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1. Introduction 

The space o f  all bounded  linear operators  f rom a Banach space Y to a Banach 

space Z is denoted L(Y,  Z). Xr denotes the ball {x: [[xl[ _<r} in the space X, and 

its dual space is written X*. The set o f  extreme points o f  a convex set C is written 
OeC, and the convex hull o f  a set S, cony (S). Thus OeL(Y, Z)I denotes the set o f  
extreme operators in the unit  ball o f  L(Y,  Z). 

l~" denotes R '~ with the no rm ll(x 1 . . . .  , xm)ll = .~i~1 tx~[ and l"~ is the dual o f  
l~". The /1 - sum o f  two spaces X and Y is written X O 1 Y  and their l=-sum X �9 ~ Y- 

We shall assume that  all spaces are real and finite-dimensional. 

In  [8] J. Lindenstrauss and M. A. Perles studied the set o f  extreme operators 
OeL(X, X)I. Their two main theorems are. 

Theorem 1.1. I f  X is a finite-dimensional Banach space, then the following state- 
ments are equivalent: 
(1) TEOeL(X, X)l ,  X~OeXl=~rxCOeX1. 
(2) T1, T2~OeL(X, X),~ T~ o T2~aeL(X, Xh. 
(3) {T,}~'_~OeL(X, X)~,[1T, Q... oTm[[=l  for all m. 

Theorem 1.2. Assume dim X<_4. I f  X has properties (1) to (3) of Theorem 
1.1 then 
either 
(i) X is an inner product space 

o r  

(ii) X1 is a polytope such that Xl=COnV ( K u - - K )  for every maximal proper face 
KOfXl. 

1) The results in this paper'were obtained when the author stayed at the Mittag-Leffter Institute, 
Stockholm. The research was supported by the Norwegian Research Council for Science and the 
Humanities and by the Mittag-Leffler Institute. 
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In [4] D. Larman showed that Theorem 1.2 is true when dim X=<6. Linden- 
strauss and Perles [8] conjectured that Theorem 1.2 is true for all real finite-dimen- 
sional spaces. 

Every inner product space has properties (1) to (3) of Theorem 1.1 and Linden- 
strauss and Perles showed that this is also the case if X satisfies (ii) of Theorem 1.2 
and d i m X ~ 4 .  However, they showed that X={(xl,  ...,x6)El~: Z x i = 0 }  sat- 
isfies (ii) of Theorem 1.2 but not (1) of Theorem 1.1, 

We call X a CL-space i f  Xl=COnV ( K u - K )  for every maximal proper face 
K of X1. The object of  this paper is to prove the following theorem. 

Theorem 1.3. Assume that X is a real finite-dimensional CL-space. Then X has 
properties (1) to (3) of Theorem 1.1 i f  and only if  either X is an ll-sum of  an l~'-space 
and finitely many copies of l~ or X is an l=-sum of an l~-space and finitely many 
copies of 131 . 

Xis said to have the 3.2 intersection property (3.2.I.P.) if whenever xa, x2, x3EX 
are such that IIx,-xjll ~ 2  for all i and j ,  then there exists xEX such that IIx-x,  ll --< 1 
for all i. If  X has the 3.2.I.P., then X is a CL-space [5]. The CL-spaces appearing in 
Theorem 1.3 are simple examples of spaces with the 3.2.I.P. 

Since the structure of finite-dimensional spaces with the 3.2.I.P. is well known 
[3], the proof of Theorem 1.3 in case X has the 3.2.I.P. is simple. This is done in 
Sections 2, 3 and 4. The more difficult part of the proof is to show that no CL-space 
without the 3.2.I.P. has properties (1) to (3) of Theorem 1.1. This is done in Sec- 
tions 5 and 6. A main result here is Theorem 5.4 which characterizes CL-spaces 
without the 3.2.I.P. 

2. Sufficient conditions 

In this section we shall prove the "if" part of Theorem 1.3. It is an easy corollary 
of the following theorem. 

Theorem 2.1. Assume that X has the 3.2.I.P. and that dim X <  co. Let Y= 
l~ Oxl~ 01. . .  Gl l~  (k copies of  l~). Then L(Y, X) satisfies: I f  XEOeYI and 
TEOeL(Y, X)I, then TxEOeX1. 

Corollary 2.2. If X equals I~' @1 I~ @~... @i l l  or I m @~ I~ @~ ... @~ If, 
then L(X, X) satisfies (1) to (3) of Theorem 1.1. 

Since L(Y, X ) = X  0 ~ . . .  ~ X O.~L(I~, X) 0 ~ . . .  O=L(I~,  X), the theorem 
follows from Propositions 2.4 and 2.5 below. 

We shall need the following characterization of CL-spaces. 
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Theorem 2.3. I f  dim X <  ~, then the following statements are equivalent: 
(1) X is a CL-space. 
(2) X* is a CL-space. 
(3) eEOeX1, fEOeX~=*f(e) = +- 1. 
(4) I f  eEOeX1 and xEX are such that [Ixl[=l and eCface(x), then I lx-e l l=2.  

The proof  can be found in [6] and [7]. Since the proof  of  (3)=*(4) is not expli- 
citly given in [6], and this implication is important in Section 5, we shall give the 
proof  here. 

Assume eEOeX'l, Ilxll---1 and eFface(x) .  Let F={fEX~:f (e)=l} .  By (2) 
we get, X~*=conv ( r u - F ) .  Let a = i n f  {f(x):  fEF} and b =su p  {f(x):  fEr} ,  
and define y=2-1(a+b)e. We have l=llxll=llyIl+llx-yll. Since e f face  (x), we 
get a+b<=O, such that Ilxl[=sup{-f(x):fEF}. But then 2=llxll+lIell-- 
sup {(e"  x) ( f ) :  fE F} = II e -- xll. 

Proposition 2.4. I f  X and Y are finite dimensional, then the following statements 
are equivalent: 
(1) L(X, Y) is a CL-space. 
(2) X and Y are CL-spaces and eEO~X1, TEOeL(X, Y)l=*TeEOeYa. 
(3) Y is a CL-spaee and eEO~X1, TEOeL(X, Y)I=* TeEOeY1. 

Proof. (2)=*(3) is trivial. 
(3)=*(1). Let F be a maximal proper face of the unit ball of L(X, Y). Then, 

by Theorem 5.1 in [6], there exist eEOeX1 and a maximal proper face G of  Y1 
such that 

F =  {T: IlTl[ --< 1 and TeEG}. 

Since II1 =conv  (G u -- G), we get from (3) that TeE G u - G for every TE Oe L (X, Y)I- 
Thus L(X, Y)I =conv  (Fw-- F). 

(1)=*(2). Let e(OeX1 and let G be a maximal proper face of  Y1. Define F by 

F =  {T: IITII = 1 and TeEG}. 

F is a proper face of  the unit ball of  L(X, Y). Hence FC=K for some maximal 
proper face K of L (X, Y)I- By Theorem 5.1 in [6], we have 

K = {T: IIT[I -<- 1 and TxEH} 

for some XEOeX1 and some maximal proper face H of  II1. 
We want to show that, by changing sign of x and H if necessary, e=x and 

G=H. Let fEX~ such that f ( e ) = l .  Choose yEG and define T by Tz=f(z)y. 
Then TEFC=K. Hence Tx=f(x)yEH. Thus I f ( x ) ] = l  and y E H u - H .  We 
may assume G=H and fEX~ and f(e)=l=~f(x)=l. Now choose yEO~H and 
let hEOeY~ such that h = l  on H. Let e , = e - n - l x  and let z,=]]e, ll-ae,. By 
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Lemma 3.t in [8], there exist U n E O e L ( X  , Y)I, such that U,z,=y. Let g,=-h. U, EX*. 
By (1), U, E K u - K  for all n. Hence g , (x )=  • 1 for all n. Since X* is compact, 
we may assume that g , ~ g  in norm. We also have z,~e. From g , ( z , ) = l ,  we 
get g ( e ) = l .  Hence g ( x ) = l .  But then g , ( x ) = l  for large n. This implies that 

gn(e) <= [[ell 

Iln-lxll + lle-n-l x]l 

-= g.(n-lx)+g.(e-n-lx) 

= g . ( e )  

for large n. Thus [lel]=tln-lxll+lle-n-lx]l for large n, such that x=-eEOeXx. 
Hence F=K and OeL(X, Y)lC=Fu-F. 

Let TEOeL(X, Y)x" Then TeEGu-G for every maximal proper face G of Y1. 
Hence TeEOeYI. 

Next let G be a maximal proper face of  Yt, let eE0~Xt and let yEO~Yx. By 
Lemma 3.1 in [8], there exists TEO~L(X, Y)~ such that Te=y. But by the argu- 
ment above, Te=yEGu-G. Hence OeYaC=Gu-G, and Yis aCL-space.  

That also X is a CL-space follows from L(X, Y)=L(Y*, X*), Theorem 2.3 
and the argument above. 

In [3] it was proved that if X has the 3.2.I.P. and 2 ~ d i m  X <  ~, then X con- 
tains proper subspaces Y and Z such that X =  YOIZ or X =  YG=Z and Y and Z 
also have the 3.2.I.P. Note that by Proposition 2.4, if L(l~, X) is a CL-space, then 
X is a CL-space. 

Proposition 2.5. Assume X has the 3.2.I.P. and dim X <  ~. Then L(l~, X) is 
a CL-spaee. 

Proof. The statement is trivially true if dim X is 1 or 2. Assume that we have 
proved that the statement is true when dim X<_ - n. 

Suppose dim X = n + l .  By Theorem 7.3 in [3], there exist proper subspaces 
Y and Z of X with the 3.2.I.P. and such that X =  Y O~ Z or X =  Y �9 = Z. Then the 
proposition is true for Y and Z. 

Case 1. X= Y O=Z. Then L(l~, X)=-L(l~, Y) O=L(lS, Z). Hence L(lS, X) 
is a CL-space. 

Case 2. X= Y Q~Z. We want to show that (3) in Proposition 2.4 is satisfied. 
Let TEO~L(I~,X)I and let x~=(1, 1, !), x2=(1, - 1 ,  1), xz=(1,  --1, - 1 )  and 
x4=(1, 1,--1) .  Then Tx~+Tx~=Tx2+Tx4. We want to show that TxiEOeX1. 

It  is easy to see that we may assume [[Txgl]=l for i = 1 , 2 , 3 .  Suppose 
[ITx4l[<l. I f  Txxf[O~X1, then choose yEX, y~O, such that [ITxx+yl[<=l and 
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IITxall+llYll~l. Define S by SX1.-~-Sx4:.Y and S x 2 = S x 3 = O .  Then IIT+__SII<=I. 
Since T is extreme, we have got a contradiction. Hence Txa, and similarly Tx~, 

are extreme points in X1. But then 

[[ Zx~ + Txa[[ = [I Zxz + Tx41l 

equals 0 or 2. This is impossible since []Tx41l ~ [ITxzll. Hence we have [1Tx, l] = 1 
for all i. 

Write 
H * ( X ) - -  {(ul . . . .  ,u4): u i E X  and ~ U z  = 0} 

equipped with the norm II(ul . . . .  , u4)])=~ I]ui}l. We have 

(Tx l ,  - Tx2, Txz ,  -- Tx , )6  H4(X)4 .  

From Lemma4 . l  [5], we get that there exist u~, . . ,  u 6, vkyEX, 2 ~ 0  and ~ j ~ 0  

such that 1 = ~ ,  ,~i+ ~u a j ,  (Vl j  , --V2j , U3j , --V4j)~OeH(X)4 and 

(Txa, -- Txz,  TX3, -- TX4) 

= 2~,1(U 1, --U:t, 0, 0 ) 

+ 222(U2, 0, --U~, 0 ) 

+ 2~-a(U3, 0, 0, --U3) 

+ 224(0, U4, --U~, 0 ) 

+ 225(0, us, 0, - u s )  

+ 226(0, 0, u6, -u~)  

+ ~  0 9(v~j, -v2j, v~j, -v , j )  

with l=llu,ll=llvkjll for all i, k and j and l = ll Txlll = 221+ 22~ + 223 + ~ ay and 
so on for the other columns. We easily get 21=2~, 2~=2.~ and 20=24. Define S~ 
and T~ by T j x k = v k j  for k = l  . . . . .  4 and 

S l x l  = u~ = Slx~,  $ 1 x 8 =  u6 = S1x~ 

& X l = U s = = & x 3 ,  & x 4 =  u s = - & x ~  

& x l  = u3 - & x 4 ,  S3x2 = - u 4  = & x 3 ,  

and $4= Sz, $5= $2 and $6 = $1. 
Then IlS~fl=l=[IZjl[ for all i and j and T = ~ ' 2 i S i + Y ~ j T  j .  Since T is 

extreme, we get T = S  i for some i o r  T = T j  for some j .  I f  T = S  i for s o m e L  
then we easily get that Tx~COeX1 for all i. I f  T =  Tj for some j, then 

(Tx l ,  - Tx2, Tx3 ,  -- TX4) E De H 4(X)4. 
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Let P be  the projection in X with P ( X ) =  Y and ker P = Z .  Then we get 

( T X l ,  - -  Tx2 , Tx3 , -- TXa) 

= (PTxa, - PTx~, PTx3, -- PTx4) 

- ~ - ( ( [ - - P ) T x I ,  --(I--P)Tx2, (I--P)Tx3, - ( I - P ) T x 4 )  

which gives us a convex combination in H4(X)a . Hence, we may assume Txi=PTxi 
for all i. Thus T maps l~ into Y. By the induction hypothesis and Proposition 2.4, 
we get Tx,E~eYaC=O~Xa for all L The proof  is complete. 

Remark. It follows from the proof  of  Proposition 2.5, that if X is finite dimen- 
sional with the 3.2.I.P. and if (ul . . . .  , u,)EOeH4(X)4 with all utr  then uiEOeX ~ 
for all i. 

3 .  T h e  s p a c e s  L(Y G~ R, Z O A R ) .  

In this section we begin the study of  necessary conditions in Theorem 1.3. 
The results obtained here will be used in the following sections. The main result in 
this section is the following theorem. 

Theorem 3.1. Assume X and Y are finite-dimensional CL-spaces. Suppose there 
exist projections P in X and Q in Y such that P(OeX1)C=O~X1 and P(X)=lZa O ~ R  
or l~ and Q(OeY1)C=O, Yx and Q(Y)=I~  0 1 R  or l* x. Then there exist TEO,L(X, Y)x 
and xEO~X1 such that TXr 

Before we give the proof, we shall prove some special cases. These are contained 
in the lemmas 3.2, 3.3 and 3,4. 

Lemma 3.2. Let X=l~  and Y=l~. Then there exist TEOeL(X, Y)I andxEOeX1 
such that Tx ~ O, YI. 

Proof It is easy to see that 1~ is not a quotient space of  any /L-space when 
k->3. Thus we get that if TEOeL(X, Y)~ is such that TxEO~Ya for every xEO~X~, 
then dim T O ( ) =  1 or 2. Define SEL(X, Y)a by the matrix 

S = 6 -1 - 2  1 
1 1 - " 

0 - 1  

Then I lSxll=l  for every XEOeX1. Let TEOe face (S) and assume TXEOeY1 for 
every XEOeX1. Then dim T ( X ) =  I or 2. Let el, . . . ,  e 4 be the natural basis for 
Y=I~. Since 3 S ( I , - l ,  1 , - 1 ) - - - ( 0 , 2 , 1 , 0 ) ,  we get T(X)~:span(el,e4). Simi- 
larly, 3S(1, 1, 1, - 1 ) = ( 1 , 0 , 2 , 0 )  and 3S(1, - 1 ,  1, 1 ) = ( 1 , 2 , 0 , 0 )  gives that 
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T(X)C;span (e~, e4) or in span (e~, e4). Thus we only have to consider the eases 
1, 2 and 3 below. 

Case 1. T(X)c= span (el, e~). 
Since 3S(1, --1, 1, - 1 ) = ( 0 , 2 ,  1,0), we get T(1, - 1 ,  I, - 1 ) = e 2 .  Similarly, 

we get T(1, 1 , - -1 , - -1)= -e2  and T(1, 1, 1, - 1 ) = e l .  We also have T(I, - 1 , - - i ,  1)= 
e2. Thus using that ( 1 , - 1 , - - 1 ,  1 ) + ( 1 , - 1 ,  1 , - 1 ) = ( 1 , - 1 , - 1 , - - 1 ) + ( 1 , - 1 ,  1, 1) 
we get - e l =  T(1, -- 1, - 1, -- 1)=e~. This is a contradiction. 

Case 2. T(X)c= span (el, e3) 
and 

Case 3. T(X)c= span (e2, e3) are treated similarly. Hence, we get that for every 
T~0~ face (S), there exists xEOeX~ such that Tx~O~Y1. 

Remark. S. Kaijser has shown that the matrix 

has the same property as the matrix S. 

Lemma 3.3. Let X= l~ �9 ~o R and let 
and xEO~X~ such that Tx~O~Y1. 

20 t - - 1  1 

1 - - 1  - -  

0 --2 

Y=l~. Then there exist TCOeL(X, Y)I 

Proof. Let x~=(1,0 ,0 ,  l), x~=(0 ,1 ,0 ,1) ,  x3= (0, 0,1,1),  y t = ( - 1 , 0 , 0 , 1 ) ,  
y2=(0, - 1 ,  0, 1) and y3=(0, 0, - 1 ,  1). Then xi+Y~=(O, O, O, 2) for all i. Define 
TEL(X, Y)I by 

2Tx~ = (1, 1, o, o), 2~x~ = (o, 1, o, 1). 

Then 
2Tx3 = (1, 0, 0, 1), 

2Ty~ = (1, O, 1, 0), 

2Tyl = (0, O, 1, 1). 

2Ty3 = (0, 1, 1, 0). 

Let S6Oe face (T). Assume for contradiction that XEOeXI:z~SXE6]eY 1. We have 
to consider four cases. 

Case 1. Sxi=el and Sy~=e 4. 
Since span(xl,yl, x3,y3)=l~ and Y=I~, we get Sx3, Sy3Cspan(ea, et). 

(See the beginning of  the proof of  Lemma 3.2.) This is impossible. 
The cases 2) Sxt=ex, Syl=e3, 3) Sxl=e2, Sy~=e3 and 4) Sxl=e.,, Syl=e4 

are treated similarly. Hence we have shown that for every $6/9 e face (T), there 
exists XCOeX~ such that SXr 
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Considering T* we get: 

Corollary 3.4. Let X~-I~ and let Y-~I~ @~R. Then there exist T~O,L(X, Y)~ 
and x60,X~ such that TXr 

Lemma 3.5. Let X=I~ @ooR andlet Y=I~ @z R. Thenthere exist T~Or Y)~ 
and X~OeX~ such that TXr 

Proof. Let xi,ySO~X 1 be as in Lemma3.2.  Let e~ = (1, --1, --1, 0), e2= 
(1,1, - 1 ,  0), e3=(1 ,1 ,1 ,0 ) ,  e 4 = ( 1 , - - 1 , 1 , 0 )  and es -- (0, 0, 0,1). ei~O~Y1 and 
e l+e~=e~+e4.  Define TCL(X, Y)I by 2Txl=e2+es, 2Txz=el+es, Tx3=e5 and 
2Tyl==e4+es. Then 2Ty2=e34-e 5 and 2Ty3=ex+e~. 

Let T~60~L(X, Y)~ and let 2~>0 such that ~ 2 ~ = 1  and T - ~ 2 ~ T  i where 
i runs from 1 to some integer p. 

Assume for contradiction that S~O~L(X, Y)a, x~OeXI~SxCOeY~. Then some 
T~, say T1, satisfy T~yl--es. We have Tax3=es. Using that xl+ya=x3+y3 and 
T~y3#es, we get T~x~=e.~. But then T~x~r Similarly 
T~y~=e~. But then, since TxXl+T~yI-~T~yz+TlX~, we have obtained a con- 
tradiction. 

Proof of Theorem 3.1. By lemmas 3.2, 3.3, 3.4 and 3.5, we know that there 
exists a TEOeL(P(X),Q(Y))I such that Txr for some x~O~P(X)I. 
[ [T .P[ I=I .  Hence we can find T~OeL(X, Y)x and ~i>0 such that ~ 2 ~ = 1  
and T.  P = ~ '  2; T / ( i =  1 . . . . .  p). But then we get T=~W 2,Q.  T i. Since T is extreme, 
this implies that T = Q . T  1. Hence Tlxr Y1 for some XEOeP(X)lC=O, X1 . The 
proof  is  complete 

Corollary 3.6. Assume X and Y are finite-dimensional CL-spaces. I f  there exist 
isometrics T: l~--,X and S: l ~ Y *  such that xr and SX~OeY~, 
then there exist U6OeL(X, Y)a and xCOeXa such that Uxr 

Proof S*: Y-+l~ is a quotient map such that S*(O~YO=Oe(114)1 . Hence there 
is a projection Q in Y such that Q(Y)=l~ and Q(O~YOC=OeY~. 

Let P be a projection in X such that }]PI]---1 and P(X)=T(I~). Note that 
the properties of  P that we used in the proof  of Theorem 3.1 was IIPli = 1 and 
OeP(X)x~O~X~. The proof  is complete. 

Remark. I f  we assume in Corollary 3.6 that X and Y have the 3.2.I.P., we get, 
using Proposition 2.5 and Lemma 6.4, that the corollary is true if we replace l~ 
one or both pIaces with l~ @= R. 

Even though we don' t  need the next result, it is typical for the situation so we 
include a proof. 
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Theorem 3.7. Let Y and Z be finite-dimensional spaces with 3.2.I.P. 
Then 

(1) T~OeL(~r ~ R, Z OI R)I, X~Oe(Y ( ~  R)I =c, TX~e(Z ~I R)I 
if and only if 
(2) rain (dim Y, dim Z)  <_- 2. 

Proof. (2)=*(1) easily follows from Theorem 2.1. 
Assume next that dim Y ~ 3  and dim Z=>3. I f  Y is not an l~'-space, then 

there exists an isometry T: l ~ Y  [5; Theorem 4.3]. Let SCOe face (T). Then S 
is an isometry and by Proposition 2.5, S(Oe(l~)l)~OeY1. Hence there exists an 
isometry U: I~-+Y@=R such that U(O~(I~)I)~Oe(Y~=R)I. 

Similarly, either Z is an l"~-space or there exists an isometry V: l~ ~ Z *  O =  R 
such that V(O~(I~)I)C=Oe(Z* O=R)I. Now (1)=*(2) follows from Corollary 3.6 and 
Theorem 3.1. 

4. Necessary conditions when X has the 3.2.I.P. 

In this short section we shall prove Theorem 4.1. 

Theorem 4.1. Assume X is finite-dimensional with the 3.2.I.P. I f  X satisfy (1) 
TEOeL(X,X)I, XCOeXI=~TxEOeX1 then Y is isometric to l~' 011~ 01...011~ or 
l~ @=l~ O=...O=l~ (k copiesof l~ or l~) where m,k~{O, 1,2 . . . .  } and d i m X =  
m+3k. 

Proof. By Corollary 3.6, we may assume that there does not exist an isometry 
T: l ~ X  such that T(Oe(l~)l)~OeX~. We can assume dimX=>3. By Theorem 
7.3 in [3] we can write 

x = l r  |  |  . . .  | 
where dim Y~d imZ~=>l  a M  dim Y~+dimZi>=3 for all i. (We can have m = 0  
or p = 0 . )  I f  p = 0 ,  there is nothing to prove. So assume p=>l.  

I f  one Y~ o r  Z~ is not an/~'-space, then as in the proof  of ~heorem Y7, we find 

an isometry T: 1 ~  Y~ @= Z~ such that T(oqe(l~)l)~Oe(Yi ~ Zl) 1. This contradicts 
our assumption above. Hence all Y~ and Z i are l~-spaces. Using that l~= l~, we 
similarly get that  Z~=R for every i. Hence Y~ @=Z~=q, O=R for some kF>2 
and all i. 

Looking at the lemmas in Section 3 or at Theorem 3.7, it is clear that we can- 
not have dim Y~>2 for some i together with p > l  or m # 0 .  Thus we have either 
p > l  or rnr and then X=l~ G~l~ 02... 011~ or p = l  and m = 0  and 
X=I~ Q~R with k=>3. In the last case, it follows from Theorem 3.1 that k=<3. 
Thus X=l~ O=R. 

The proof  is complete. 
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5. CL-spaces without the 3.2.I.P. 

We shall now characterize CL-spaces without the 3.2.I.P. These results will 
then be used in the next section where we show that no CL-space without the 3.2.I.P. 
satisfy (1) in Theorem 1.1. 

CL-spaces were characterized in Theorem 2.3. The first result here is well known 
and its proof  can be found in [6] [2]. 

Theorem 5.1. The following statements are equivalent: 
(1) X has the 3.2.I.P. 
(2) X* has the 3.2.I.P. 
(3) I f  F and G are disjoint faces of X1, then there exists fEOeX~ such that f =  1 
on F and f = - I  on G. 

If  we compare (3) of Theorem 5.1 with (4) of Theorem 2.3, we see that every 
CL-space without the 3.2.I.P. contains a pair of  disjoint faces F and G of )(1 such 
that no fEX~ is 1 on F and - 1 on G and both F and G consists of  more than 
one point. 

Lemma 5.2. Let X be a fin#e-dimensional CL-space without the 3.2.1.P. Then 

there exist a faee N of Xl and Xl, X~EOeXl such that if F=face ( ~ } ,  then 

Nc~F=O, butno fEX~ satisfy f = l  o n N a n d  f = - I  on F. 

Proof. By the discussion above and since dim X <  o% it follows that there 
exists a minimal face F of  Xt such that there exists a face N of  X1 with the properties: 
N e f F = 0  and no fEX~ is 1 o n N a n d  - 1  o n F .  

Write N = f a c e ( y )  and let xlEOeF. By Theorem 2.3, we get that G =  

face F - ~ 2  ] is a proper face of  )(1. Write F =face  (x) and choose 0cE(0, 1] and 

zEF such that x=~xt+(1-~)z .  By choosing 0~ as large as possible, we get 
x~r As noted above, F is not a point. Hence ~<1.  Clearly face(z) is 
a proper subface of F. 

If  face (z )n  G=0,  then by the minimality of F, there exists gEOeX~ such 
that g = l  on G a n d  g ( z ) = - - l .  But then g = l  o n N a n d  g - - - -1  on F. This 
contradiction shows that face (z) c~ G~0 .  Choose x2EOeG n face tz), and define 

(x~+x2) 
H = f a c e  - - - - 7 -  ~ F .  Then no fEX~ satisfy f = l  on N and f =  1 on H. 

Hence by the minimality of F, we get F = H .  The proof  is complete. 
Before we proceed to get better characterizations of CL-spaces without the 

3.2.I.P. we need a lemma. 
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I f  ua([O~F, 
such that  

L e m m a  5.3. Assume X is a finite-dimensional CL-space. Let p>-_2 and let 
Yl . . . .  , y p E O e X l  be such that F: face(p- l (y~+. . .+yp))  is a proper face of X1. 
I f  XI~f~eF , then there exist x2, ..., xpEO, F such that 

Yl+  ... +Yp = Xl+  ... + x p .  

Proof There  exist c~zE(0, 1J and uaEF such tha t  

p--l(yl ']- . . .  "Jf-yp) = ~lXl-~-(1 --~I) Ul. 

By taking el  as large as possible,  we get x~ ([face (Ul). By Theo rem 2.3 there exists 

faEO~X[ such tha t  f l ( x l ) =  1 and  f l ( U l ) :  - 1 .  By Theorem 2.3, we then get 

2cq - 1 = A (~1 X1 "~- (1 -- 0~1) Ul) 

= p - l f l ( y l+  ... +y,) 

E {1, p- l (p -2 ) ,  p- l(p - 4 ) ,  . . . ,  - 1}. 

Hence  a l E { 0 , p - l ,  2p -1, ..., 1}. Thus  we can write el=p-1kl  where k~ is some 

integer ~ 1. We  now have 

p - l ( y l +  ... +yp )  = p-lklXl+(1 -p-~kl)Ul.  

then we can choose x~E0~face(u0 ,  e2E(0, 1--p-lkl] and usEF 

p-l(ya +...-l- yp) = p- l  klxl + e~x2q-(1-p-l kl-O~)u 2. 

Choosing  e~ as large as possible, we get xs([face (us). Again using Theorem 2.3 
we find fsEOeX[ such tha t  f ~ ( x 2 ) = l  and f 2 ( u s ) = - 1 .  As in the case with e l ,  
we find es=p-lk2 where ks is some integer  ~ 1 .  Hence  

Yl + . . .  + Yp = klXl + ks xs + (p - kl - ks) us. 

Proceeding in this manner ,  we find x2 . . . .  , xqEOeF and integers k~, ..., k q ~ l  
such tha t  kl+. . .+kq=p and 

Yl+...+Yp = klxl+k2x~+...+kqxq. 

The p r o o f  is complete.  
The next result is a main  theorem in this section. I t  characterizes CL-spaces  

without  the 3.2.I.P. This theorem together  with Theorem 3.1 will be used in the 
following to show tha t  such spaces cannot  satisfy (1) o f  Theo rem 1.1. 

Theorem 5.4. Assume X is a finite-dimensional CL-space withoul the 3.2.I.P. 
Then there exist an integer p>=2, a maximal proper face K of X1 and extreme points 
Yl, ...,Yp, xl, xs, Zl, ..., ZpEOeK such that 

Yl+...  +yp+xl : x2+zl +... +zp. 
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Moreover,  i f  N = f a c e ( p - l ( y l + . . . + y , ) ) ,  M = f a c e ( p - l ( Z l + . . . + z p ) )  and F =  
face (2 -1 (x2 -  xl)), then M c~ N =  O, N n F =  0 and - F n M =  O. 

Proof. By Lemma 5.2, there exist a minimal integer p such that:  There exist 

Yl ,  ..., Yp, x l ,  x~EOeX1 such that  if N = f a c e  ( p - l ( y l + . . .  +yp)) and 

V = face (2-1 (xI + x2)), 

then N e f F = O ,  but no f E X *  is 1 on F a n d  - 1  on F. Then as in the proof  of  
Lemma 5.2, we see that if  G= face  ( ( p +  1 ) - l ( 3 , 1 + . . . + y p - x 0 ) ,  then G is a proper 
face of  X1 and x2EG. Let K be a maximal proper face of  X1 such that G ~ K .  

By Lemma 5.3 there exist z l ,  ..., zpEOeK such that 

Y l +  ,.. + y p - x l  = x2+ z l + . . .  +zp .  

Let M = f a c e  ( p - ~ ( z l + . . .  +zp)). I f  there exists uEO~Mc~OeN, then by Lemma 5.3, 
we can find aiEO~N and biEOeM such that  

and 

Hence 

Yl + . . .  + Yp = u + a 1 + . . .  +ap-1  

zl  + . . .  + z~ = u + b l  + . . . + b p _ l .  

al -k -  . . .  - t - a p - l - - X l  = x z + b l +  . . .  + bp-1. 

Clearly F c ~ f a c e ( ( p - - 1 ) - X ( a l + . . . + a p _ l ) ) = O ,  but no fEO ,X~  is 1 on one of these 
faces and - 1  on the other. T h u s w e  have got a contradiction to the minimality 
of  p. 

Hence Nc~ M =  0. 
I f  two z i are equal, say z l = z 2 ,  then by Theorem 2,3, there exists fEOeX~ 

such that f =  1 on N and f ( z l ) = -  1. But then 

p - 1  <- f ( y ~ + . . . + y p - x O  = f ( x 2 + z l + . . . + z p )  <= p - 3 .  

This contradiction shows that all z i are different. 
I f  there exists zCOeMc~ ( - - F ) ,  then by Lemma 5,3 we can write 

and 
- - X l - - X  2 = Z-.~U 

Zl-I- .. . -t- Zt, = z -l- bl + . . . + b p_ 1 

where u, ba . . . . .  bp_lEOeK. But then 

Y x + . . . + Y v  = b l + . . . + b p - l - u  

such that N c ~ M r  This contradiction shows that Mc~ ( - F ) = 0 .  To conclude 
the proof,  we only have to replace xl by - x l .  

It  is a consequence of Theorem 5.4 that a CL-space without the 3.2.I.P. has 
dimension ->_ 5. In fact, dim X_- > 2p + 1. 
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Proposition 2.5 says that if X has the 3.2.I.P., then L ( I ~ ,  X )  is a CL-space. 
If  X does not have the 3.2.I.P., then we get the following corollary. 

Corollary 5.5. I f  L ( l~,  X )  is a CL-space, then the integer p in Theorem 5.4 is' 2. 

Proof. We use the notation of Theorem 5.4. We have 

(Yl+"" -F yp) + pXl = (X 2 q- (p -- 1) Xl) + (Z 1 -~... + Zp). 

Define T: l ~ X  by pT(1,  1, 1 ) = y ~ + . . . + y p ,  T(1, - 1 ,  - 1 ) = x l ,  pT(1, --1, 1)= 
x~+ (p--  1)xl and pT(1,  1, - 1 ) = z l + . . .  +zp.  Then I[ T][ = 1. Choose SE0~ face (T). 
Then y = S ( 1 ,  1, 1)E0eN, z = S ( 1 ,  1, -1)E0e M, x I = S ( 1  , - 1 ,  --1) and x3= 

( x ~ + x ~ )  
S ( 1 , - 1 , 1 ) E a ~ f a c e  ~ and x l - t - y = x a + z .  By Lemma5.3,  there exist 

extreme points x~, a t and b i such that 

Y l + . . . + Y p  = Y + a l §  

z l + . . . + z p  = z + b l + . . . + b p - 1  
and 

Hence 
x~ + x2 = x3 + x4. 

al -q- . . . --k ap_ l-[- x z = x~-t- bl-b . . . + b v_ 1. 

Repeating this procedure, we find aEOeN, bEOeM and x s E 0 e f a c e [ ~ l  
such that 

a + x a  = x s + b .  
But then 

( y + a ) + x l  = x s + ( z + b )  

and f a c e [ Y ~ + a / ~ N  and face[5- ] M. However, these smaller faces satisfy 

the requirement of Lemma 5.2. Looking at the definition of p, we now see that 
p = 2 .  

There are some CL-spaces such that L (l~, X) is not a CL-space. An example 
of this is the quotient-space X = l ~ / U  where U=span  {(1, 1, 1, 1, 1, 1)}. In this 
space, we have that if x,  yEOeX1 with x + y r  then cony (x,y)  is a face of  X~. 
It is easy to see that for every CL-space with this property, we have that L ( l ~ ,  X )  
is not a CL-space. (In fact, if y, z and xa are as in the proof  of Corollary 5.5, then 
Xlq-y=-xaq-z  implies that y = z E M n N  or z = x l E M c ~ ( - F ) .  Both are false.) 

If  X is a CL-space and X is not an/~-space, then it follows from Propositions 
1.6.11 and II.3.16 in [1] that we can define an integer p ( X )  as follows: p = p ( X )  

is the smallest integer such that there exist Xl . . . .  , xpEOeX~ with the following 
properties: 
(1) r = f a c e  ( P - ~ ( x l + . . . + x p ) )  is a proper face of)(1 
(2) F r  conv (xl . . . . .  xp). 
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Proposition 5.6. Let X be a finite-dimensional CL-space and assume X is not 
an l~-space. Then p=p(X)>:2  and there exist Xl . . . .  , x , ,  Yl . . . . .  ypEO~X1 (all 
different) such that 

xl + ... + Xp = Yl + ... + Yp 

and r = f a c e  (p-~(x~ + ... + x,)) is a proper face of  X~. Moreover, i f  z~ . . . .  , Zp_a60~X~ 
are such that z i+z j r  for all i and j,  then conv(z  1 . . . .  , Zp_~) is a proper face 

o f  Xa. 
The example X=l~ /U above satisfy p ( X ) = 3 .  Clearly L( l~ ,  X)  is a CL-space~ 

p (X)=2 .  

Proof. The statement about za . . . .  , zp-1 easily follows from the definition of 
p(X)  and Theorem 2.3. The existence of  x~ . . . .  , xp, y~ . . . .  , yp follows from the 
definition o f p ( X )  and Lemma 5.3. The proof  is complete. 

6. Necessary conditions when X is a CL-space 

In this section we shall prove that if a CL-space X satisfy (1) of  Theorem 1.1, 
then X has the 3.2.I.P. and we can apply Theorem4.1.  We shall assume that X 
is not an l~-space such that the number p ( X )  is defined. (See the text following 
the proof  of Corollary 5.5.) First we show that if X satisfy (1) of Theorem 1.1 then 
p ( X ) = p ( X * ) = 2 .  From this we deduce that L(I~,  X )  and L( l~ ,  X*) are CL-spaces. 
Using this information we show that if X does not have the 3.2.I.P., then we have 
a situation like the one decribed in Theorem 3.1. 

Theorem 6.1. Assume X is a finite-dimensional CL-space with p(X)->_3. Then 

there exist TEOeL(X,X)I  and XEOeX 1 such that Tx~[OeXt. 

Proof. Suppose first that p ( X )  is an even number, say p ( X ) = 2 k  where k=>2. 
Let F and xl . . . . .  x2~, Yl . . . . .  Y~kEOeF be as in Proposition 5.6. By Proposition 5.6, 
conv (xl, ..., xk, --Yk+x, .-., --Y~k-1) is a proper face of  X1 not containing Y2k- 
Then there exists, by Theorem 2.3, a fzEOeX~ such that f2(x i )=l  and f~(yk+i)= 
--  1 for i=  1, ..., k. But then by the equality in Proposition 5.6, f z =  1 on xl ,  ..., xk, 

Y~, "",Yk and f 2 = - - i  on XK+I . . . . .  Xek, Yk+l . . . . .  Y2~" 
Similarly there exists f3COeX~ such that f 3 = l  on x~, ...,Xk, Y2, "-,Yk+I 

and f 3 = - -  1 on Xk+l . . . . .  X2k, Yl, Yk+~ . . . . .  Y2k" 
Since F is a proper face of X*, there exists ftEO~X~ such that f ~ =  1 on F. 
Define a map T: X ~ l ~  by T(x)=(f~(x), f~(x), f3(x)) .  Define al, a2, bl, b2EF 

by kal = x l + . . .  +xk, ka2=x~+l+.. .  +X2k, kb~=yl+. . .  +Yk and kb2=Yk+~+... +Y2k- 
Define a map S: l~ -*X  by S(1, 1, 1)=al ,  S(1, - 1 ,  - 1 ) = a 2 ,  S(1, 1, - 1 ) = b ~  and 
S ( 1 , - 1 , 1 ) = b 2 .  Then IIS.T}I=I  and S . T ( y O = b l ,  S .T(yk+O=b2,  S .T (x~)= 
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S . T ( y j ) = a l  for i = l , . . . , k  and j = 2  . . . .  , k  and S . T ( x  i ) = S . T ( y j ) = a S  for 
i = k + l  . . . . .  2k and j = k + 2 ,  ..., 2k. 

Let UE~e face (S-  T) and assume for contradiction that  xE~eXI=~UxE~eX1. 
Then we get UyIE {y~, ..., Yk}, UyR+~E {Yk+x, ..., Y2k} and UxE {xx . . . .  , X2k} when 
xE {xl . . . .  , X~k, Y~ . . . .  , Yk, Yk*~ . . . . .  Y~k}. Moreover 

Ux~ +.. .  + Ux~k = Uy~ +.. .  + UY~k. 

Either Uy~=Ux~ for some i or else card {UXl . . . .  , UX2k}<P(X). Thus Uy~ is 
in a face generated by less than p (X)  extreme points. This contradicts the defini- 
tion o f p ( X ) .  Hence UX~OeX1 for at least one XEOeF. 

Suppose next that p(X)  is an odd number, say p = p ( X ) = 2 k -  1 where k_->2. 
In this case we have to make a small change in the proof  above. We start with 

Xl, ..., xp, Yl, ..., Yp and F as in Proposition 5.6. Then we write Xg+~=X2k=Y2k. 
The proof  is complete. 

Corollary 6.2. Assume X is a finite-dimensional CL-space. I f  X satisfies (1) 
T E ~ L ( X ,  X)I, XE~eXI:=~ TxE~eX1, then both L(I a , X)  and L( l~ ,  X*) are CL-spaces. 
Moreover, i f  X is not an 1~- or an l~-space, then p (X)=p(X*)=2 .  

Proof. I f  X is an l ; -  or an l~-space, then there is nothing to prove. Hence, 
we can assumep(X)  and p(X*) are defined. By Theorem 6.1 we get p ( X ) = p ( X * ) = 2  
since X satisfies (1) if and only if X* satisfies (1). 

Assume p ( X ) = 2 ,  and let x~, x2, Yl, Y2 and F be as in Proposition 5.6. Let 
Y = s p a n  (xl, x~, Yl, Y2). Then Y=I  a.  Hence there exists a projection P in X such 
that P ( X ) =  Y and liPII=I- Now we proceed as in the proof  of  Theorem 3.1 to 
show that if TEO~L(la~, X)~ and XE~e(la~)~, then TxEO,X~. Similarly, we show 
that L(l~,  X*)  is a CL-space. 

The next proposition is a step in order to establish a situation in which we 
can apply Theorem 3.1. 

Proposition 6.3. Assume that X is a finite-dimensional CL-space without the 
3.2.I.P. and that L(I a , X)  is a CL-space. Then there exists an isometry T: la~ O ~ R - + X  
such that TXE~eX1 for all XEOe(la~ O~R)~.  

Proof. By Corollary 5.5, the integer p in Theorem 5.4 is 2. Let Yl, Yz, x~, x 2, 
zt,  z~, M, N and F be as in Theorem 5.4. Then we have 

(Yl + Y~) + 2xl = (x  I --~ x2) --~ (z  I --~ z2). 

Using the argument we used in the proof  of  Corollary 5.5, we find y~Oe N, Z~OeM 

and x z E O e f a c e [ X ~ }  such that 

y + x ,  = xa+z. 
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By Lemma 5.3, we may assume Y=Yl and z=za. Thus 

y~+x~ = xs+z~ 

y~ +xs = x~ + z~ 
and 

X~+X 2 = Xa+X 4 

for some x~EO~X~. Since N n M = 0 ,  we get xs~x~ 
M n N = ~  implies that xsC~MuN. 

and 

l) 
2) 

3) 

4) 

5) 

and xs#x~.  Moreover 

Define T: l~ @ = R ~ X  by T(1, 0, 0, 1)=x2, T(0, 1, 0, 1)=xs,  T(0, 0, 1, 1 )=y  1 
T(0, 1, 0, - 1 ) = X l .  Then T(1, 0, 0, - 1 ) = x 4  and T(0, 0, 1, --1)=z~. 

That T is an isometry follows from the observations 1)--5) below. 
There exists fIEO~X* such that f l =  1 on xl ,  ..., x4, Yl, zl. 
Since z ~ N ,  there exists f2E0~X; such that f2=  1 on YI, Y2, x2, xs, z2 and 
f 2 = - I  on zl, xl ,  x4. 
Since x2r there exists f~EOeX~ such that f 3 = l  on yx,y~, z 1, z2 and 

f a = -  1 on Xl, x~, xa, x4. 
Since z2r there exists f4EO~X; such that f 4 = l  on Yl, Y2, z1, x2, x4 and 
f4=  - 1 on z2, xl ,  xs. 

Since N n F = 0 ,  we get x2r Hencethere  exists f~E0~Xx such 
1 , 2 1  

that f s =  1 on Yl, Xl, x3, z1, z2 and f s =  - 1  on x~, x4, Y2. 
The proof  is complete. 

Lemma 6.4. Assume X is a finite-dimensional CE-space and that L(l~, X*) is 
a CL-space. I f  there exists an isometry T: l~ @ ~ R ~ X  such that TxEOeX1 for 
every XEOe(l~ @~R)I, then there exists a projection P in X such that P(OeXO==OeXI 
and P(X)=l~ @~R or l~. 

Before we give the proof, let us look upon a consequence of this result. 

Theorem 6.5. Assume X is a finite-dimensional CL-space which satisfies (1) 
TEOeL(X, X)I, XEOeXI=*TxEOeX~. Then X has the 3.2.I.P. 

Proof. This follows from Theorem 3.1, Corollary 6.2, Proposition 6.3 and 
Lemma 6.4. 

It  only remains to prove Lemma 6.4. Clearly T*: X * ~ l ~  @aR is a quotient 

map such that T*(OeX[)=Oe(l~ @IR)~. 
From now on, we shall assume L(l~, X) is a CL-space and that Q: X ~ l ~  @~R 

is a quotient map such that Q(OeXO=Oe(I~ @~R)I. 
Clearly it suffices to show that either there is a projection P in X such that 

P(OeXOC=O~X~ and P(X)=l~  OaR or there exists an isometry T: l~-~X* such 
that T(O~(l~)x)==OeX[. 
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Let X l=(1 ,1 ,1 ,  0), x 2 = ( 1 , - 1 , 1 , 0 ) ,  x 3 = ( 1 , - 1 , - 1 , 0 ) ,  x4= (1,1, - 1 ,  0) 
and x~=(0 ,0 ,0 ,  1), and let N=conv(xl,. . . ,x5). Let K=Q-I (N)nX1  . Then N 
and K are maximal proper faces of (l~ O1R)~ and )(1 respectively. For  i=1  . . . . .  5, 
let Fi={xEK: Q(x)=xi}. Then {Fi}~= 1 a r e  disjoint faces of  /s and K =  
conv (F 1 w.. .  u Fs)' 

Case 1. Suppose there exist ai~OeF, such that 

a l - [ - a  3 = a 2 - l - a  4. 

Define T: l~ 0 1 R ~ X  by Txi=ai, and defihe P by P=T.Q.  P is a projection 
in X and P(X)=I~ OIR and P(OeXO==OeX1. 

Case 2. Here we assume: 

(4~) If  ai~OeF,, then al+a3r247 
Assuming ( ~ ) ,  we are going to show that there exists an isometry T: l~ ~ X *  

such that T(Oe(l~)l)C=OeX1 . The proof  of this is divided into eight sublemmas. 
Choose YiCF, such that F i=face  (Yi). 

Lemma 6.6. conv (F2 w F4) is a face of K. 

Pro@ Note that conv (F1 w ... w F4) is a face of F. If  cony (F2 w F4) is not 

a face of K, then face { Y 2 ~ Y 4 } n ( F I U  F3)~O. Hence there exist 

and zi~F i such that 
y~+y, = e l z l + . . . + a 4 z 4  

and we can assume ~ > 0 .  Let f~OeX~ such that f = l  on F1uF2 and f = - I  
on F3u  F4. (Let f = ( 0 ,  0, 1, 1). Q.) Then we get 

0 = ~ 1 q - ( z 2 - - ~ 3 - - ~ 4 .  
Similarly we get 

0 : ~1--~2--~3-~(~4. 

Hence a,=c~ 3, a2=~4 and a ~ + a 2 : l .  Define a map T: I ~ X  by T(1, 1, 1)=y2, 
T(1, - 1 ,  - 1 ) = y 4 ,  T(1, - 1 ,  1)=alZl+C~2z2 and T(1, 1, -1 )=a3z3+a4z4  . Since 
L(I~,X) is a CL-space, we can write T=~'2iT, where 2.,>0, ~ 2 , = 1  and 
Ti(O,(l~)~)==O~X 1. (i is in a finite index set.) Since a~>0 and F~ is a face of  
conv(FlW F2), there is some T,, say T1, such that TI(1 , - 1 ,  1)=alCO~F1. More- 
over, Ta(1,1,1)=a~EOeF~ and TI(1,--1,--1)=aarO~F4. Hence T(1, 1 , - - 1 ) =  
a3~OeFs since az+a4=al+a3. This contradicts (4~). 

The proof  is complete. 
The next three lemmas are proved in exactly the same way as Lemma 6.6 was 

proved so we omit their proofs. 
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Lemma 6.7. conv (F1 u s u Fa) is a face of K. 

Lemma 6.8. conv (F1 w F3 w Fs) is a face of  1s 

Lemma 6.9. conv(Fzw F3w F i w  Fs) is a face of K. 

We shall say that two subsets A and B of  X1 can be + l-separated if there exists 

fEOeX* such that f = l  o n A  and f = - i  o n B .  

Lemma 6.10. The faces 1:1 and conv (Fz w Fa u 174) can be ++_ 1-separated. 

Proof. Let G=conv  (F2 wF3 uF4). G is a face o f K b y  Lemma 6.7 and F1 c~ G=0.  
If  aCOeF1, then G and {a} can be + 1-separated by Theorem 2.3. I f  G and FI 
cannot be +_ 1-separated, then let face (a) c__ F1 be a minimal face of Fx such that 
G and face (a) cannot be +l-separated.  Write a = c ~ a l + ( 1 - g ) b  where alEOeF1, 
b6F1 and c~E(0, 1). Choosing c~ as large as possible we can assume al~face (b). 
Clearly we can assume 2g= 1. By the minimality of  face (a), it follows that G and 
face (b) can b e  + 1-separated. From Theorem 2.3 it follows that 

a le  face (4-1 (y2 + Y3+Y4-- b)). 
Thus we can write 

y~ + y3+ y 4 - b  = ~ a l + ( 4 - ~ ) u  

where Ilull=l and ~C(0,3]. We can write ( 4 - ~ ) u = ( 3 - o O v - w  where v,w~K. 
Hence 

y~ + y3 + y4 + w = o~al + b + ( 3 -oOv. 

Let f~OeX: such that f =  1 on G and f ( b ) = -  1. Then f (aa )=  1 such that 

4 = f (Y2+Y3+ y 4 - b )  

= ~ + (3 - oOf(v ) - f ( w )  

<= ~ + ( 3 - ~ ) +  1 

= 4 .  

Hence f ( w ) = -  1. Thus w~conv (F1 w F~). Write ( 3 - ~ ) V = ~ l Z l + . . . + % z 5  where 
~->0 and ziEF ~. Then ~ + . . . + % = 3 - ~  and 

Y2 + Ya+ Y4 + W = o~al + b+Oq Zl + ... +aszs.  

We use the map Q and get 

x2+x3+x4+a(w ) = (1 "~(X"~1)Xl+0~2X2"~-... +0~5X5, 

From this it follows that e2=e4 and % + % = 2 .  Since Q(w)~conv (x~, xs), we get 
l = > e + e l + % .  Hence % < 1  and %>1 .  Define uiEK by 2u~=y3+w, 2u~= 
Y2+Y4, 2u3=o~z2+%z3 and 2u4=o~ax +b+OqZl+OqZ4+O~sZ 5. Then 

t t l + U  2 = ~3+U4.  
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Now we use that  L(la~, X)  is a CL-space in exactly the same way as we used it in 

the proof  of  Lemma 6.6 and find viEO e face (ui) such that  

vl q-V ~ ~ v3+v 4. 

Since ~ > 1  and 1 + ~ + ~ 1 > 1 ,  we see that  we may suppose v3EO~face (z3)~O~F3 
and v4CO~F1. But by Lemma 6.6, this implies that 

v2Econv (F  1 u 1;3) ~ cony (F 2 u F4) = O. 

This contradiction completes the proof. 
We omit the proofs of  Lemmas 6.11 and 6.12 since they are similar to the proof  

of  Lemma 6.10. 

Lemma 6.11. F1 and cony (F~ u F~ u F4 u Fs) can be +__ 1-separated. 

Lemma 6.12. cony (F~ u F~) and cony (F  1 w F3 u Fs) can be +__ 1-separated. 

I t  remains only one lemma. 

Lemma 6.13. There exists an isometry T: I~-~X* such that T(d~(l~)~)C=OeX ~. 

Proof. By Lemma 6.12 there exists g2EO~X~ such that g~= 1 on F~ u F 3 w F~ 
and g~- - - -  1 on F2 ~ F4. Using Q, we see that there exist g4, gs, gvEOeX* such 
that g 4 = l  o n / ( ,  g s = l  on FluF~uFs ,  g s = - I  on F3uFa, g7=l on FluF4wF5 
and g7 = - 1  on F2 u F3. Define T: l 4 ~ X  by T(1, 1, 1, 1)=g4, T(1, --1, 1, - 1 ) =  
g2, T(1, 1, --1, -- l)----g5 and T(1, - 1 ,  - 1, 1)=g7. I t  is straightforward to see 
that T has the right properties. The p roof  is complete, and this also completes the 
proof  of  Lemma 6.4. 

Let us add a last result. 

Theorem 6.14. Assume X and Y are finite-dimensional spaces with the 3.2.I.P. 
The following statements are equivalent: 

(1) L(X,  Y)  is a CL-space. 

(2) X = l~" @a l~ @l ... @~ l~ or Y = l"~ @= l~ @ . . . .  @= l~. 

Proof (2)=~(1) is contained in Theorem2.1.  Assume (2) is not true. Then 
just as in the p roof  of  Theorem4.1,  we can write X = U G I ( V O = Z )  where 
dim (V @=Z)_->4 and Y * = L  O I ( M  O = N )  where dim (M O = N ) ~ 4 .  Then look- 
ing at the arguments used in the proofs of  Theorems 3.7 and 4.1, we see that  we 
can apply Proposit ion2.5,  Lemma 6.4 and Theorem 3.1. The proof  is complete. 

Remark. In [6] we proved that  L(X,  Y) has the 3.2.I.P. if  and only if X=I~' 
or Y=I~ where X and Y are as in Theorem 6.14. 



116 /~svald Lima 

References 

I. ALFSEN, E., Compact convex sets and boundary integrals, Ergebnisse Math. Grenzgebiete, Bd. 
57, Springer-Verlag, Berlin and New York, 1971. 

2. HANNER, O., Intersection of translates of convex bodies, Math. Scand., 4 (1956), 65--87. 
3. HANSEN, A. and LIMA, A., The structure of finite-dimensional Banach spaces with the 3.2. inter- 

section property. To appear in Acta. Math. 
4. LARMAN, D., On a conjecture of Lindenstrauss and Perles in at most 6 dimensions, Glasgow 

Math. J. 19 (1978), 87--97. 
5. LIMA, A., Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. 

Soc. 227 (1977), 1--62. 
6. LIMA, A., Intersection properties of balls in spaces of compact operators, Ann. lnst. Fourier, 

28, 3 (1978), 35--65. 
7. LINDENSTRAUSS, J. Extensions of compact operators, Memoirs Amer. Math. Soc. 48 (1964). 
8. LINDENSTRAUSS, J. and PERLES, M. A., On extreme operators in finite-dimensional spaces, Duke 

Math. Jour. 36 (1969), 301--314. 

Received October 15, 1979 Asvald Lima 
Agricultural University of Norway 
1432 Aas-NLH. 


