
A note on Euler's e-function 

Paolo Codec~ 

Let ~o (n) denote the Euler ~o-function; we define the error term E(x) by the 
relation 

Z . ~ x  ~o (n) = 3 x~ + E(x) 

By a simple elementary argument (cf. [2] p. 268) it may be shown that E(x)<<x lg x, 
while A. Walfisz (cf. [6] p. 114) used Vinogradov's method to show that 

E(x) << x(lg x)2/3(lg lg x) 4/3 

In the opposite direction, S. S. Pillai and S. D. Chowla (cf. [3]) proved that 

E(x) = ~ (x  lg lg lgx)  

and P. Erd6s and H. N. Shapiro (cf. [1]) proved that 

E(x) = f2 +_ (x lg lg lg lg x). 

Concerning the average of  E(n), Pillai and Chowla showed that 

(1) Z.~xE(n)  = 2-~ x~+o(x ~) 

and conjectured that (1) may be "as deep as the prime number theorem" (cf. [3] 
p. 95). In this Arkiv, D. Suryanarayana and S. Sitaramachandra Rao (cf. [4]) showed 
that this latter error term can be replaced by 

(2) O (x 2 exp ( -  c (lg x) 3/5 (lg lg x) -  1/5)) 

and that, if the Riemann hypothesis is assumed, then it may be replaced by 

(3) O(x9/5+9 
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The object of this note is to give a proof of (1) without using the fact 
that {(1 +it)r and to show by standard techniques of analytic number theory 
that, if E~(x) denotes the error term in (1), then the infimum of those e's for which 
E~(x)<<x T M  is equal to the supremum of the real parts of the zeros of ~(s). Thus 
the Riemann hypothesis is equivalent to El(X)<<x 3/2+~. Moreover, it is shown 
that estimates of type (2) can easily be obtained by classical methods. 

Let El(x) denote the error term in (t). It  is easily seen that 

(4) El(x) = l___2_jc+,~ ( ( s - l )  x~+~ ds+O(xlgx) 
2zci c - ~  ((s) s ( s+ l )  

for 1 < c < 2 .  Now the functional equation for ((s) relates ( ( s - l )  to ( ( 2 - s ) ;  
whence we deduce that ((s-1)/((s) is regular in the half-plane R e s ~ l .  The 
contour integral above can therefore be moved onto the line Re s = 1. (The integrals 
over the horizontal sides of the rectangle c+__iT, l:kiT tend to zero for T-*oo, 
cf. [5], p. 185.) The resulting integral is absolutely convergent (cf. [5], p. 81) and 
thus by the Riemann--Lebesgue lemma we obtain E~(x)=o(x2). This gives a proof 
of (1) without using the fact that ((1 +it)CO, i.e. without using the prime number 
theorem. 

I f  we use the classical zero-free region for ((s) and move the contour further 
to the left in the usual way, we find that 

(5) El(x) << x ~ exp ( -  c(lg x) 1/2) 

(Similarly, using the best known result on the zero-free region for ((s), cf. [6], p. 226, 
one can establish (2).) 

To sharpen (3), we note that if  0 denotes the supremum of the real parts of 
the zeros of~(s), then we can take the contour to be the line Re s=O+~ and deduce 
that El(x)<<x ~+~ On the other hand it is easy to see that 

(6) 
~(s) s ( s+ l )  z~ 2 (s -- 2) (s + l) " 

In view of the relation El(X)=f~E(u)du+O(xlgx) the estimate El(x)<<x 1+~ 
then implies that ( ( s ) r  for Re s>~.  This establishes the desired equivalence. 
It should also be noted that (6) implies the estimate El(x)=f2+(x 8/2) also by 
standard means. 

The author wishes to thank the referee for his valuable suggestions which made 
it possible to shorten considerably this note. 
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