
On the zeros of a class of generalised Dirichlet 
series VI 

R. Balasubramanian and K. Ramachandra 

1. Introduction. This note is in the nature of an addendum to [3]. In [1] we 
stated that if we follow the method of [3] by working with the auxiliary coefficients 

A-~,(X) (where X>0,  2 ,>0)  in place of the auxiliary coefficients E x p ( - - ~ )  

we get Theorem 1 below. The function A is defined for all ~>0  by 

1 f2+i= Z w Exp (W 4k-l- 2) dw 
A ( z ) =  2~--? ~-i= --~-' 

where k is a positive integer which shall be a fixed constant. By moving the line of 
integration to R e w = A  and R e w = - A  we see that A (z)=O(z  A) and also A (Z)= 
I + O ( z  -A) where A is any positive constant and the O-constant depends only 
on k and A. 

Theorem 1. Let 0 < 0 < @  and let {a,} be a sequence of  complex numbers satis- 
fying the inequalities 

la•I _-< (~--0} -1 and l~Sm=l aml <= (-~--0) - I N  o 

for N = 1 , 2 , 3 ,  . . . .  Then the number of  zeros of  the analytic function ~(s)+ 
Zn=l an n-s  in the region 

> 1 . o T < = t < 2  T a = -T+-ff, _= 

exceeds T(log T) 1-" for all T>-To, where 5>0 is arbitrary and To depends only 
on 0 and 5. The same lower bound also holds for the derivatives (say the I th derivative 
of  the analytic function in question) provided To is allowed to depend on l as well. 

The proof of this theorem, with some generalisations, will be given in w 3. How- 
ever in w 2 we prove by the method of [3] yet another theorem of a sufficiently gen- 
real nature, namely. 
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Theorem 2. Let {a,} be a sequence of  complex numbers such that the first non- 
zero an is 1 and [a,l<=(n+l) a, where A ~  I is a constant. The numbers a, can depend 

on the parameter T to follow but the first n say no for which a,,o=l should not depend 
on T. Suppose ~ = a  (la,[ 2n-s) has a finite abscissa o f  convergence say 2a, and 

1 
that ~ = 1  an n-~ can be eontinuedas an analytic function' F(s) in the region a ~ a - - ~  , 

T~t<=2T, and there max IF(s)[<T a (T  being a parameter =>10). Then a lower 
bound for the number of  zeros of  F(s) in the region referred to is T(log T) I - "L  2, 
where ~ > 0  is arbitrary, T>= To = To (e, A), and 

L =  
( ~ : = t  [a"12 ( A (X ' ' 2 '~ /2 `  la"12 ( JJJ d(n)n': (A 

1 
where al, a2, o~a are constants satisfying 2a2=~l+cq,  and a - ~ - < ~ l <  a.~<~3<~. 

It is further assumed the parameter X satisfying the following two conditions exists 
and is defined, i f  it exists, by these conditions. 

1 1 

T x0oa ~ X ~ T l~ (i) 
and 

(ii) 
where 

~xa,<=2x {a,I z ~ Xr 

= lim sup {log ( ~ z ~ , ~ z  la,l 2) (log %)-1}, 

and tl is a sufficiently small positive constant depending on ~1, ~2, ~ .  Moreover 
d(n) is defined as usual by ~ 2 ( s ) = ~ = 1  (d(n)n-S). 

Remark 1. It is convenient to call L 2 as the loss factor. In the last remark 
in part A of [3] we have stated the result with the loss factor L40 where 

without proof. However the methods for obtaining this are sketched in sufficient 
detail there. The method of  [3] actually leads to the loss factor L0 ~ and also to Theo- 
rem 2 above. It should be mentioned that in the last remark in part A of [3] the 

1 =, 1 
condition ~ ~,~_x ]a.] z>>X~ should read ~ . ~ _ x  la, I ~>>x-~- 
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Remark2. As a nice application we can point out that e21T~at, p-Se-P/T 
where p runs through all primes has >T( log  T) 1-" zeros in a = - ~ -  ! 0 >  1 -s, T=t=2T< < 
for all large T. 

n 

Remark 3. However if we apply Theorem 2 to ~(s), ~'~=1 (p(n)e-Y n -s) or 
~_ ,~=T (#(n) n-s) we cannot get such a nice lower bound. We get the lower bound 
T(log T)-".  Here as usual (~(s ) ) -x=z~ '=l  (#(n)n-~). 

j o~ Remark 4. Define dj(n) by (if(s)) = ~ = 1  (dj(n)n-S) �9 Then it is possible to 
bring in the divisor function dj(n) (j=>l being an integer) or some such other func- 
tions in the lower bound for the number of  zeros. We mention a result in this direc- 

J 
tion. A lower bound for the number of zeros is T(log T)a-S(L1) i-~, where the 

loss factor (L0 j-1 is defined by 

[a.12 ( A ( X ) ) ~ ) ( S  ,~ [a"]~ (A (X))21-1 
Z ' d j ( n  n2,~ I,x-,.=l n~,~ 

L1 [.~, ,a., e [A[X))2) t /a(Z,  dj(n ) 
d j (n) n e~x n ~ 

where the accent denotes the sum over any subsequence of  {a.}, provided the con- 
dition ~'x~=,~_2x [a.I ~>=Xe-" is satisfied (~ being defined as before). In particular 
if la.] = 0  or 1 and ~x~_.~_2x la.I ~>>X, we have, by taking j = 2 ,  and the accent 
to mean the restriction of  the sum to those n for which d(n) lies between (log n) I~ 
and (log n) l~ (and using Hardy--Ramanujan  theorem on round numbers 
which says that almost all n have this property in an asymptotic sense), we get the 
lower bound T(log T ) - " - "  where #=log(~-).  Also another particular case 
a,=dj(n) gives the lower bound T(log T ) - J ' + t - L  

2. Proof  of Theorem 2. We use finite or infinite series of  the type 

(where the first n (say no) for which a. ~0  satisfies a.o = 1 and further no is independ- 
ent of the range of s in question, and further a. can depend on T subject to T =  ~ t_-< 2T 

and la,]<=(n+l) a, X>0 ,  0 < 1 < 2 1 < 2 2 < 2 3 < . . . ,  0 < 1 < 2 , + 1 - 2 , < A  for 

n = 1, 2, 3 . . . .  ). We also use series of  the type 
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where 0 <  Y<=X. We prefer to call these Hardy polynomials of the first type and 
Hardy polynomials of the second type. Both these functions are not actually poly- 
nomials but entire functions. We first prove that these functions assume "large 
values on a big well spaced set of points". Next from this result we pass on to a 
similar result on the function represented by ~ ' = 1  (a,,~s). From this using Theo- 
rem 3 of our earlier paper III of [2], we conclude that the function represented by 
~'~=1 (a,2n ~) has "enough zeros". As stated already we follow the method of [3] 
closely. We begin with 

Lemma 1. We have, 

1 f 2 r  . ~ _ . 

TJT 

= ~ = t A , B n + O ( I  ( , ~ = t n A  z'9/2(S,~ ~/2) . I ~ . = ~ n l B . P )  , 

AI__ 1 
where 0 <  <~.1<22<2g<..., -~<2,+1-2,<A,  (where A is a positive constant), 

(n= 1, 2, 3, ...), {A,} and {B,} are two sequences of complex numbers (A,, B., 2, 
independent of t) such that both side make sense. Moreover the O-constant depends 
only on A. 

Remark. This lemma is the special case of an important theorem of Mont- 
gomery and Vaughan. The special case is also important and for a simple proof of 
this see [4]. 

Lemma 2. L e t  I (X)} FI(s)=~,~~ a,2;SA ~ . Then, we have, 

-TaT [Fl(Cr+it)]Zdt= X~=I 1+0 - -~  d 

Proof. Follows from Lemma 1. 

Lemma 3. Let 2 .=n .  Then, we have, 

1 f2r "T JT ]Fl(tr + it)]4 dt 

X 22 1 
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Proof. Put (FI(s))2=Z,~=I B.n -s. We have, 

,B., a =  Z.I. ,=I[a.la.2A(X) A(X))  2 

<= d (n) ~ . e 2 = .  a.1 A a.~ A 

From this and Lemma 1, Lemma 3 follows. 

Remark 1. For  1 <= Y<-X<= T put  

Then 

1 02T 1 f2T YJT IF2(~+it)12 ~ 1--~JT IF~(~+it)pdt, 

provided 

- f a r  

is small compared with the corresponding integral with Y replaced by X. The 
same remark applies to the first power mean. As regards upper  bounds, for 

fir r [F2(s)[~dt we have trivially upper  for instance the bound 

16 2r 4 16 2r ~ a. y 4 :. z.-.7. (:) .,. 

Remark 2. A useful version of Lemma 3 (for example that  which helps to gen- 
eralise Theorem 2) for general 2. is not known. 

From now on we assume T to be large enough. 

Lemma 4. Let $2=X~=1 a.A n n-2~ and $ 3 = ~ = 1  d(n) a.A n -2~ 

where X is as in Theorem 2. Then the number of integers M with T<=M<=2T--1 
for which 

f~+~lF~(s)l~dt> ~--~S2, (s=tr+it), 

exceeds 10 -8 T ( S2 S~1) 2. 
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Proof. From Lemmas 2 and 3 we have 

T .',2T 4 f~TlFl(s)12dt>T& and J r  [Fl(S)[ dt<2S~. 

From the first of these results, we have, 

where the accent denotes the omission of those integrals over unit intervals of the 
1 

form (M, M +  1) (where M is an integer) which do not exceed ~ $2. The lemma 

now follows by Holder's inequality. 

1 
Lemma 5. Let ~ - - ~ - < a o < a < ~ .  Then the number of integers M with T<-M<= 

2 T - 1  for which either 

f 
M+l 
M ]F(a~ > c~176 

f M + l  or [F(a+it)l~dt>coS2, exceeds T(S~Sgl)2(logT) ~ for every e>O, and a 
aM 

suitable constant co>O , for all T~To(e). 

Corollary. Suppose S~ exceeds a fixed positive power of T. (This does happen 
under the hypothesis of Theorem 2). Then there exists T(S2S~I)Z(log T) -4~ integers 
M in T<-M<:2T - 1 for which 

M +I  2 
IF(ao+it)l dt > c;$2, 

where co>0 is a certain constant. 

Proof. We have 

Fa(S)  = 2@, f F(s+w)XW Exp (Wak+z) 
dW 
W 

where the integration is over a vertical line where Re (W) is fixed to be large enough 
and k is a large positive integer constant depending on e and A. Let M be any posi- 
tive integer given by Lemma 4. We now cut off the portion [Ira W[=>(log T) with 
a small error and move the line of  integration to such W for which Re (s + W ) =  %. 
The residue at W = 0  is F(s). We integrate the mean square of  the absolute value 
and get the lemma. 

To deduce the corollary we start with 

(F(s)) 2 = F(W)) ~ Exp ((W- s) 4k+ 3) W - s  
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where the integration is over the rectangle R with sides Re W=a0,  Re W=a large 
positive constant and IIm W[=+_(log T)". We now take the absolute values and 
integrate from M to M +  1. Every integer M satisfying the second alternative in 
Lemma 5 gives rise to at least one integer M '  such that 

f M M' + t ]F(tr 0 + it)l 2 dt > c~ $2 

where c o is a positive constant and ]M-M' [< - ( log  T) *. This proves the corollary. 

Lemma 6. The number of zeros of F(s) in  the region IT<=t<-2T, a>=o~ - 1 1  

exceeds T(S 2 S~-1)2(log T) 1-". 

Pro@ By the Corollary to Lemma 5, there exist at least -> ~ T(Sz S~ 1)2 (log T ) ,  ~ 
points {ao+it,}={s,} which are well spaced i.e. t,+l-t,>=l, at each of  which 
IF(ao+it)I exceeds a fixed positive constant power of T. But by Theorem 3 of  paper 
III  in [2] each such point gives rise to >>log T zeros and e being arbitrary this 
proves the lemma. 

Lemma 6 proves the result mentioned in Remark 1 below Theorem 2. We prove 
Theorem 2 by imitating the same idea, but  with the first power mean lower bound 
and the mean square upper bound for Fl(s ). The rest of  this section is devoted to 
the mean first power lower bound. This once again follows the method of  [3]. 

Lemma '7. Let Fz(s,=~:=l{an(d(n))-ln-SA(~)}.  Then 

2M=tm_  #+1 
T IF~(s)ldt >= U=tT1+I a ~ IF~(s)ldt 

= -~2, ' iJ ,  ]Fl(s)Fs(s)] dt, 

where D > 0  is a free parameter (to be chosen later) and the sum is over those unit 
intervals 1, for which maxtinx [F3(s)l >0.  

Proof. Trivial. 

Lemma 8. We have, 
• I  max [Fa(s)l 4 = 0(TS4S5) 

t i n I  

X ~ X ~ 
where $4=,~=1 [a,A I n )  (d(n))-ln-2al I ' $5=Z2=1 (la, A (n)  (d(n))-ln-2a') ' 

and al and tr 2 are arbitrary constants such that trl<a<tr ~ and 2a=al +tr2. Also 
X is as in Theorem 2. 
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Proof  Let s~ be the points at which the maximum are attained. We use 

(F3(s3)4 = ~ f R(F3(w))4Z ' -~ 'Exp( (w-s ' ) ' )  d w ,  
W - - S  i 

where R is the rectangle bounded by the lines Re w=o-~, Re w=a~, Im w = T -  
(log T), Im w = 2 T + l o g  T. Here Z is a free parameter to be choosen later. From 
this taking absolute values and summing up with respect to i, we get, 

= o ( r ( z ' ,  + z  +K)  

= 1 t t~ .T+logT 1 2T+log T 
where d l=-~ j r_ log  T [F3(al+it)]4dt and J2=-~fr_log r [Fa(a2+it)[4dt.Further 

K is small enough to be ignored for the choice of Z which gives Z~I-#JI = Z ' , - ~ I J  2 . 
The lemma now follows from Lemma 3. 

Lemma 9. Put S~=~2~I  a,,A n d(n) ) - ln  -2" . Then with X satisfying 

the hypothesis o f  Theorem 2, we have, 

1 f~r  -TaT IF1(s)[ dt >: elS~(S~S4S~) -1/~, 

where ca is a positive constant independent o f  T. 

Proof. By H61der's inequality the last lower bound in Lemma 7 is (on using 
Lemma 8) 

1 2=r :; , t  + o  

- f (s s4 ss) 1/2 - D r F~(s)F3(s)dt + 0  

> - -  $1 + 0 S~ $4 $5) 1/2 
= 2D 

1 
on using Lemma 1. The lemma in question follows on choosing -~- to be a suitable 

constant times $1 ($2 S, $5)-1/2. 
Theorem 2 can now be deduced from Lemmas 9 and 2, just as we deduced the 

result in Remark 1 below Theorem 2, from Lemmas 2 and 3. The result mentioned 
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in Remark 4 below Theorem 2 can be deduced in the same way, but we have now to 
work with the function 

F a ( s ) = ~ ' [ a ,  A IX) (d (n ) ) - l n -S  } 

in place of  Fa(s) and obtain an appropriate lower bound in Lemma 9. 

3. Proof of Theorem 1 and generaUsations. The notation of  this section will be 
independent of the previous sections. We now begin by explaining a special type 
of Dirichlet series ~ = 1  (a.b.2"~ s) satisfying conditions (i) to (vii) below. 

Let f (x)  and g(x) be positive real valued functions defined in x>=O satisfying 
(i) f ( x )x  ~ is monotonic increasing and f ( x ) x  -a is monotonic decreasing for every 

6 > 0  and all x>=Xo(6). 

(ii) limx~ = g(x) = 1. 
x 

(iii) For all x>=O, O<a<=g'(x)<=b and O<a<-(g'(x))2-g(x)g'(x)<=b where a and 
b are constants. 
Let {an}, {b,}, {u,}, {v,} be four infinite sequences satisfying the following con- 

ditions. {a,}, {u,}, {Vn} are bounded sequences of complex numbers of which {u.} 
and {v.} are real and monotonic. We will set 2,=g(n)+u,+v,  and assume that 
2 , > 0  for all n. 
(iv) Ib, I lies between af(n) and bf(n) for all n. 
(v) For all X ~ I ,  ZX~n~=2 X [b,+,-b,l<=bf(X). 

We next assume that {a,} and {b,} satisfy one at least of the following two condi- 
tions (vi) and (vii). 
(vi) Monotonicity condition. Limx~ = x -1 ~.~_~ a,=h, where h is a non-zero con- 

stant (which may be complex) and further Ib,12; ~ is monotonic decreasing for 
every 6 > 0  and all n>=no(6). 

(vii) Real part condition. There exists an infinite arithmetic progression of positive 
integers such that if the accent denotes the restriction of the sum to these integers 
then, 

and 

p l iminf  ( - Z x ~ a  ~_2x R~. > o R e a . ) > 0 ,  
x ~ o  k X  - - ' 

= 0 

Then we have the following Theorem 3. 
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Theorem 3. Let Fl(s)=~'~= 1 a.b.A T 22 s . Then for a<-f  

we have, 

1 f 2 r  
-T J r  Igl(a+it)] dt > c2TI/2-~ f(T),  

where ca>O is a constant independent of  T. 
Also for I<=X<=T, we have, 

T a r  

X ~" b.22 r < c3 (Z~.~_~ [a, b.22 r - X~.~x [a, 

where e3~0 is a constant independent of  T and X. 

Remark 1. The first part of the theorem is nearly explained in [3]. The role of 
F3(s ) of w 2 of the present paper is played by F5(S)----~2~_Dor (k)~  -s) (where Do 
is a certain positive constant and �9 denotes the sum restricted to the arithmetic 
progression of  condition (vii) if it is satisfied, or all positive integers n if condition 
(vi) is satisfied), which possesses a gth power mean with g - g ( a ) > 2  if a < ~  in 

1 
the sense ~ f 7  JFs(a+it)]gdt----O((T1/2-r �9 This gth power result is easily 

deducible from Lemma 6 of paper IV in [2], which is quoted in [3] as Theorem 4. 

The rest of  the proof follows [3] except that Exp - is replaced by A ~-  . 

Remark 2. Let a > 0 .  Then RHS in the second inequality of theorem 3, is 
~ 2 2 v (Z(n3 +X / ~c4 ~ . . a . _ x ~  "--~-~x.>=x n2O+~ ).  Using the fact that f(n)n ~ is monotonic 

increasing and f (n)a  -~ is monotonic decreasing for n_->no(J), we see that this 
is ~csX~-~( f (X) )  ~. Further if/~ is a constant satisfying O</x<-~-a ,  we see that 

for T>--_To(#) and X=>Xo(#). Thus if T<<X<<T and T>-_To(#) the right hand side 

in the second inequality of  theorem 3 is  O T 1-2~ T)) 2 if 0 < ~ r < ~  

and 1 # = u  However the same result is true for all a < {  and a > 0  is not 
used essentially. 

We next state (as a corollary to Theorem 3 and the remarks below it), 

( 
sufficiently small constant. 
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and 

Then i f  1 (r<-~, we have, 

1 a2T 
--TJT IF2(a+it)l dt > c6Zl /2-af(T)  

1 f 2 ~  T J r  ]F2(a+it)]2dt < crT~-2"(f(T))Z' 

where c6 and c 7 are positive constants independent o f  T. 

As in [3] we deduce f rom this lemma 

Theorem 4. In the notation o f  Lemma 10, the number o f  integers M in the range 

T<=M<=2T - 1, for  wh&h 

f M M + I IF2(tr + it )[ dt > cs T1/2-~ f ( T )  

exceeds c 9 T. Here T>= 10, and c s and c 9 are positive constants independent of  T. 

We now state the main theorem of  this section. 

Theorem 5. Let T >- _ 10 and suppose that there exist positive constants �9 (~<~- )  
and A such that the series F(s)- - -~~ (a ,b ,2 ;  s) can be continued analytically in 
~r~q~, T<-t<=2T and that max IF(s)l taken over this region does not exceed T A. 

1 (~+�89 and ~ > 0  an arbitrary constant. Then the number o f  integers Let a =-~ 

M in the range T~M<--2T  - 1 for  which 

M ~t+l I F ( a +  it )l dt > Clo T1/2-~ f (  T), 

exceeds T ( l o g T )  -~ provided further T>--To(e). Here {a,}, {b,}, {2,} satisfy the 

conditions (i) to (vii) and Clo is a positive constant independent o f  T. Further, (on 
using an earlier theorem o f  ours viz. theorem 3 of  paper I I I  in [2]) the number o f  zeros 

o f  F(s)  in a>--~, T<--t<--2T exceeds cnT(log T) 1-~ where cll is a positive constant 
independent o f  T. 

Remark 1. Theorem 1 is the special case a , = l + ~ ,  (where ~, is the a, of  
theorem 1), b , = l ,  2 ,=n.  One can verify the conditions (i) to (vii) by taking 

and A to be 1. For  the f ( x )  = g ( x ) = x ,  and �9 to be any constant between 0 and -~ 
derivatives we have to take b,--( log n) t. 

Remark 2. I t  is easy to see that  if  we have good upper bounds for 

1 f~rlF(a+it)12d t f o r  1 - -  a<-~ ,  then we can improve the lower boundes T(log T) -~ 
T 
and c11T(log T) ~-~ given by the theorem above. 
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l , 1 �9 Proof  of  Theorem 5. We have, by putting s=-~  ( ~ + - f ) + t t ,  

F~ (s) = ~ ,j~_ i~ F(s + W) T w Exp (W 4k + .~) dW. 

We cut off the portion lira WI =>(log T)" with a small error, and move the rest 
of  the line of  integration to Re W=0 .  Let M be given by Theorem 4. We now choose 
k large, take absolute values both sides and integrate f rom M to M +  1 (confining 
to those M in T + l o g  T < - - M ~ 2 T - l o g  T). This proves Theorem 5 completely. 

Added in pool. It  is possible to replace the quality (log T) -~ by a constant 
multiple of  (log l o g T )  in every one of  our theorems. Because we can replace 

the function Exp (w4e+2), (throughout) by Exp Sin ~ . For  example in 

place of  A (x) we use the function 

2rci ~-i~ ~ )  )-W- " 

T l o g T  
Thus in Theorem 5, the number of  genos is >> log log T" 
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