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Introduction. Let HI (R  a) and H I ( T  a) denote the usual Hardy spaces on 
Euclidean space and the torus [18], [19, p. 283]. Given a function in H I (R  d) its 
Fourier transform is a continuous function on R d which vanishes at the origin. 
Thus the transform may be integrable with respect to a measure which is singular 
at the origin. 

We have two main results. One is a characterization of all such measures and 
the other is an application to random Fourier series. 

1. Main results. Denote by A the integer lattice in R d and Q~ the cube 
{xERd: eo~j--e/2<:xj<eo~j+e/2} where ~-----(cq, ...,c~d)EA and e>O. 

Theorem 1. Let # be a positive Borel measure o n  Rd~{O}. Then 

(1) s u p f  If l  @ < 

where the supremum is taken over all f i n  H I ( R  d) of  norm 1 i f  and only i f  

(2) sup ( 2 / ~  (Q~)2)1/2 < ~ .  
s  

Moreover, the corresponding suprema are equivalent. 

Corollary 1. Let {m~},ea be nonnegative numbers and define a measure on Re\{0} 
by # = ~ # o  m~6~ where 6~ is a point mass at x = e .  Then 

(3) sup ~ '~,o lf(~)l m~ < ~ 
~>-0 

where the supremum is taken over all f i n  H*(T d) of unit norm i f  and only i f  l~ satisfies 
condition (2). 

Remarks. (a) For  d =  1, Corollary 1 is an unpublished result of  C. Feffer- 
man, see [1]. It contains in particular the classical inequalities of  Hardy [9] and 
Paley [13]. Theorem 1 is a generalization of this result. 
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(b) Theorem 1 can easily be generalized by replacing the 1-norm condition in 
condition (1) by a p-norm for p ~ l .  Corresponding to condition (2) is 

(2") s u p { ~ o l t ( Q ~ ) 2 / 2 - p }  2-p/2p < ~ ,  1 <= p < 2 
6 > 0  

sup #(5 <- Ixl ~ 2~) 1/p < ~ ,  p => 2. 

The case p = 2  is a result of  Stein and Zygmund [20]. 
The space of  functions of  bounded mean oscillation (BMO) introduced in [11] 

are naturally involved in this problem by means of Fefferman's duality theorem 
[6], [7]. We restrict our attention to functions defined on the circle (d=  1). The 
following corollary is a consequence of this duality and a result in [5, p. 105]. 

Corollary 2. Let {m,}~=_~ be a square summable sequence of  nonnegative num- 

bers. The function f with Fourier series ~ mne ~"~ is in BMO i f  and only i f  condition 

(2) is satisfied (for the corresponding measure IZ). 

Theorem 2. There exists an IS-sequence {m,} with the property that ~ 2 ,m ,e  i"~ 

is not in B M O  for  any sequence {2,} with T2.1--~ for all n, 

Proof. Let E c Z  + be a Sidon set which is not a lacunary set, see [10]. It fol- 
lows that there exists a sequence of  nonnegative numbers {m,}~l ~ supported on 
the set E which violates condition (2). Let f ~  m , e  ~"~ be the corresponding func- 
tion in L 2. 

By Corollary 2 f i s  not in BMO. If  {2,} is sequence with 12,[--1 then there is 
a measure p whose Fourier coefficients/~(n) agree with 2, on the set E [10]. Since 
BMO is closed under convolution with a measure it follows that ~ 2,m,e~"~ 

Remarks. (a) The motivation for the last theorem is the well known fact that 
the random L2-function is in L p for p<~o [21]. Since BMO is contained in all 
of  the LP-spaces it is natural to extend this result. Theorem 2 provides a strong 
counterexample to this conjecture. See also [16]. 

(b) The existence of the sequence {ran} could have been deduced from the 
converse to Paley's Theorem which was proved by Rudin [14], see also Stein and 
Zygmund [20]. 

(c) Another curiosity along the same lines is that a lacunary function (Hada- 
mard gaps) in BMO has some continuity properties, namely, a lacunary function 
in BMO is in the space of functions with vanishing mean oscillation (VMO) intro- 
duced by Sarason [15]. 

2. Proof of Theorem 1. An atom a(x) corresponding to a cube Q is a measur- 
able function supported on Q which has zero mean and is bounded by [01-1 (1" [= 
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Lebesgue measure). By a result of  Coifman [3] the sufficiency of  condition (2) will 
follow if there is a c <  ~, with 

(4) 

for all atoms a. 
Part  of  (4) is straightforward. 

flald~<_- c 

I f  a is an a tom corresponding to a cube of side 
length 6 then by a well-known estimate [d(y)l<=clyl6 for y in Q~ where e = 6  -1. 
Here e is a dimensional constant independent of  a. Now it is not hard to show that 
(2) implies 

=-'f Ixl dp(x) <= c (e > O) Qg 

and hence (4) will follow from 

(4)' 

where e is related to a as above. 

S=<,\Q~ :i ctu _-< c 

This result is now easily seen to be a consequence 
of condition (2) and the following theorem. 

Theorem 3. There is a constant c< co such that i f  a(x) is an atom corresponding 
to a cube with side length 6 and e=fi -1 then 

~ ' ,  sup [d[ 2 -<_ c. 
QI 

Proof. We only prove the result for d =  1. The general case involves an itera- 
tion technique which is somewhat more complicated to describe. In addition, it 
suffices to assume that a is smooth and supported in the interval [ -6 /2 ,  6/2]. 

Fix an interval I of  length e and assume that  f is continuously differentiable 
on I. I t  is elementary that sups [ f -b l<=fr  ]f ' l  where b is the average [I]-~fIf .  
Hence 

Normalizing the Fourier transform so that  I f l z = l f l 2  we obtain 

Z.  sup t< I 2 =2  [+ f -  l<it=+= :'i =] 

1 612 2 612 

from which the theorem follows. 

Remark. The results in [2], [12] concerning the behavior of  d follow from 
Theorem 3. 
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In order to prove that condition (2) is necessary we require some examples 
of functions in HI(Rd). The following lemma is sufficient for our purposes. 

Lemnm4. Let gEL~(R a) and assume that ~ = 0  on ly l~ l .  I f  f=gf[B(o,x) 
then f E H  1 and }lflIa~=el]g]Jz. (Here Xs(o,1) is the characteristic function for the 
unit ball centered at the origin.) 

Proof. Assume that ~ is a C=-function with compact support in IY] >1. Then 
f is the convolution ~ .  XB(0,1) and hence is a rapidly decreasing function which 
vanishes in a neighborhood of the origin. Thus, f i s  in H 1. If  uEBMO (R a) and 
b is its average over B(0, 1) then by the Schwarz inequality 

I flu I = 

f I" l u - b  ~ dx )1/2 
<= c I g 2 ij.l ~-~Va-~--i 

-<- r Jl glJ~ II ull,,~,o. 
The first inequality is a well-known estimate for ~B(0,,) and the second a slight 
extension of inequality (1.2) in [7]. By duality the proof is complete. 

The proof of Theorem 1 will be complete once we establish the necessity of 
condition (2). However, if (1) holds with supremum A then from Lemma 4 we 
deduce that 

(5) f [p (y + B (0, 1))3 ~ dy ~ cA 2. 

It follows easily that there is an M<o% 6 >0  for which ~l~l_~M p(Qa~)2<=cAZ where 
c is a dimensional constant. But then a dilation argument gives this inequality for 
all 6 >0  and (2) now follows in an elementary way. Thus the proof of Theorem 1 
is complete. 

3. Proof of the Corollary. The space H01(T a) is th'. subspace of HI(T  ~) con- 
sisting of functions with zero mean. Given f~HX(R a) we define 

Pf(x)= ~'~e a f ( x + a ) .  

Since f ~ U ( R  d) we have Pf~LI(T d) and by the Poisson summation formula it 
follows that f (e)=(Pf)^  (c 0 for e~A. Here the Fourier coefficients for functions 
on T d are given for e~ A by 

P(~) = f T~ F(x) e-~"'~'~ clx 

where T d is identified with the d-fold product of the unit interval. 
The proof of the corollary is an immediate consequence of the following theorem. 

Theorem S. P(H~(R~)) =H](T~).  
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Proof. Let q~ be a nonnegative rapidly decreasing function for which q3 has 
support contained in the open unit ball centered at the origin and ~3(0)= 1. Put 
q~(x) =ed9 (eX) for 0 < 5 <  1. For  a polynomial F(x) = ~  a~e 2€ let f~ = F .  q),. 
Then f~6HI(R d) and f , (~ )=a~  for ccEA. 

Claim. lim,_ o [I frtlHI(Ra)<=IfFIIHI(Ta). 

We start with the easily derived fact that 

(6) l i m f  glq~I=fTdgdx 
~ 0  ,) R d 

for all continuous functions g on T a. Observe that j]q),[ll=l. 
Let S], Rj denote the j t h  Riesz transforms on T a, R d. Then by (6) we obtain 

lira sup [llLlla+ Z~ IIRjAII1] ~ ]l FIIH~(T,) 
~ 0  

+ lira sup Zax li Rjf~- (Sj F) ~o~ll~ 
~ 0  

so that we must show that the second term on the right is zero. Since F is a poly- 
nomial it suffices to fix aEA with ~ 0 ,  put 

h~(y-~) = (yj/lyl-~jl~l)O,(y-=) 

for some l<=j<=d and show that lim,.oll/~l]x=0. 
Now ~, is supported in the ball of radius e centered at the origin. Thus, we 

may assume that h,(y)=m(y)~b~(y) where m is smooth, all derivatives up to order 
d + l  are bounded by a dimensional constant, and [m(y)]<=c]y]. The conditions 
on m imply that IIDh,llx<=c where D =bd+I/~y~+~+... +3d+~/Oy~+~. Hence I~,(x)l-~ 
clxl -(d§ Clearly, lira,_+0 []h~[Ix=0 so that lim~_~0 I1~11=--0 and thus the above 
estimate implies that lim~_~0 lIh~lIa=o. This proves the claim. 

To complete the proof  we fix F in Ho~(T d) and note that there are polynomials 
Fo~H2OJ) with Z I1F~llz~<~ and F = ~  F, .  Using the above we findfo~H~(R d) 
with Z IIf~ll~,X(R~)<oo and Pf,=F,. Thus, Pf=F where f = ~ f ,  is a function 
in H 1 (Rd). 

Remarks. (a) Theorem 5 is an extension of  a result of  deLeeuw [4], see Gold- 
berg [8] for a similar result. 

(b) A sharpening of the lemma is that given FCH2(T d) and ~>0, there exist 
f~H~(R d) with Pf=F and 

IIFIIn~(T~) =< I/fllr*~(R~) => (1 +~)IIFIIH~(T~). 

This is best possible since ItPf[I/-/I(T,)<I{ f I I , t~ , )  in general. 
(c) A similar argument to the above shows that P(L~(Rd))=L~o(Td). 
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