On extreme operators on finite-dimensional
Banach spaces whose unit balls are polytopes
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1. Introduction

The space of all bounded linear operators from a Banach space Y to a Banach
space Z is denoted L(Y, Z). X, denotes the ball {x: [x]|=r} in the space X, and
its dual space is written X*. The set of extreme points of a convex set C is written
0.C, and the convex hull of a set S, conv (). Thus 9,L(Y, Z), denotes the set of
extreme operators in the unit ball of L(Y, Z).

I denotes R™ with the norm [(xy, ..., x, =7, |x,| and [Z is the dual of
. The /;-sum of two spaces X and Y is written X @,Y and their /_-sum X @_7Y.

We shall assume that all spaces are real and finite-dimensional.

In [8] J. Lindenstrauss and M. A. Perles studied the set of extreme operators
0,L(X, X);. Their two main theorems are.

Theorem 1.1. If X is a finite-dimensional Banach space, then the following state-
ments are equivalent:
() T€d.L(X, X);, x€0,X;=>Tx€0,X;.
(2) Ty, T,€0,L(X, X)=>T,0Tx€60,L(X, X),.
3) {T).S0.L(X, X)=|[Tyo...oT,|l=1 for all m.

Theorem 1.2. Assume dim X=4. If X has properties (1) to (3) of Theorem
1.1 then
either
(i) X is an inner product space
or
(i) X, is a polytope such that X,=conv (Ku—K) for every maximal proper face
Kof X;.

1y The results in this paper were obtained when the author stayed at the Mittag-Leffler Institute,
Stockholm. The research was supported by the Norwegian Research Council for Science and the
Humanities and by the Mittag-Leffler Institute.
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In [4] D. Larman showed that Theorem 1.2 is true when dim X'=6. Linden-
strauss and Perles [8] conjectured that Theorem 1.2 is true for all real finite-dimen-
sional spaces.

Every inner product space has properties (1) to (3) of Theorem 1.1 and Linden-
strauss and Perles showed that this is also the case if X satisfies (ii) of Theorem 1.2
and dim X=4. However, they showed that X= {(xl, s X)EIE D xi=0} sat~
isfies (ii) of Theorem 1.2 but not (1) of Theorem 1.1.

We call X a CL-space if X;=conv (Ku—K) for every maximal proper face
K of X;. The object of this paper is to prove the following theorem.

Theorem 1.3. Assume that X is a real finite-dimensional CL-space. Then X has
properties (1) to (3) of Theorem 1.1 if and only if either X is an I;-sum of an I"-space
and finitely many copies of 13 or X is an 1_-sum of an 1% -space and finitely many
copies of I3.

X is said to have the 3.2 intersection property (3.2.1.P.) if whenever x;, x,, x;€X
are such that |lx;—x;|=2 for alli and j, then there exists x€.X such that ||x—x;]=1
for all . If X has the 3.2.L.P., then X is a CL-space [5]. The CL-spaces appearing in
Theorem 1.3 are simple examples of spaces with the 3.2.1.P.

Siace the structure of finite-dimensional spaces with the 3.2.1.P. is well known
[3], the proof of Theorem 1.3 in case X has the 3.2.1.P. is simple. This is done in
Sections 2, 3 and 4. The more difficult part of the proof is to show that no CL-space
without the 3.2.1.P. has properties (1) to (3) of Theorem }.1. This is done in Sec-
tions 5 and 6. A main result here is Theorem 5.4 which characterizes CL-spaces
without the 3.2.1.P.

2. Sufficient conditions

In this section we shall prove the “if” part of Theorem 1.3. It is an easy corollary
of the following theorem.

Theorem 2.1. Assume that X has the 3.2.1.P. and that dim X<o. Let Y=
"D Dy... D112 (k copies of I12). Then L(Y,X) satisfies: If x€9,Y, and
T¢d . L(Y, X),, then Tx€d X;.

Corollary 2.2. If X equals I P12 ®,... B2 or " LBD,... D12,
then L(X, X) satisfies (1) to (3) of Theorem 1.1.

Since L(Y, X)=X®... O XD LE,X)D...®. L2, X), the theorem
follows from Propositions 2.4 and 2.5 below.
We shall need the following characterization of CL-spaces.
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Theorem 2.3. If dim X< oo, then the following statements are equivalent:
(1) X is a CL-space.
(2) X* is a CL-space.
3) e€d.Xq, f€d. X=fle)==1.
@) If ecd.X, and xcX are such that |x|=1 and edface (x), then ||x—e|=2.

The proof can be found in [6] and [7]. Since the proof of (3)=(4) is not expli-
citly given in [6], and this implication is important in Section 5, we shall give the
proof here.

Assume e€0,X;, [[x[[=1 and e¢face (x). Let F={fcX;: f(e)=1}. By (2)
we get, X =conv(Fu—F). Let a=inf {f(x): f€¢F} and b=sup {f(x): fEF},
and define y=2"1(a+b)e. We have 1=|x||=|yl|+[lx—y|. Since edface (x), we
get a+b=0, such that |x|=sup{—f(x): fEF}. But then 2={x|+|e|=
sup {(e—x)(f): feF}=lle—x|.

Proposition 2.4. If X and Y are finite dimensional, then the following statements
are equivalent :
(1) L(X,7Y) is a CL-space.
(2) X and Y are CL-spaces and e€9,X,, T€0.L(X, Y),=Te€o,.Y;.
(3) Y is a CL-space and e€d.X,, T¢9,L(X, Y),=Te€d,Y;.

Proof. (2)=(3) is trivial.
(3)=(1). Let F be a maximal proper face of the unit ball of L(X, Y). Then,
by Theorem 5.1 in [6], there exist e€d,X; and a maximal proper face G of Y
such that
F={T: |T| =1 and TecG}.

Since Y;=conv (G u —G), we get from (3) that Tec G u —G forevery T€9,L(X, Y),.
Thus L(X, Y),=conv (Fu~F).
(1)=(2). Let e€d,X; and let G be a maximal proper face of Y;. Define F by

F={T:|T| =1 and TecG).

F is a proper face of the unit ball of L(X, Y). Hence FCK for some maximal
proper face K of L(X, Y),. By Theorem 5.1 in [6], we have

K={T:|T| =1 and TxcH}

for some x€9,X; and some maximal proper face H of Y;.

We want to show that, by changing sign of x and H if necessary, e=x and
G=H. Let fcX; such that f(e)=1. Choose y€G and define T by Tz=f(z)y.
Then TeFCSK. Hence Tx=f(x)yceH. Thus |f(x)]=1 and yécHuU—H. We
may assume G=H and f€X; and f(e)=1=f(x)=1. Now choose y¢d,H and
let h€0,Y; such that h=1 on H. Let e,=e—n"1x and let z,=)e,| e,. By
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Lemma 3.1 in [8], there exist U,€9,L(X, Y),, such that U,z,=y. Let g,=k-U,€X;.
By (1), U,6Ku—K for all n. Hence g,(x)==11 for all n. Since X is compact,
we may assume that g,—g in norm. We also have z,—e. From g,(z,)=1, we
get g(¢)=1. Hence g(x)=1. But then g,(x)=1 for large n. This implies that

gn(e) = lle]
= |n7t x| +lle—n"1x]
= g,(n7' )+ g, (e—n"1x)
= g,(e)

for large n. Thus [e]=[n" x|+l e—n"1tx| for large n, such that x=e€d,X;.
Hence F=K and 9,L(X,Y),SFu—F.

Let T€9.L(X, Y),. Then Te€cGu—G for every maximal proper face G of Y;.
Hence Tecd,Y;.

Next let G be a maximal proper face of Yy, let e€d.X; and let y€9.Y,. By
Lemma 3.1 in [8], there exists T€9,L(X, Y); such that Te=y. But by the argu-
ment above, Te=ycGu —G. Hence 0,Y,SGu—G, and Y is a CL-space.

That also X is a CL-space follows from L(X, Y)=L(Y* X*), Theorem 2.3
and the argument above.

In [3] it was proved that if X has the 3.2.1.P. and 2=dim X<, then X con-
tains proper subspaces Y and Z such that X=Y@,Z or X=Y@_Z and Y and Z
also have the 3.2.I1.P. Note that by Proposition 2.4, if L(I2, X) is a CL-space, then
X is a CL-space.

Proposition 2.5. Assume X has the 3.2.1.P. and dim X<oo. Then L(I%, X) is
a CL-space.

Proof. The statement is trivially true if dim X is 1 or 2. Assume that we have
proved that the statement is true when dim X=n.

Suppose dim X=n+1. By Theorem 7.3 in [3], there exist proper subspaces
Y and Z of X with the 3.2.1.P. and such that X=Y @, Z or X=Y @_ Z. Then the
proposition is true for Y and Z.

Case l. X=Y @ _Z. Then L3, X)=L(3,Y)D. L2, Z). Hence L2, X)
is a CL-space.

Case 2. X=Y @,Z. We want to show that (3) in Proposition 2.4 is satisfied.
Let T€d L(2,X); and let x=(1,1,1), x,=(1, —1, 1), x3=(1, —1, =1) and
xs=(,1, —1). Then Tx;+ Tx,=Tx,+Tx,. We want to show that Tx;€d,X;.
It is easy to see that we may assume ||Tx;|=1 for i=1, 2, 3. Suppose
| Txg|<1. If Tx,49.X;, then choose y€X, y#0, such that ([7Tx,+y}j=1 and
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1Tx4]+[yll=1. Define S by Sx;=S8x,=y and Sx,=Sx;=0. Then ||TES|=1.
Since T is extreme, we have got a contradiction. Hence Tx;, and similarly T'x;,
are extreme points in X;. But then

172+ Txall = [[Txp+Tx4]

equals 0 or 2. This is impossible since ||Tx,| #|Tx,|. Hence we have [|Tx;)=1
for all i.
Write
HYX) = {(uy, ..., u): w;€ X and > u; = 0}

equipped with the norm ||(uy, ..., u)}=>"|lu)l. We have
(Txy, — Txy, Txy, — Tx) € H(X),.
From Lemma 4.1 [5], we get that there exist u, ..., 4, ;€X, 4,=0 and «;=0
such that 1= 1;+ > o;, (vy;, —vg;, v35, —4;)€0. H(X), and
(Txy, ~Txy, Txg, —Tx,)
=24, -—u, O, 0)
+ 24,(u,, 0, —u;, 0)
+ 275(u,, 0, 0, —uy
+ 22,(0, Uy, —Ug, 0)
+ 225(0, Us, 0, —ug)
+ 244(0, 0, ug, —ug
+ 2 ;v —Uy;, Vg, —vy;)
with 1=|ul|=[vll for all i, k and j and 1=|Tx;|=24;+21,+24;+ > a; and

so on for the other columns. We easily get A,=41¢, 1,=4, and 1;=4,. Define S;
and T; by T;x.=v,; for k=1,...,4 and

Sixp=u; = SiXe, SiXz= ug= S;x,
SeXy = Uy = —SaXg, SeXg= U =—S5X,
Ssxp =uUg = S3Xy, SzXe=—uy= S3X3,

and S;=3S;, S;=8, and S;=3S;.

Then |[S)|=1=|T;| for all i and j and 7= 1,S;+ > «;T;. Since T is
extreme, we get 7=S; for some i or T=T; for some j. If T=S, for some i,
then we easily get that Tx,€0,X, for all /. If T'=T; for some j, then

(Txl, —sz, TX3, “‘TX4)632H4(X)4.
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Let P be the projection in X with P(X)=Y and ker P=Z. Then we get
(Tx,, —Tx,, Tx,, —Tx,)
= (PTx,, —PTx,, PTx,, —PTxy)
+((I—P)Tx,, —(I—P)Tx,, (I—P)Txs, —(I—P)Tx,)
which gives us a convex combination in H*(X),. Hence, we may assume 7Tx;=PTXx;

for all i. Thus T maps /2 into Y. By the induction hypothesis and Proposition 2.4,
we get Tx,;€9,Y,S8,.X; for all i. The proof is complete.

Remark. It follows from the proof of Proposition 2.5, that if X is finite dimen-
sional with the 3.2.1.P. and if (u, ..., u,)€0, H*(X), with all u;>0, then u,€0, X,
for all i.

3. The spaces L(Y .. R, Z P, R).

In this section we begin the study of necessary conditions in Theorem 1.3.
The results obtained here will be used in the following sections. The main result in
this section is the following theorem.

Theorem 3.1. Assume X and Y are finite-dimensional CL-spaces. Suppose there
exist projections P in X and Q in Y such that P(0,X,)S0.X; and P(X)=} D_R
or 12 and Q(0.Y1)S0,.Y, and Q(Y)=I2 @R or I}. Then there exist T¢d,L(X, Y),
and x€9,X, such that Tx4d,Y;.

Before we give the proof, we shall prove some special cases. These are contained
in the lemmas 3.2, 3.3 and 3.4.

Lemma 3.2. Let X=I2 and Y=I}. Thenthere exist T¢0,L(X, Y), and x€d X,
such that Tx40,Y,.

Proof. It is easy to see that /¥ is not a quotient space of any /" -space when
k=3. Thus we get that if T€9,L(X, Y), is such that Tx€4,Y; for every x€9.X;,
then dim 7(X)=1 or 2. Define S€L(X, Y), by the matrix

I 1 1 1
l1-2 1 0
— 61
§=6 T 1 1 —-1]
1 0-1 0O

Then ||Sx||=1 for every x€d,X;. Let T¢g,face(S) and assume Tx¢d,Y; for
every x€9,X;. Then dim 7'(X)=1 or 2. Let e, ..., e, be the natural basis for
Y=I{. Since 3S(1, —1,1, —1)=(0,2,1,0), we get T(X)Espan (e, ¢s). Simi-
larly, 35(1,1,1, —1)=(1,0,2,0) and 3S(, —1,1,1)=(1,2,0,0) gives that
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T(X)Espan (e,, ¢,) or in span (e;, ;). Thus we only have to consider the cases
1, 2 and 3 below.

Case 1. T(X)CSspan (e,, €,).

Since 3S(1, —1,1, —1)=(0,2,1,0), we get T(1, —1,1, —1)=e,. Similarly,
wegetT(1,1,~1,~1)=—e,and T(1, 1,1, —1)=¢,. We also have T(1,—1,—1, )=
e,. Thus using that (1,—1,—-1,)+{1,-1,1,-1)={1,—-1,—-1,—-D+(1,-1,1, 1)
we get —e;=T(1,—1,—1,—1)=e,. This is a contradiction.

Case 2. T(X)Cspan (e, €3)
and

Case 3. T(X)Sspan (e,, e;) are treated similarly. Hence, we get that for every
T€d, face (S), there exists x€d,X; such that Tx¢d,Y;.

Remark. S. Kaijser has shown that the matrix

4=8"1

2
-1
1
0

_— N
N == O
— N O =

has the same property as the matrix S.

Lemma 3.3. Let X=[I}@®_R and let Y=I!. Then there exist T¢d,L(X,Y),
and x€0,X, such that Tx4¢9,Y,.

Proof. Let x;=(1,0,0,1), x=(0,1,0,1), x,=(0,0,1,1), y,=(—1,0,0,1),
».=(0, —1,0,1) and y;=(0,0, —1,1). Then x,4+y,=(0,0,0,2) for all i. Define
TeL(X, Y), by

2Tx, =(1,1,0,0), 27Tx,=(0,1,0,1)-

2Tx3 = (1’ 0, 05 1)’ 2TJ/1 = (05 0, 13 1)~
Then
2Ty, =(1,0,1,0), 2Ty;=1(0,1,1,0).

Let S€9, face (T'). Assume for contradiction that x€d,X,=Sx€9,Y;. We have
to consider four cases.

Case 1. Sx;=e; and Sy,=e,.

Since span (xy, ¥;, X3, ¥5)=I3 and Y=I}, we get Sx,, Sy,cspan (e, e,).
(See the beginning of the proof of Lemma 3.2.) This is impossible.

The cases 2) Sx,=e,, Syy=e;, 3) Sxy=e,, Sy;=e¢; and 4) Sx;=e¢,, Sy, =¢,
are treated similarly. Hence we have shown that for every S€g, face (T), there
exists x€d,X; such that Sx¢a,Y;.
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Considering 7* we get:

Corollary 3.4. Let X=I* and let Y=I® @,R. Then there exist T¢o,L(X, Y),
and x€0.X, such that Tx4d,Y;.

Lemma 3.5, Let X=I} @ _ R andlet Y=I2 D, R. Thenthere exist T€9,L(X,Y),
and x€0,X; such that Tx49,Y,.

Proof. Let x;,y€0.X, be as in Lemma 3.2. Let ¢,=(1, —1, —1,0), e,=
4L 1,-1,0), e=(1,1,1,0), e,=(1, —1,1,0) and ¢,=(0,0,0,1). ¢£9.Y, and
e,te;=ey+e,. Define TEL(X, Y), by 2Tx;=ey+es5, 2Tx,=e;+e;, Txy,=e; and
2Ty, =eyte5. Then 2Ty,=e;+e, and 2Ty;=e,+e;.

Let T)€0,L(X,Y); and let 4,>0 such that > A,=1 and T=_3 A,T; where
i runs from 1 to some integer p.

Assume for contradiction that S¢9,L(X, Y),, x€0,X;= Sx€0.Y,. Then some
T,, say T, satisfy Tyy,=e;. We have T,x;=e;. Using that x,+y;=x,+y; and
Tyys2es, we get Tix;=e,. But then Tyx,C{e,,es)nie;, es)=1{e;}. Similarly
Tiy,=e;. But then, since T1x;+T1y,=T,y.+T1X;, we have obtained a con-
tradiction.

Proof of Theorem 3.1. By lemmas 3.2, 3.3, 3.4 and 3.5, we know that there
exists a T€d,L(P(X), Q(Y)), such that Tx¢9,0(Y), for some x€9,P(X);.
(T-P[=1. Hence we can find T:€4,L(X,Y), and 1,>0 such that 3> i=1
and T-P=2"A,T; (i=1, ..., p). But then we get T=> 1,0 -T;. Since T is extreme,
this implies that T7=0.T,. Hence T;x4¢9,Y; for some x¢9,P(X)Sd,X,. The
proof is complete

Corollary 3.6. Assume X and Y are finite-dimensional CL-spaces. If there exist
isometries T: 12 ~X and S: IX —~Y* suchthat x¢d,({%)=>Tx€d, X, and Sx€d, Y],
then there exist U€,L(X,Y), and x€d,X, such that Ux¢d,Y;.

Proof. S*: Y—I is a quotient map such that S*(9,Y;)=4a,(l});. Hence there
is a projection @ in Y such that Q(Y)=/} and Q(9,Y1)S4.Y;.

Let P be a projection in X such that |P)|=1 and P(X)=T(l}). Note that
the properties of P that we used in the proof of Theorem 3.1 was |P=1 and
0. P(X),S0,X,. The proof is complete.

Remark. If we assume in Corollary 3.6 that X and Y have the 3.2.1.P., we get,
using Proposition 2.5 and Lemma 6.4, that the corollary is true if we replace /2
one or both places with 7 §_ R.

Even though we don’t need the next result, it is typical for the situation so we
include a proof,
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Theorem 3.7. Let Y and Z be finite-dimensional spaces with 3.2.1.P.

Then
(1) T€H,L(Y ®.. R, Z®: R);, x€0.(Y .. R), = Tx€d.(Z D, R),
if and only if
2 min (dim Y, dimZ) = 2.

Proof. (2)=(1) easily follows from Theorem 2.1.

Assume next that dim ¥=3 and dim Z=3. If Y is not an /"-space, then
there exists an isometry T: I2 ~Y [5; Theorem 4.3]. Let S€d, face (T). Then S
is an isometry and by Proposition 2.5, S(9,(2),)S9,Y;. Hence there exists an
isometry U: I2—~Y @®_ R such that U(9,(2),)S0.(Y . R),.

Similarly, either Z is an [” -space or there exists an isometry V: 1% -Z* O _R
such that V(9,(I2),)S0.(Z* @.. R);. Now (1)=(2) follows from Corollary 3.6 and
Theorem 3.1.

4. Necessary conditions when X has the 3.2.1.P.

In this short section we shall prove Theorem 4.1.

Theorem 4.1. Assume X is finite-dimensional with the 3.2.1.P. If X satisfy (1)
T€0,L(X, X),, x€0,X,=Tx€d,X, then X is isometric to I 12 @,...D 12 or
"D LB B (k copies of I or I}) where m,k€{0,1,2, ...} and dim X=
m+3k.

Proof. By Corollary 3.6, we may assume that there does not exist an isometry
T: I2~X such that 7(9,(I2),)S0.X,. We can assume dim X=3. By Theorem
7.3 in [3] we can write

X = llm ©D: (Yl EBDQZI) @D1-- By (Yp @ooZp)

where dim Y;=dim Z;=1 and dim ¥,+dim Z,=3 for all i. (We can have m=0
or p=0.) If p=0, there is nothing to prove. So assume p=1.

If one Y, or Z, is not an I{-space, then as in the proof of Theorem 3.7, we find
an isometry T: I —Y; @ .. Z, such that T(d,(I2),)S0.(Y; .. Z;),. This contradicts
our assumption above. Hence all Y, and Z; are I-spaces. Using that [2=12, we
similarly get that Z,=R for every i. Hence Y, ®_ Z,=I} @R for some k,=2
and all i.

Looking at the lemmas in Section 3 or at Theorem 3.7, it is clear that we can-
not have dim Y;>2 for some i together with p>1 or m=0. Thus we have either
p>1 or m=0 and then X=I"D. 2 D,... D2 or p=1 and m=0 and
X=I¥®_R with k=3. In the last case, it follows from Theorem 3.1 that k=3.
Thus X= @_R.

The proof is complete,
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5. CL-spaces without the 3.2.I.P.

We shall now characterize CL-spaces without the 3.2.1.P. These results will
then be used in the next section where we show that no CL-space without the 3.2.1.P.
satisfy (1) in Theorem 1.1.

CL-spaces were characterized in Theorem 2.3. The first result here is well known
and its proof can be found in [6] [2].

Theorem 5.1. The following statements are equivalent:
(1) X has the 3.2.L.P.
(2) X* has the 3.2.1.P.
(3) If F and G are disjoint faces of X,, then there exists fco, Xy such that f=1
on Fand f=—1 onG.

If we compare (3) of Theorem 5.1 with (4) of Theorem 2.3, we see that every
CL-space without the 3.2.1.P. contains a pair of disjoint faces F and G of X, such
that no f€X; is 1 on Fand -—1 on G and both F and G consists of more than
one point.

Lemma 5.2. Lef X be a finite-dimensional CL-space without the 3.2.1.P. Then
x1+x2]
, then

there exist a face N of X, and x, x,€0,X; such that if F:face(
Nn F=0, but no feX; satisfy f=1 on N and f=—1 on F.

Proof. By the discussion above and since dim X<woo, it follows that there
exists a minimal face F of X, such that there exists a face N of X, with the properties:
NnF=0 and no feX; islon Nand —1 on F.

Write N=face (y) and let x,60.F. By Theorem 2.3, we get that G=

face (y

1] is a proper face of X;. Write F=face (x) and choose «€{0, 1] and

z€F such that x=ax;+(1—a)z. By choosing « as large as possible, we get
x;¢face (z). As noted above, F is not a point. Hence «<1. Clearly face (z) is
a proper subface of F.

If face (z)nG=0, then by the minimality of F, there exists gé€d. X; such
that g=1 on G and g(z)=—1. But then g=1 on N and g=—1 on F. This
contradiction shows that face (z) n G=8. Choose x,€0,G nface(z), and define

+ \
H:face[x1 xz]gF. Then no feX; satisfy f=1 on N and f=-—1 on H.

Hence by the minimality of F, we get F=H. The proof is complete.
Before we proceed to get better characterizations of CL-spaces without the
3.2.1.P. we need a lemma.
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Lemma 5.3. Assume X is a finite-dimensional CL-space. Let p=2 and let
Vis oo ¥p€0. Xy be such that F=face (p~'(y,+...+y,)) is a proper face of X,.
If x1€0,F, then there exist X, ..., X,€0,F such that

nt.o.ty,=x+...+x,.
Proof. There exist o;€(0, 1] and #,€ F such that
P‘l(y1+-..+yp) = oy x+(1—ay)uy.

By taking o, as large as possible, we get x, ¢ face (). By Theorem 2.3 there exists
f1€0.X; such that fi(x;)=1 and f,(4;)= —1. By Theorem 2.3, we then get

20, —1 = fi(o %+ (1 —ap) uy)
=p T i+ ¥y
e{Lp (-2, p7 (P9, ..., —1}
Hence o,€{0,p7% 2p7%, ...,1}. Thus we can write o,=p~'k, where k; is some
integer =1. We now have
P+ ty) = p i+ (1 —p k) u,.

If u,4¢0.F, then we can choose x,€0,face (1), %,€{0,1—p k)] and u,€F
such that
Pty = p T hx o xe +(1—p T g — ).

Choosing a, as large as possible, we get x,¢face (u,). Again using Theorem 2.3
we find f£,€0,.X; such that fo(xy)=1 and fy(uy)=—1. As in the case with «,,
we find «,=p~1k, where k, is some integer =1. Hence

Vit 4y, = kit ke X, H(p—ky— ko) us,.

Proceeding in this manner, we find x,, ..., x,€3,F and integers ki, ...,k =1
such that k;+...+k,=p and

Nty =kixy ke xo+ .+ kyx,.

The proof is complete.

The next result is a main theorem in this section. It characterizes CL-spaces
without the 3.2.I.P. This theorem together with Theorem 3.1 will be used in the
following to show that such spaces cannot satisfy (1) of Theorem 1.1.

Theorem 5.4. Assume X is a finite-dimensional CL-space without the 3.2.1.P.
Then there exist an integer p=2, a maximal proper face K of X; and extreme points
Visowes Vs Xis X2y 215 -5 2,€0, K such that

Nt Fy,txi=x+z5+...+z,.
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Moreover, if N=face(p~™'(y+...+y,), M=face(p~(z+...+2,)) and F=
face (271(xo—x,)), then MAN=0, NnF=0 and —Fn M=0.

Proof: By Lemma 5.2, there exist a minimal integer p such that: There exist
Y15 oos Vpr X15 X5€0,X; such that if N=face (p~*(y;+...+y,)) and

F = face (271 (x; + X,)),

then N F=0, but no f€X; is 1 on F and —1 on F. Then as in the proof of
Lemma 5.2, we see that if G=face ((p+1)~(y;+...+y,—x,)), then G is a proper
face of X; and x,€G. Let K be a maximal proper face of X; such that GEK.

By Lemma 5.3 there exist zy, ..., z,€9,K such that

it ty,—X% =X+ 2 +... +2,.

Let M=face (p~'(z,+...+2,)). If there exists u€d, M n 9, N, then by Lemma 5.3,
we can find ,¢d,N and b,c9,M such that

nt..ty,=uta+...+a,,
and
Zyt.tz, =u+b+...+b,_,.
Hence
a;t...+a, 1—x = Xp+by+...+b,_;.
Clearly Fnface (p—1)7*(a+...+4a,_,))=0, but no fcd, X is 1 on one of these
faces and —1 on the other. Thus.we have got a contradiction to the minimality
of p.
Hence N M=40.
If two z; are equal, say z,=z,, then by Theorem 2.3, there exists f€¢d,X;
such that f=1 on N and f(z;)= —1. But then

p—1l=fn+...+y,—x) = fatz+...+2) =p-3.

This contradiction shows that all z; are different.
If there exists z€d,M n (—F), then by Lemma 5.3 we can write

—X;—Xg = Z+U
and
Zito.tz,=z+b+...+b,

where u, by, ...,b,_1€0,K. But then
Vit ty,=bit.+b, —u

such that Nn M=0. This contradiction shows that M n (—F)=0. To conclude
the proof, we only have to replace x;, by —x,.

It is a consequence of Theorem 5.4 that a CL-space without the 3.2.I.P. has
dimension =5. In fact, dim X=2p+1.
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Proposition 2.5 says that if X has the 3.2.1.P., then L(/2, X) is a CL-space.
If X does not have the 3.2.I1.P., then we get the following corollary.

Corollary 5.5. If L(I2, X) is a CL-space, then the integer p in Theorem 5.4 is 2.

Proof. We use the notation of Theorem 5.4. We have
(1t + ) P2 = (Xt (P~ D) x1) +(21+ ..+ 2,).
Define T: I2~X by pT(l,1, D=y, +...4y,, T(1, =1, =1)=x,, pT(1, —1, )=
Xo+(p—1)x; and pT(1, 1, —1)=2z;+...+z,. Then ||T|=1. Choose S¢d, face (T).
Then y=S(1,1, D€, N, z=5(1, 1, ~1)€d, M, x=5(1, ~1, —1) and x;=

S(1, —1, 1)€o, face(x1+x2

) and x,+y=x,+z By Lemma 5.3, there exist

extreme points x,, ¢; and b; such that

nht..ty,=y+a+...+a,4
Zy+tz, = z+b ... 4+b,
and
X1+ Xe = Xa+X4.
Hence
ayt...+a,-1+x;3 = Xo+bi+...+b,_;.

Repeating this procedure, we find a€d,N, b€d,M and x,€0, face[
such that

x2+x3]

a+x; = x;+b.
But then
+a)+x, = x+(z+b)

a

b
and face ( vt ]gN and face [ i ]gM . However, these smaller faces satisfy

the requirement of Lemma 5.2. Looking at the definition of p, we now see that
p=2.

There are some CL-spaces such that L(I2, X) is not a CL-space. An example
of this is the quotient-space X=1[}/U where U=span {(1,1,1,1,1,1)}. In this
space, we have that if x, y€d,X; with x+y>0, then conv (x, y) is a face of X;.
It is easy to see that for every CL-space with this property, we have that L(I2, X)
is not a CL-space. (In fact, if ¥, z and x, are as in the proof of Corollary 5.5, then
X,+y=x3+z implies that y=zé M AN or z=x,6 M n(—F). Both are false.)

If X is a CL~space and X is not an [j-space, then it follows from Propositions
1.6.11 and IL.3.16 in [1] that we can define an integer p(X) as follows: p=p(X)
is the smallest integer such that there exist x, ..., x,€d.X; with the following
properties:

(1) F=face(p~*(x;+...+x,)) is a proper face of X;
(2) Fzconv (xq, ..., X,).



110 Asvald Lima

Proposition 5.6. Let X be a finite-dimensional CL-space and assume X is not
an Ii-space. Then p=p(X)=2 and there exist X, ...,X,, Vi, ..., V,€0. X1 (all
different) such that

X+ ... +x, =+ ... Fy,

and F=face (p~'(x;+ ...+Xx,)) is a proper face of Xy. Moreover, if z, ..., 2, 168X,
are such that z;+z;#0 for all i and j, then conv (zy, ..., Zz,-1) is a proper face
of X;.

The example X=1I8/U above satisfy p(X)=3. Clearly L({I2, X) is a CL-space=
p(X)=2.

Proof. The statement about z,,...,z,_; easily follows from the definition of
p(X) and Theorem 2.3. The existence of X, ..., X,, ¥, ..., ¥, follows from the
definition of p(X) and Lemma 5.3. The proof is complete.

6. Necessary conditions when X is a CL-space

In this section we shall prove that if a CL-space X satisfy (1) of Theorem 1.1,
then X has the 3.2.LLP. and we can apply Theorem 4.1. We shall assume that X
is not an /J-space such that the number p(X) is defined. (See the text following
the proof of Corollary 5.5.) First we show that if X satisfy (1) of Theorem 1.1 then
p(X)=p(X*)=2. From this we deduce that L(/2, X) and L(/2, X*) are CL-spaces.
Using this information we show that if X does not have the 3.2.1.P., then we have
a situation like the one decribed in Theorem 3.1.

Theorem 6.1, Assume X is a finite-dimensional CL-space with p(X)=3. Then
there exist T€d,L(X, X), and x€d,X, such that Tx¢0,X,.

Proof. Suppose first that p(X) is an even number, say p(X)=2k where k=2.
Let Fand xy, ..., Xg, Vs --.s Yor€9. F be as in Proposition 5.6. By Proposition 5.6,
CONV (Xq, ooy Xgy —Vis1s ---» —Vax—1) 1S @ proper face of X not containing yg-
Then there exists, by Theorem 2.3, a f,€0,X; such that f,(x)=1 and f,(y,.)=
—1 for i=1, ..., k. Butthen by the equality in Proposition 5.6, f,=1 on x, ..., X,

Yisees Vi and fzz—l on Xi+1s =oos Xoks Viv1s o5 Vor-
Similarly there exists f3€d,X; such that fi=1 on xy, ..., X, Vuy eeos Ves1
and fo=—1 ON Xpi1s ooy Xogs Vis Vitas oo Yok

Since F is a proper face of X}, there exists f1€d.X; such that fi=1 on F.
Define a map T: X—I2, by T(x)=(f,(x), fy(x), f3(x)). Define ay, a, b, b6 F
by kay=x;+...+ X, kay=x 1+ ... +xop, kby =y + ...+ and kby=yp 1+ ...+ Vo -
Defineamap S: I2-X by S(1, 1, )=ay, S, —1, —1)=a,, S(1, 1, —1)=5, and
S(1, —1,1)=b,. Then [S-T|=1 and S-T(y)=by, S+T(Fps1)=by, S+ T(x)=
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S:T(yp=a, for i=1,..,k and j=2,..,k and S-T(x)=S-T(y)=a, for
i=k+1,..,2 and j=k+2, ..., 2.

Let U€o,face (S-T) and assume for contradiction that x¢d,X,=Ux€4,X;.
Then we get Uy, €{»1, .., Vi) UVer1€{Vis1s - Yoy and Ux€{xy, ..., Xy} when
XE{X1s ooer Xors Voo ooes Vies Vis2s --os Var) Moreover

Ux1++ szk = Uy1+.+ Uka'

Either Uy,=Ux; for some i or else card {Ux,, ..., Uxy}<p(X). Thus Uy, is
in a face generated by less than p(X) extreme points. This contradicts the defini-
tion of p(X). Hence Ux¢o, X, for at least one x€g,F.

Suppose next that p(X) is an odd number, say p=p(X)=2k—1 where k=2,
In this case we have to make a small change in the proof above. We start with
X1, -o0s Xp, V1, --» ¥, @nd F as in Proposition 5.6. Then we write X=Xy =Yy
The proof is complete.

Corollary 6.2. Assume X is a finite-dimensional CL-space. If X satisfies (1)
T€d, L(X, X)y, x€0,X,=Tx€0,X;, then both L(I2, X) and L(I3, X*) are CL-spaces.
Moreover, if X is not an I}'- or an IZ. -space, then p(X)=p(X*)=2.

Proof. If X is an I}- or an I” -space, then there is nothing to prove. Hence,
we can assume p(X) and p(X™) are defined. By Theorem 6.1 we get p(X)=p(X*)=2
since X satisfies (1) if and only if X™* satisfies (1).

Assume p(X)=2, and let x,, x,, y1, y, and F be as in Proposition 5.6. Let
Y=span (x, Xs, 1, ¥s). Then Y=I[3_ Hence there exists a projection P in X such
that P(X)=Y and ||P|=1. Now we proceed as in the proof of Theorem 3.1 to
show that if T€d,L(I2,X), and x€9.(12),, then Tx€d,X;. Similarly, we show
that L3, X*) is a CL-space.

The next proposition is a step in order to establish a situation in which we
can apply Theorem 3.1.

Proposition 6.3. Assume that X is a finite-dimensional CL-space without the
3.2.1.P. and that L(I2, X) is a CL-space. Then there exists an isometry T:I3 @ _R—~X
such that Txcd, X, for all x€0,(I3 D _R),.

Proof. By Corollary 5.5, the integer p in Theorem 5.4 is 2. Let y;, s, x;, X,
z;, 23, M, N and F be as in Theorem 5.4. Then we have

1ty +2x; = (o4 x)+(21+ 7).
Using the argument we used in the proof of Corollary 5.5, we find y€d,N, z€0, M
] such that

X1+ X

and x;€ 9, face (

y+x1 = X3+Z.
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By Lemma 5.3, we may assume y=y, and z=z;. Thus
yitx = X342
Yot X = Xot 22

and
x1+xZ = X3+x4

for some x,€0.X;. Since NN M=0, we get xy#x; and x;#Xx,. Moreover
M N=0 implies that x,d M U N.

Define T: 2@ _R—-X by T(1,0,0, )=x,, T(0, 1,0, )=x,, T(0,0,1, )=y,
and 7(0,1,0, —1)=x,. Then 7(1,0,0, —1)=x, and T(0,0,1, —1)=z,.

That T is an isometry follows from the observations 1)—5) below.
1) There exists f;€0,X; such that fi=1 on x;, ..., X, Y1, 2.
2) Since z;¢ N, there exists f,€9,X;* such that f,=1 on y;, s, Xs, X3, 2z and

fo=—1 on z;, xq, X,.

3) Since x,4¢N, there exists f;€0,X; such that f;=1 on y, ., z;, zo and
fa=—1 on xy, Xs, X5, X4.

4) Since zy¢ N, there exists f,€9,X; such that f;=1 on y;, y,, 21, Xy, X, and
fi=—1 on zy, xq, X5.

5) Since Nn F=0, we get x,¢face [—yi_;i] Hence there exists f;€d,X; such

that fy=1 on y,, X1, X3, 21, Zz and fy=—1 on x,, x4, ¥s.
The proof is complete.

Lemma 6.4. Assume X is a finite-dimensional CL-space and that L(I2, X™) is
a CL-space. If there exists an isometry T: 13 @ R—~X such that Tx€d.X, for
every x€0,(I3 @ . R), then there exists a projection P in X such that P(0,X,)S0.X;
and P(X)=I}@®_R or I%.

Before we give the proof, let us look upon a consequence of this result.

Theorem 6.5. Assume X is a finite-dimensional CL-space which satisfies (1)
T€d, L(X, X),, x€0,X1=>Tx€0,X;. Then X has the 3.2.1.P.

Proof. This follows from Theorem 3.1, Corollary 6.2, Proposition 6.3 and
Lemma 6.4.

1t only remains to prove Lemma 6.4. Clearly T*: X*-I2 @, R is a quotient
map such that 7%(0,X])=0.(2 ®.R),.

From now on, we shall assume L(/? , X) is a CL-space and that Q: X~ ;R
is a quotient map such that Q(9,X))=09,(2 P,R),.

Clearly it suffices to show that either there is a projection P in X such that
P©.X)Sd.X; and P(X)=I3 @, R or there exists an isometry T: I2-X* such
that T(9,(I2),) S0, X7
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Let x,=(1,1,1,0), x,=(, —1,1,0), x;=(, —1, —=1,0), x,=(1,1, —1,0)
and x;=(0,0,0,1), and let N=conv (xq, ..., x;). Let K=0 Y (N)n X;. Then N
and K are maximal proper faces of (I2 @, R), and X, respectively. For i=1, ..., 5,
let Fi={x€K: Q(x)=x;}. Then {F;}_, are disjoint faces of X and K=
conv (Fyu...u Fy).

Case 1. Suppose there exist @;€d,F; such that
a1+a3 —_ a2+a4.
Define T: I3 @;R—~X by Tx,=a;, and define P by P=T-Q. P is a projection
in X and P(X)=I2 @,R and P(9,X)<3,X;.

Case 2. Here we assume:
(#) If q,€0.F;, then a;+a,=a,+a,.
Assuming (3 ), we are going to show that there exists an isometry T: [* >X*
such that T(9,(I1))S0.X;. The proof of this is divided into eight sublemmas.
Choose y,€F,; such that F;=face (y).

Lemma 6.6. conv (F, U F,) is a face of K.

Proof. Note that conv (F,u...uU F,) is a face of F. If conv (Fyu F,) is not
Ya4Y4

a face of K, then face( ]m (Fyu Fg)=0. Hence there exist «;=0, >a,=2

and z,€ F; such that
Yota=oaz1+...+02,

and we can assume o,>0. Let f€d, X such that f=1 on F,UF, and f=-—1
on F,UF,. (Let f/=(0,0,1,1)-Q.) Then we get

0=oy+oy—o;—oy.
Similarly we get
O0=o—ay—ozt+oay.

Hence oy=0a3, ay=0a, and a;+ap=1. Define amap 7: I2~X by T(l, 1, 1)=y,,
Td, =1, =D=y,, T, -1, D=0yz;+a,z, and T(1,1, —D)=0yz;+a,z,. Since
L(I%,X) is a CL-space, we can write T=> A, T; where A,>0, > l,=1 and
T,0.02),)S0.X;. (i is in a finite index set.) Since ;>0 and F, is a face of
conv (F; U F,), there is some T;, say 73, such that 7;(1, —1, )=a,¢9,F,. More-
over, I1(1,1, )=a,€0,F, and Ty(1, —1, —1)=a,€9,F,. Hence T(1,1, —1)=
as€90, F; since a,+a,=a,+a;. This contradicts ().

The proof is complete.

The next three lemmas are proved in exactly the same way as Lemma 6.6 was
proved so we omit their proofs.
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Lemma 6.7. conv (F, U F;U F,) is a face of K.
Lemma 6.8. conv (F,u F,u F;) is a face of K.
Lemma 6.9. conv (Fyu F,u F, U F;) is a face of K.

We shall say that two subsets 4 and B of X; can be = l-separated if there exists
f€0.X;" such that f=1 on 4 and f=—1 on B.

Lemma 6.10. The faces FI and cony (Fyu F3U F,)) can be *1-separated.

Proof. Let G=conv(F, UF;UF,). Gisaface of Kby Lemma 6.7 and F; n G=40.
If acd,F;, then G and {a} can be =+ 1-separated by Theorem 2.3. If G and F;
cannot be = l-separated, then let face (@)S F; be a minimal face of F; such that
G and face (a) cannot be = 1-separated. Write a=aa,;+(1—a)b where a,€9,F;,
beF, and a€(0,1). Choosing « as large as possible we can assume a, ¢face (b).
Clearly we can assume 2xz=1. By the minimality of face (a), it follows that G and
face (b) can be ' + 1-separated. From Theorem 2.3 it follows that

a;,€face (471 (y.+ ys+y,—b)).
Thus we can write

Yo+ yst+ys—b=oa,+(@4—x)u

where [ul|=1 and «€(0,3]. We can write (4—o)u=(3—o)v—w where v, wEK.
Hence
Yot Ystyatw = aa;+b+G—0)o.

Let f€0,X; such that f=1 on G and f(b)=-—1. Then f(a;)=1 such that
4 =f(yat+ystys—b)
= a+@—-a)f(v) —f(W)
=a+(3-a)+1
=4,

Hence f(w)=-—1. Thus weconv (F,u F;). Write 3—a)v=0,2,+...+a,z, where
o;=0 and z,6F,. Then a;+...+a;=3—a and

Vot Vet ya+w=o0a,+b+o,z,+...+aszs.
We use the map Q and get
Xotxg+x,+ QW) = (I +a+o)x,+opxs+... + o5 x5,

From this it follows that a,=c, and a,+oa,=2. Since Q(w)Econv (x,, x;), we get
l=a+a,+0a,. Hence ay<1 and az>1. Define u,€6K by 2uj=y;+w, 2u,=
Vot+Ya, 2us=02,+ 0325 and 2u,=aa,+b+o,z+0,z,+05z5. Then

Uy tu, = ugtu,.
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Now we use that L(I2, X) is a CL-space in exactly the same way as we used it in
the proof of Lemma 6.6 and find v,€4, face () such that

01 +0, = vty

Since ay;>1 and 1+oa+a,>1, we see that we may suppose v5€0, face (z;)S 9, F;
and v,60,F;. But by Lemma 6.6, this implies that

vp€conv (F; 0 Fy) nconv (Fyu Fy) = 0.

This contradiction completes the proof.
We omit the proofs of Lemmas 6.11 and 6.12 since they are similar to the proof
of Lemma 6.10.

Lemma 6.11. F, and conv (Fyu F;U Fyu F,) can be +1-separated.

Lemma 6.12. conv (£, U F,) and conv (Fy,u F,u F;) can be + 1-separated.

It remains only one lemma.

Lemma 6.13. There exists an isometry T: I* ~X* such that T(9,(I%).)Sd. X7 .

Proof. By Lemma 6.12 there exists g,€0,X;* such that g,=1 on F;u F;U F;
and g,=—1 on F,u F,. Using Q, we see that there exist g,, g5, g:€9.X; such
that g,=1 on K, gz;=1 on FiUF;UF;, gs=—1 on FUF,, g;,=1 on FLUF,UF;
and g,=—1 on F,UF,. Define T: I ~>X by T(1,1,1, D=g,, T(1, —1, 1, — )=
g, T(1,1, -1, - =g, and T(1, —1, —1,1)=g,. It is straightforward to sec
that T has the right properties. The proof is complete, and this also completes the
proof of Lemma 6.4.

Let us add a last result.

Theorem 6.14. Assume X and Y are finite-dimensional spaces with the 3.2.1P.
The following statements are equivalent:

0y L(X,Y) is a CL-space.
2 X=IrD, 3 B... 005 or Y= .BD.. D2

Proof. (2)=(1) is contained in Theorem 2.1. Assume (2) is not true. Then
just as in the proof of Theorem 4.1, we can write X=U &,V $_.Z) where
dim(V @.Z)=4 and Y*=L P, (M P_N) where dim (M @ _N)=4. Then look-
ing at the arguments used in the proofs of Theorems 3.7 and 4.1, we sce that we
can apply Proposition 2.5, Lemma 6.4 and Theorem 3.1. The proof is complete.

Remark. In [6] we proved that L(X, Y) has the 3.2.I.P. if and only if X=["
or Y=/ where X and Y are as in Theorem 6.14.
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