, 
f(k~'n~)(~)=0, ~EC, i.e. flg(k>n~)=0. It means that  the zero set of f contains 
the zero set Z(S) of S. Furthermore, since the multiplicity of zeros of S (which is 
defined on the set of regular points of Z(S), i.e. on Z ( S ) \ ~ )  equals 1, f divides S 
(see e.g. [23]), so 

a2(z)_ f(z)  S(z)' zEC 2, 

is an entire function. On the other hand the Riemann Lebesgue lemma yields 
I f (x+( i ,  i))l-~0, as x-+oo, x e W ,  while IS(x+(/ ,  0)1• Therefore ~ ( x + ( i ,  i))-+0, 
as x--+oc. One can also see that  I~(z)] is bounded. Indeed, by (14), for any 5>0 
there exists Ca>0 such that  log I~(z)]<_Ca for 

z = {z �9 C 2 ; dist((z, b (~)} - a k ,  Z) > 5, k = 1, ..., N}, 
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and plurisubharmonicity arguments for log I~P(z)l extend this to any z � 9  2. 

Now the Liouville theorem yields ~ = 0  and hence f = 0 ,  which completes the 
proof. 

5. Solut ion to the  interpolat ion  prob lem 

In this section we solve the interpolation problem (2) under the assumption 
that  oe~EM and ft is uniformly separated. 

For each w=cJ( k ..... )(k ..... ) c f t  define 

(18) qS~(z) = H sin(w(@, b (k)}-oQ~))r~l,~l(z)rk2,/~2(~), 
kT~kl,k2 

where 
sin(rr (z, b (k) } -c k) 

r ,n(Z) = " 

The function r vanishes on ~t\ {co}, and also 

as follows from the fact tha t  f~ is uniformly separated. 

T h e o r e m  2. Let oe~J~7 M and the set f~ be uniformly separated. Then, given a 
sequence a= { a~ } �9 12 ( ft ), the solution f = fa �9 P W M  to the interpolation problem 

f ( w ) = a ~ ,  wCQ,  

exists and has the form 

aw 6 2 . (19) f a ( z ) =  E ~ O ~ ( z ) ,  z � 9  
wC~t 

The series converges in P W M  norm and also uniformly on compact sets in C 2. 

Proof. It  suffices to assume tha t  a ~ 0  for a finite number of w's only and 
prove tha t  the function fa, represented by (19) (for finite a no convergence problems 
appear) satisfies 

J//~JJ < Const IlalJz2(~). 

For arbi t rary ael2(Q) the s ta tement  will then follow as a limit case. 

Further we may fix some kl, k2 C { 1, ..., N}, kl/~k2, and assume that  all nonzero 
a~ correspond to points w of the form w =w  (kl,nl)(k~,n2), nl ,  n2EZ.  This is because 
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each a can be represented as a union of at most �89  such sequences with 
pairwise disjoint supports. 

Now (after fixing kl and k2) set 

02nl ,n2 = 02(kl ,nl),('~2 ,n~), 

Taking (18) into account, we have 

where 

and 

a n l , n  2 : a w n l , n  2 , CTt117"~2 ---- CO2~.ll ,n  2 " 

f a ( Z ) : {  ~ sin(7r((z,b(k)}--C~k))}ga(Z), 
kr 

g a ( Z ) = ~ - ~ r ] ~ l ' n l ( Z )  C r ]~2 'n2[Z ) ~  = E V T ~ l ( < z ' b ( ] g 2 ) > ) ~ k l ' n l ( z ) '  
T~ 1 n l  ,n2 ) n l  

v.i  (r = 5-" anl,n2 ~ in(~(r  e PW~. 
Cnl,n 2 ~--7Z2 --O~k2 

Set a(n~)={an~,.~}n~ez. We have a(~)cl 2, and ~ 1  Ila(nx)ll2=llan 2. By The- 
orem B, 

and 

11�88 IIL2(R) _< Const Ila(nl)Ill~(z), 

liVe1 IIL(m <- Const IlallP2(~) 
n l  

Now assume for simplicity that b (k2) is directed along the x2-axis (one can always 
achieve this by an appropriate affine transformation) and apply Theorem B once 
again. We obtain 

/ ~  Lg~(~)l ~ d.~x 

/ 2  / ~  ~ ,(k~)~ sin(Tc(Xlb~ k~)§ 2dx 1 dx2 
= oc co Vnl(X202 ] Xlb~kl)Q-X2b~kl)--nl+OZkl 

F IIVn~ IIL2(R) _< Ilallp2(a). 
nl n l  
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This completes the proof of the theorem. 

In the general case the sequence f~, as constructed above, need not be uni- 
formly separated. This forces one to implement the block interpolation procedure 
as presented in Section 6. Another approach is to modify the generating function S. 
One can easily see that  reasoning is still valid if each of the k-th factors in (13) be 
replaced by sk((z, b(k)l), where sk(~) is a sine-type function of type ir with real 
zeros. We do not know whether it is possible to find the factors sk(~) in a way to 
make the corresponding set ft uniformly separated. 

In view of possible image analysis applications, it may be important  to ap- 
proximate the original polygon by one with a separation property. To this end the 
following approximation procedure can be proposed. 

P r o p o s i t i o n  5.1. Any convex symmetric polygon can be approximated, from 
both inside and outside, by polygons with the separation property. 

Proof. By Proposition 3.1, a polygon M produces a uniformly separated inter- 

(kl) in (15) are commensu- polating sequence ~ if and only if for each kl the steps s k 
rable. 

Denote by S the set of all reals x such that  sin x C Q and cos x E Q. It forms a 
dense subgroup of the (additive) group R, since 

{ Trk 212 + 21m } 
SD ~ - + a r c s i n  ;k,l, m C Z  . 

212+21m+m 2 

Given a polygon M and c>0,  put ~(0) =0  and choose 5(1) such that  I~(1) -a(1)l  < 
~cl and ]5(s)IcQ. Then, assuming the vertices ~(j+l) be already constructed for 
j < k < N - 1 ,  denote by wj the angle between ~(J+l)-5(J) and 5 ( j ) _ 5 ( j - 1 )  j_>l, 
and choose ~(k+l) such that  I~ (k+l) a(k+l) l < 1 i~(k+l)_5(k) ~ ,  IEQ and 7kES. It 
gives us the values of all the new steps 

~(k~) E ~Q (20) 
except for possibly k N and hi = N .  Now we can shift the points ~(J), I<_j<_N, by 
hE (0, �89 along the vector ~(~) with no changes in &(J) ~(J ~) and rj for j<N,  the 
value h being chosen to provide the angle rN ES (by the definition, 8(N+I)=--50)) .  

It gives us automatically 15 (N+s) --5(N) I E Q, and so for the polygon ~r  with the 
vertices 5(J) we have (20) with all k and ks. 

As can be easily seen from the construction, the points 6.(J) can be chosen such 
t h a t / l g c M  as welt as MDM.  

The proof is complete. 

By applying a standard duality reasoning (see e.g. [7]), one can read Theorem 2 
as one about Fourier series expansions in M. 
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T h e o r e m  3. Under the assumptions of Theorem 2 each function 6EL2(M)  
admits an expansion 

wCf~ 

The series converges in L2(M)-norrn, and 

II411  (.) • le ( )l 
aJCf~ 

6. B l o c k  i n t e r p o l a t i o n  p r o c e d u r e  

M a i n  l e m m a s  

In this section we consider the case when the sequence ft is not uniformly 
separated, but still contains no multiple points, i.e. c ~ E M .  

Then, for each A > I  there exists e0=e0(6)>0  and A = A ( A ) > 0  with the fob 
lowing property. 

For each e<c0 one can represent f~ as 

(21) f~ = U ftl 
/=1 

such that 

(22) 

and 

dist(ftl, ftm) _> max{G A diam ft/, A diam f~m}, / 7 ~ m, 

(23) diam ~l _< Ae. 

Such a partit ion can be obtained in several steps. Fix an e > 0  and take 
e-neighbourhoods of all points from ft. If they are disjoint, we are done. If 
not, split their union into connected components A~ and let 1 ftk=AkA~2. Take 
max(e, A diam ~2~)-neighbourhoods of each ft l .  If they are disjoint, we are done. 
If not, take the connected components of their union and repeat the procedure. It 
is easy to see that,  if the initial c was small enough, then after a finite number of 
steps the procedure will be completed with the desired partition. 

We shall call such a representation an (e, &)-partition of ft, keeping in mind its 
main characteristics: c the order of the sizes of the blocks, and A the relative 
distance between the blocks. 
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We may  also assume c to be chosen small enough such that ,  given kl,k2�9 
{1, ..., N},  each 12z contains at most  one point  of the form cz (kl'~,)(k~'n~), and the 
condit ion cz(kl,,~)(k~,~), w (k~'n~)(ks'n~) Efh  implies c~ (k~'~d(k~'n3) Efh ,  /=1 ,  2, .... 

Given such an (c, A)-par t i t ion  (22), we consider the subspaces 

X,~ { f  C PWM ; f l ~ \ ~  = 0}. 

It follows from the uniqueness theorem that 

dim X,~ = ~ f t m  

and Span([.J,~ Xm) is dense in PWM. 

T h e o r e m  4. There exists A 0 > 0  such that, .for A > A 0  and C<co(A) ,  the 
spaces {Xm} form a Riesz basis from subspaces in PWM. 

The proof  consists of two parts.  According to Theorem C it suffices to prove 

the following two lemmas. 

L e m m a  6.1.  Let a sequence of functions {f,~}~I2({X,~}) be given. Then the 
series ~ m  fm converges in PWM and 

(24) fm _< Const IIf~ll~w., 

where the constant is independent of {fro}. 

L e m m a  6.2.  For each m there exists a projector 

T)(rn) : PWM ) Xm 

such that 

7 J('~) Ix.~. = id, 79('~) Ixz = O, l r m, 

and, for each f �9 PWM, 

(25) {;D(m)f} �9 12({X,~}). 

Before proving the  lemmas we need to fix a convenient parameter iza t ion  of 

the set {f~m}. First  note  tha t  in the case when f~,~ consists of one point,  the 

const ruct ion of 7 J(m) as well as the verification of (24) related to such f t ~ ' s  are 

quite s t ra ightforward and similar to the one-dimensional  case. We omit  the details. 
We say tha t  ft,~ is a bunch if it contains more than  one point. Each  such bunch is a 
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union of pairwise intersections of the lines R (kl'nl), R(k~,n~), ..., R (k . . . .  ), where the 

indices kl, k2,. . . ,  ks are pairwise distinct. The collection {kl, k2,. . . ,  ks} defines the 
type of the bunch. Given the type, one can define the bunch uniquely just by fixing 
one of its points, co (k~'~)(k~,~), say. So each bunch is defined uniquely by its type 
(]~1, k2, ---, ks}  and a pair of indices. Since the total  number of possible different 
types is finite, we may assume tha t  all bunches have the same type {1, 2, ..., s}. 

Making a change of variables if necessary, we may reduce the problem to the 
CaSe 

(26) z 1 0 = arg b (1) < a r g  b (2) < ... < arg b (s) ~7c. 

We also need some additional notation. Let 

M = {(?~1, Tts) E 2 2 ;02 (1 'nl)(  . . . . .  ) c a r n  fo r  soIYle ?7/, = ?Tt(nl ,  n s )  ) .  

Now, given (nl, n s ) c Z  2, set 

and 

M (~) = { ~ '  M~?2 r 0}, M (s) {~s" M (s) r 0}. 
, , n s 

For (nl ,ns)cAd, we may introduce the set {nz , . . . , ns  1} of complementary 
indices such that  

l<_p<q<s 

For l < p <  s we denote by nv (n l, ns) the corresponding complementary index. Thus 
the functions in X,~ have the form 

f (z)  = S(z) a(p~,~,ns) ~, ((z, b ( , ) i - n p - ~ ) ( ( z ,  b(q)l n q - ~ O '  ~ c c 2 
l<p<q<s 

Ser ies  c o n v e r g e n c e  ( p r o o f  o f  L e m m a  6.1) 

Lemma 6.1 will follow fi'om the s ta tement  below. 
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(27) 

Given a finite sequence {f(n~ ~)  ' }( ...... )c~4, the following relation holds 

~ (a~) 
~ ) e  f(~,ns) < Const E f(n~,~) 2 - -  L ( R ) "  

(nl, M (nl ,ns)EM 

Set x (1, 1). According to Proposition 2.1 it suffices to obtain (27) in the 
norm of L 2 (R 2 +ix) .  Since 

[S(~+i~)[ ~ i, 

we may switch to the rational functions 

~ER 2, 

nl,ns) 
r ,n~)(~) = apq E l<p<q<s ((~, b(P)} ~/;np))((~, b(q) ) _~s  

here 7 (~ )  =np + ap - i3p with 

3p=(x ,b(P)}>O,  p = l , . . . , s ,  

where the inequality follows from (26). The norm of ~ ( , ~ , ~ ) c ~  r should be 

estimated in L2(R2). One can see directly that r belongs to 7/+. Therefore 

, ~ 2M (nl,ns)eJM 

where B(7/-) denotes the unit ball in 7/ . We have 

( ...... ) e ~  ( ~ , ~ ) c ~  

= ~ I ('+~'~+) , 
(nl ,n~)CM 

and 

F f_~  ( ...... ) 
(28) i(',~1,~+) h(~1,~2) E apq o~ l<p<q<+((~, b(P)}-@~)) ((~, b(q)}-7 (n+>) d~2 d~l. 

... (;) (p) (p) For p=2,  ,s we let pp=(~,b }=~xb I +~2b 2 and consider the function of two 
variables 

1 b (p) 1 (29) ~(p) (~1, ~)) = ~&O--  ~ 1 -  
~2 ~2 

This function satisfies the relation ((~l, ((p)(~X, L0)), b(P)}=L)- The inner integrand 

in (28) is a rational function which has its poles when pp=@n;), p=2,  ..., s, that 
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is at the points ~2,p=Qv)({~, @~)) -  The imaginary parts  of these points Im G ,p=  
_ l _ h ( 1 ) / h ( 2 )  ~p /~p are all different, since gP) gq) gq) h(P) ~ n  when PCq. Therefore ~1 ~2 --Ul ~2 7 -u  

(30) i(n~,n~)= E _g~,~s), 
l<p<s 

where 

F i(pna ,ns) = h(~ l ,  ~(p)(~1, ~;np)))  t~es ~)(nl ,ns)(~1, ~2) d~l.  
(~p)~ 

For each p=2 ,  ..., s we estimate 

E 
(nl ,ns )E A/~ 

(a) 

I;nl 'T~s) = E E I; nl '?~s) 
?~p np(nl,ns)=7~p 

F np oc ~2 r j 

r  n ) ' ~ ( ~ 1 , ~ )  d ~ .  

It  follows from (29), that ,  for p = s ,  h ~ l ,  ~(p)(~l, .y;np))) is holomorphic for all ~1, 

Imp1 <0. For p=2 ,  ..., s - 1  this function is holomorphic in the strip 0 > I m E 1 )  
1 t~(P)/]~ (p) 

- -~- -u2  /~1 " 
Let now 

r ;  n l 'ns)  (~1) = Res r (~1, ~2)- 
(,~p) ~2 r ) 

These are rationM functions of degree at most s -  1. They decay at infinity and their 

poles are located at points xi l  which satisfy ((~1, ~2), b (p)) = @ ~ )  and ((~1, ~2), b (p) } = 

7q(~). The corresponding points ( x i~ ,~2 )+z  belong to the same bunch ~t (nl'~.J. 

Therefore all poles of r~ '~1'~~) are located in a disk of diameter  at most Ac. 
On the Other hand nl is different for different summands in (31). Since each 

z.(1)c ~ assuming r taken small r ( ~ ' ~ ' )  has pole at the point ~l satisfying ~1 ~1=yl  , 

enough, we obtain tha t  all poles of rp (~'n~) are located in small disks around the 
points ~ (n l ) /g l )  a / ' 1  �9 Applying now Lemma 2.1 we obtain for sufficiently small ~, 

f~ ~ (~1-i5) ~ /~ (32) r(nl'~'~s) d~l ~ E I~'~p(7~l'T~s) (~1-i(~)12 d~l" 

In order to estimate each I ('~l'n~) we need two more inequalities. The inequality 

I],'(~ n .. . . .  ) ( . - i ~ ) H L 2 ( R )  < C o n s t  Lie( . . . . . .  )l l-" 
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follows from the definition of rp (n~'n~), and the triangle inequality. 
The inequality 

follows from Proposition 2.6. 
Now it remains to change the path of integration in (30) to R - i S  and then 

apply the Cauchy inequality twice, 

_[(p ..... )= p ~  / 2  h(~l--i(~'~(P)(~l-i~'~; rip))) E 
n ----c<) np(nl,ns)=np 

< np____cx) Q __cx~ Ih(~l - i(~' ~(p) d~l ) 

2 .~1/2 

< (Up-- Ih(~l --i5, \1/2 

X ( n ? o o / ~  np(n~n~)=n p ]2 X1/2 

z 0, ..... _< Const IIhH~ L (R)f l  
Up O0 rtp(nl ,ns)=np 

(5 _< Const IBhlM ~ Ill (~*'~*) II~w. �9 
~ . . . .  ,( . . . . .  ) ~ 

This completes the proof of Lemma 6.1. 

C o n s t r u c t i o n  a n d  e s t i m a t e  o f  p r o j e c t o r s  ( p r o o f  o f  L e m m a  6.2) 

The main step in the proof of Lemma 6.2 is a construction of the projector 7 )('~). 
Let a bunch ~,~ be fixed. As in Lemma 6.1 we assume for definiteness that  

its type is {1, 2 , . . . , s}  and the corresponding indices are {nl,  n2, . . . ,n~}.  The 
corresponding space X,,~ is 

x m  = s(z)Y.~, 
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where S(z) is the generating function (see (13)), and Ym is the space of rational 
functions of the form 

(33) ~(z) 
X-" apq 

l~p<q<s 
We start  by clarifying the block condition, i.e. we express the fact that  all 

points of f~,~ are located in a disk of diameter at most diam f~. Consider the linear 
forms 

( 3 4 )  A~(~):A}'~I'~)(~-) : (~,b(~)~-~-~, l -~ ,  2,...,~. 
Each such form vanishes at the points w(~,n~)(P,~), pr  Since d iam(f t , , )<Ae,  we 
have 

(35) IAl(z)l < cr 

when dist(z, ~ m ) <  10v, say. The constant c can be chosen independent of m. 
We need an additional construction. Fix jE{2 , . . . ,  s}. Then each vector b (1) 

admits a (unique) representation 

b (0 = el,~ (j)b (1) +cj,lb (j) . (36) 

Similarly we have 

(37) 

where 

(38) 

Let 

~l (~) = Cl,l (j))~1 (~) ~-Cj,l/~j (~) -~-I~jl, 

nj l  = Cl,l (j)(Ttl @0~1 ) @Cj,l (nj  @OZj) -- (Tt I @O~l). 

K=sup{Icl, l( j)[,  Icj,ll} . 
j,1 

It follows from (35) and (37) that  

Inj,ll < 2Kce, 

the estimate still being independent of the block number. 
We also note that  (keeping j fixed) we can take A1 and Aj as independent 

variables. Then ( s Aj) is the solution to the equations 

-'~1 ( r  a l ,  , ~ j t ~ ) = a j .  

Let 0 < r < R < o c  be some numbers, that  will be specified later, and e,~= 
max{e, diam ft,~}. Let 

~ = T ~  "~) {(a~,aj)~c~;fa~f=R~,  fajf r ~ } .  
Given a function g)(~), (ETj, w e  put 

Q~.O~(z ) 1 L ,  ~(~(J) dAjdA1 
(2i~) ~ ( ~ ,  Aj))  (:~j (~) _ ~ j ) ( :~  (~) _ ~). 
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L e m m a  6.3. There exist 0 < r < R < o c  and a > 0  such that 

l < j < s  

for all ~CYm and zEC 2 satisfying 

(4o) > 

The numbers r, R and a can be chosen to be the same for all bunches t2~. 

Pro@ Let ~CY,~ have the form (33). We have 

fA d)~l Q~'~)9(z) 1 E apqJpq ,~l(Z)_~l , 
(2~)  2 1]=Re.~ l<p<q<s 

where 
P dAj .Ipq = / 

In the integral Jpq we have IA1 I=Ra. , .  Relation (37) yields 

IApl >_ [cLp(j)l IAII- KIAjI-  iKee 

for pr  1. Taking R and r so tha t  

/~min Ica,/(j)l > 2K(r+2e) 
1,j 

we see that  for pr  Ap(4 (j) (A~, Aj)), if considered as a function with respect to Ay, 
does not vanish in IAjl_<re~. Take a>2R. Relation (40) yields Aj(z) -Ajr  for 
I~jl<_re~,. Therefore ]pq--O i f j r  q, and the only smnmands we are left with are 
those for which either p or q equals j .  

Up to now the coefficients apq have been defined for p<q only. Set aqp--apq. 
Then 

fix dA1 (41) Q~'~)r E a5~ Ijl AI(z) -A1 
2i7r i=Rs m 

l</<s i 
l#j 

where 
1 9(~ 1 d)~j 
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Let 1 > 1. We use the identity 

Aj At At - cj~ Aj 

If at=At(~(~)(A~, a~)), relation (37) yields 

(42) 1 -  1 ( ~ j  cj~) 
/~j/~l Cll(j)Al+~jl AI ' 

Back to (41) we obtain 

QF)r ) = ~ ./~ d~ 
11 I~r,~ A1/~ j ( z ) (A l ( z )  A1) 

Consider the two factors c~l (j)A~--njt and A~ (z) -A~ as functions with respect to A~. 
One of them vanishes outside while the second vanishes inside the circle IAll Re~.  
Therefore 

�9 A~ (~)),~ (~) -<z-A<.~ Aj (~)(~lt (j)A~ (~) +,~)" 

Now 

1 ~x d/~j 

1 f Cjl dAj 

1 

here the first summand in the middle expression is evaluated by the residue theorem 
while the second just vanishes since Al(~(J) (A1, Aj))/LO when IAjl<rc.~ and IAll= 
R~ .... Besides, a straightforward calculation gives 

1 
I ~ -  ~),~(z) 
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Summing this up we obtain 
gl j  

l<j<s l<j<s 

( 1 
(43) + ~ aj, ~j(z)(<,(j)X~(z)+nj,) ~ 

l < j < / < s  

Now we observe that  

(44) c U (l) clz (j) 1 nyz 
- -  - -  ~ Clj - - ~  ~lj = - - - - "  

Cjl Cjl Cjl 

Therefore, for A1 Al(z), )U=Aj(z), At Al(z), we get 

1 1 1 

(45) 1 

AjAz 

1 ) 
"~l (Z) (Clj (l).~l (Z) ~- T~lj ) " 

(Cl/(j)~l q-njl ).~l 

The latter equality follows from (42). Substitution of this into (43) yields the desired 
relation (39). 

In what follows we need to locate the points ( c C  2 which correspond to the 
points (A1, Aj)ET ( ' 0 .  Given a bunch ~ of the type (kl, ..., k,), set 

f (m) = U ~jj(m), and T -]-(m). 
j 2 m--1 

Since the choice of r and R is independent of A we can now find A 0 such that,  
for each (e, A)-partition with A>A0,  we have 

(46) dist(T, Z( S) ) > O, 
here Z(S) is the zero set of the function S. Besides 

(47) L := sup{ I Im zl;z ~ 7-} < oo. 

Now define 
.~(m) 

(4s) E eF ) 

and 

j 2 

(49) ~P('~): f ,  >S(z)Q('~)(~)(z); 

the right-hand side of (49) is well-defined for z satisfying (40). Actually, it has an 
extension to the whole C 2. 
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L e m m a  6.4. For any f EPWM the function 7)('~) f can be extended to a func- 
tion from PWM. 

Proof. We start by giving an explicit expression for 7 )('~) , Let fCPWM and z 
satisfy (40). We keep the notation of Lemma 6.3, 

Q(y0 ( f ) ( z ) =  1 / x  Jj(z) dAi 
J ~ 11 R~., /~I(Z) ~1' 

where 
1 f ,  f(((J)(kl,Aj)) dAj 

at(z) = ~ o~,l ..... s(C(5)(all at)) ~t(z) at 

Let 

St (~1, aj) = S(<(t)(~1, ~j)) 
At 

As was noticed in the proof of Lemma 6.3, the functions Ap(4(t)(A1,)~j)), pCj, 
do not vanish on {(al,at); lall=R~.~, latl_<r~.j, and so the same is true for the 
function S t. Therefore, 

1 /) ,  f(4(J)(al,at)) d . X j  f(4(t)(al, 0)) 
Jr(z)= ~ _ , [ = ~  ats t(al  at) at(~) at = a~st(al 0)at(~) 

here 4 (t) (A1,0) is the unique solution to the system 

(50) /~1(4) ~1, /~j(4)=0, 

and so, 

(51) 0(~,~, ( f ) ( z ) =  1 f;~ f(4(t '(kl,  0)) dA1 

The integrand in (51) has its singularities at the zeros of the function Sj(/~I,0). 
It follows from (50) that these are precisely kl(4{), ~/=co (z'~z)(t'nj), lCj. Besides, 
relations (34) and (36) (38)imply 

C1, j ( l )  - -  l~'Jl 
Cl,/(j)  

Thus 

( f )  f(c~(l'nl)(J'nr 
O('~) (z) = FEf(co(z'n~)(J'nJ))Aj~(z) 

z#j 
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with 
Ajl(z) 

J J �9 /~j (Z)(-~1 (Z) --/~1 (~l))/~1 (~l)8J, 1 
Here, by direct calculation, sj=Sj(O, 0)r and 

sj,l =~2cLz(j ) 1-[ sinTrAk(w(Z'nd(J'ns))" 
k#j,t 

In particular, by (44), st,j= Sj,l/cj,1. Therefore, 

Al,j(z) = 
-'~l (Z)(-~1 (Z) @nlj/C1, j (/))~1 (~J)Sl,j 

czz 

/~l (Z)(/~1 (Z)~-~jl /Cl, l  ( j ))~1 (~[)S j,1 

and, in view of (45), 

(53) Aj,l (z) +Al,j (z) -- cn (j) 

Now (52) and (53) give 

( f ) f(~(1,nl)(j,nj)) 

l< j< /<s  l<j<_s 
f(co(1,nl)(j,nj)) 

= E f(w(l'nd(j'nJ))Cll(J)Aj(Z).~l(Z)Sjl ~ E /~I(Z)Aj(Z)Sj 
l<j<l<s l<j<s 

Therefore, if IS(z) l>ae, 

(54) 
( ~< f(cd(l'nl)(j'nj)) 

P(~)f(z)=S(z) Al(z)Aj(z)sj ~- E 
l<j  s l<j<l<s 

f(w(l'nd(j'nJ))Cll (j) ) 
A j ( ~ ) A ~ ( z ) ~ j ~  " 

Representation (54) implies that 7 )(m) f can be extended to an entire function in C 2. 
A direct estimate shows that 7)('~)fCPWM. The proof of Lemma 6.4 is complete. 

The operator p(m) thus constructed is the desired projector. Indeed, it follows 
from Lemma 6.3 that P('~)lxm-id. On the other hand, (54) yields that P( '~) f=0 
for all fEPWM satisfying f l~,  =0. In particular 7)('~)lxk =0 , rock.  

Now we prove (25). Let ~=(1,  1). It sumces to prove that 

E 7)(m)r 22 ~ <Const 2 Ilfllc:(R2) J g (R +2iLz)- 
m 
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Consider the set 

E~ = {z C RU + 2iLz ; IS(z) /> ae}. 

This set consists of the whole plane R 2 + 2 i L x  from which small strips around 
intersections of this plane with Z(S) are eliminated. For zEE,, one can use repre- 
sentation (48), (47), and (41). 

On the other hand, E~ is relatively dense in R 2 + 2 i L z ,  that  is there exist A>0  
and 5 > 0 such that  

mes(QanE~)  > 5 

for each square QACR2+2iLz with side length A. It now follows from [12] that,  
for fEPWM, 

IIfIIL:(I~+2~L,) <_ Const IIfllL~(E=). 

(55) 

So (25) will follow from 

E 117)('~)11~2(E=) < Const Ilfll~=(R2)- 

Fix a number m. We have 

j 2 

and since IS(z)l_<Const, zeR2+2iLz, one can replace 7 )(m) by Q('~)in (55). Fhr- 
thermore we have 

and 

s(.~) 

3=2 
z E Ea, 

( f ) 1 ~  f(s dAjdA1 
Q~rn) (Z)--  (2i7r) 2 m) S(~(J)(/~I,Aj)) (~j(z)-/~j)(,~l(Z)-/~l)" 

Now the triangle inequality yields 

1 f f(~(il)i (.~1 .~j)) QJm)(f) (Z) L2(Ea)~--~]T(m) ~ 'd'~ll'dA3" 

• sup 1 L~(E~)" 
(~1,~,)c~ TM' (~a(z) -~0)(<(~)  &) 
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The second factor on the right-hand side is uniformly bounded. In order to estimate 
the first factor we note that  (46) and (47) yield 

Is(z)l • z~T.  

Therefore 

.~T5 ( f(~(J)(A1,/~j)) id~ll ld,~jl.~ /T  } if(~(j)(al,aj)l ld,,~ll ldaj I 
"~) S ( ( ( J ) ( , ~ I ,  A j ) )  m) 

< Const  ( f  I/(~ (~)(~, ~j))l 2 IdYll _ \#TF ") IdAjl) 

k J ~  (m) 

Finally we have 

II~ fHLe(R2+2iL~) <_ Const If(~)l 2 drnr ( ) 

and it remains to apply the inequality 

.~,, ,) [f(~)l 2 din< < Const [[.fU2PWM , f q  PWM. 

The proof of this inequality is similar to that  in Proposition 2.6. It follows from 
subharmonicity arguments combined with estimate (3). 

Now given a function fCPWM, set f,~ :p(-0f .  By Lemma 6.2 we have 
~ , ~  IIf,~ll2<co, and by Lemma 6.1 the series 

g(z) = E / , ~ ( z )  
m 

converges both in L2(R2)-norm and compactwise. It follows that  (g f ) l a = 0 ,  so 
by Theorem 1, g=f.  This completes the proof of Theorem 4. 
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