Interpolation by Lipschitz holomorphic functions*

Boguslaw Tomaszewski

Introduction

Let C* be d-dimensional complex space (d=>1) with norm |z|=(|z,|2+... +]z,|2)"/*
and unit ball B={z¢C’ |z|]<1}. By u we shall denote the rotation-invariant,
normalized Borel measure on S=@B and by C(S) — the space of continuous
functions on S. If f¢C(S) has a continuous extension f: B—C, holomorphic
on B, then we shall write f¢ A(B). We shall denote CA=S5—4 for AcS and
by [z, z;] — any shortest path on § joining z; with z, (z,, z,€S). Let o(z,, z5)
be the length of a path [zy,z)], let g(z;,z)=|1—(z,2,)| and let K(z,r)=
{¢eS: q(z, &)<r} ((z1, z,) be the scalar product of the vectors z; and z,). We say
that feLip a, where O<a=1, if feC(S) and there exists a constant C such that

f(@—f (O] = Ce(z, )
for z, £€S.

Aleksandrov proved [2] that for every real function g€ C(S) and for every e=0
there exist functions f€ A(B) such that Re f=g and u({z€S: Ref(D)=g(@)})=1—e.
Sibony proved [4] that if fcA(B)nLip« is a nonconstant function with norm
| fle=1, then u({z€S: |f(2)]=1})=0. This theorem was strengthened by Hen-
kin (see [3] sect. 11.4), who obtained the following result: If fe A(B)nLip « is a non-
constant function such that Re f=0 and 1=a=1/2, then u({z€S: Ref(z)=0})=0.
It is still an open problem, if the assumption 1z=a=>1/2 can be replaced by a weaker
condition 1=a=b, where b<1/2. We shall show that b has to be positive:

Theorem. For every e>0Q there exists a=0 such that for every real function
g€Lip 1 it is possible to find nonconstant functions f€ A(BYnLip a« such that Re f=g

on S, and
1({z€S: Ref(2) = g(2)}) = 1—=.
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Corollary 1. For every &>0 there exists a=>0 such that for every function
g€Llip 1, g=0 there exist nonconstant functions f€ A(B)nLip « such that |f(2)|=
g(2) for z€S, and

p({zes: /(@ =g@N) =1-e

Proof. Define g=log(g) and apply the Theorem to the function g instead
of g. We shall get some functions fEA(B) The functions e’ will satlsfy the asser-
tion of Corollary 1.

Corollary 2. There exists o>0. such- that for every =0 it is possible to find
nonconstant functions feA(B)nLip o such that | flle=1 and

p({zeS: |f@)l= 1)) =1-=

Proof. Let us apply the assertion of Corollary 1 for g=1/2 and g=1. We
shall get functions feA(B)nLip o, for some a=0, such that |f(z)|=1 for z€S,
and p(E)=1/2, where E={z€S: |f(z)|]=1}). Let u=P[xz] be the Poisson inte-
gral of the characteristic function of the set E. Let us fix ¢>0. Then u(a)>1—¢
for some point a€B. Let Y€Aut (B) be an automorphism of the ball B such that
V(0)=a and let F=foy. Then ypoy =y, where K={z€S: |F(z)|=1}. More-
over

w(K) = [ edp = [ xeow dp = Plizoyl(©) = PUp)(¥(0) = u(@) = 1-=.

Also FEA(B)nLipa and |F|=1 on S. This ends the proof of Corollary 2.
To prove the assertion of the Theorem, we shall need the following lemmas:

Lemma 1 (Aleksandrov). Let a, N>0, 0<p<1. There exists a number ry=0
and o=0(a, N,p,d)=0 such that for every number r<r, and K(&,r) ((€S),
it is possible to find a function h€ A(B) satisfying the following conditions:

® Re h(0) =0
(7)) h(z)|=a for zeK(&r)
N
r.
=aq ( G r)) for z€S—K(, ).
©) e ReB=1Pdut [ b du = (1-0)u(K(E 7).

This Lemma was proved by Aleksandrov [1]. The example of the function #,

7’

R
given by Aleksandrov, is- h(z)=g1[ , §>), where R’ is some number
¥

independent of r and g,(z2)=ai(1+2z)~". Hence 4 is a function defined on some
neighborhood. of S and it is constant in the directions w€C" such that (w, &)=0.
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It follows that
©)] h(z)=0 for z€S and we€C" such that (w, &) =0,
where A, is a directional derivative of the function f at the (complex) direction w.

4 4

. . .. . R
Since the directional derivative of the function ——
r

(z,&) at the direc-
r

tion Eis ——, we have
r
, , Rr R R/ RI . RI R/ —-N-1
R ) R R (e O

R R R’
But |14+———¢z, f)‘zmax (1, —q(z, 5)] , hence
r r r

for zeK(&,r)

©) M) = =

E r ~N-1
= T(m} for ZES"K(Q 7‘),

where E is some constant independent of r.

Lemma 2. Let, for z€[zy, z,], v=v(2) be a unit vector tangent to the path [z, z,)
at the point z. Then

b, = [ 1 2)lda),

where a is the “length measure”, i.e. da(z)=do(z,,z), and b, is some constant.

Proof. Let z,6S be a vector such that (z;,z)=0 and the (complex) linear
space generated by z; and z, contains z,. Hence, there are numbers o,, %, C such
that o, is real, |oy|®+|esj2=1 and

Zy = COS tyzy +sin ty(0e 121 +0p Zp),
where 0=¢,=n. It follows that the function
I () = (cos t+ioy sin £) z, +o, sin £z,

where 0=t=f,, is a parametrization of the path [z;,z,). If z=I'(t) for some
0=t=t,, then da(z)=\"(¢)|dt=dt and

v =v(z) = I'"(f) = (—sin t4io; oS ) z; + 5 COS 12,

Hence, (v, z)=—iay and [, . Kv, 2)| dA(z)=|ey|to. On the other hand, ¢(z;,z)=
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[1—(z, T (t))|=|1—cos ty+i-ay - sin 1| =max (1 —cos 1,, sin #y) - |oy|. Hence

lo
max (1--cos ¢, sin #;)

f[zx,z,] |<U, Z>l dl(z) = Q(Zl, 22) = % q(z1, 22).

This ends the proof of Lemma 2.

For geC(S), g=0, let B(g)=sup (gEZI; q(zy, zz)‘l], where the supremum
8g\2Z;
is taken over all points z;, z,€ S such that g(ﬂzz If there are not such points,
8z

we define B(g)=1.
For &, z€S, let
z+né J
——|-g(z
g(|z+né| g2 .
n

7¢(2) = lim sup

7:(8)(2)

We shall say that y(g)=R, if
8(2)

=R|(z, &)|+ VR for all z, ¢€S.

For ge€C(S) (not necessarily positive) we define
8@~2@)
z—¢§ )

There exists a constant C; such that, for every r=0, k=1, z€S, the inequality
u(K(z, kr))=C1k%u(K(z, r)) holds (see [3] sect. 5.1.4).

T(g) = sup
z,8€8,z:4¢

Lemma 3, Assume that g€ C(S), g=0, y(8)=R, s>1, z;, 2,6 S and %gs.
gz

s—112
Then q(z1,2,)=C, (——) R~ where C, is some constant.
5 ,

Proof. Let g, s, z;, 2, satisfy the assumption of Lemma 3. Let us take z€[z,, z,]
such that g(z)=g(z,) and g(¢)=g(z,) for every &€z, z,]. Let v=+(£) be a unit
vector tangent to [z, z,] at the point é¢[z, z,]. Then

g@-gE = [ n@OZO= [ ORI OI+VR)da®

= [byRq(z, z5)+Ro(z, 2,)]g(z) = [bqu(Zl » Z)+ V_-R_Q (z1, Zz)] g(zy),

because of Lemma 2 and the inequalities ¢q(z, z))=q(z1, z5), 0(2, 2)=0(z;, 22).
Dividing by g(zy), we get

1y 8(E)—g(2) —1p-15—1
q(zy,z) = 1/2 Rbe(z) = 1/2b; ‘R .
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or

0(z0, 22) = 1)2 i(f%(—z%)—k—lﬂ =125 g

Since there exists a constant b, such that, for z’,z7¢S, o(z’, 2")*=b,q(z’, "), the
assertion of Lemma 3 follows. Let us fix some number O0<p<1.

Lemma 4. There exist constants C,t>0, with the following properties: If
g€C(S), g>0, R=1 and max (B(g), y(g))=R, then there exists a function he A(B)
such that

@ I = -l—g on S,

(i) llg— RehHZE(l—r)HglI;,
(iii) max (B(g—Re k), y(g—Reh))=CR, and
(iv) T(h=CR| gl .

Proof. Let N=d+4, P=37 >=  24k+2)y+12"+1k~N and a=(Q20PC) 2.
Let o=0(a, N, p, d) and r, be numbers given by Lemma 1 and let 5 be a constant
such that 0=#=r, and

1/2)~1 1/p —~1{2p
4 = mi 1 ) ( _1 ] ]
[1 [C1) ] :mln[2,1+(2o , 11 20 .

From Lemma 3 it follows that if one of the inequalities
(6) lg(z0) —g(2a)? = g(29)°1)20,
(1-1/20)"?7g(zy) = g(z0),
1/2g(z)) = g(z5) or 1/2g(z) = g(z)
holds with g satisfying the assumptions of Lemma 4, then g¢(z,, z,)=4r, where
r=#R1,
Let §={K(;,r)}}L, be a maximal family of disjoint balls and let D=UG.
Since (6) fails for z,=¢; and z,€K(¢;, 4r), we have
P )4
e, & =2 8EF R E;40)

=SXCAgEYuKE,N=F[ e dn
j,f
where F=2PC,4727,
Summing over all j=1,2, ..., M and applying the equality S={ ¥ =1 K(&;, 4r)
(because g2 is a metric), we get

@) fs g"duéFfD gPdu.

Lemma 1 yields functions A;(j=1,2, ..., M) associated to K(;,r) with a and
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N defined above. We claim that the function h=2?’= 18(&)h; satisfies the con-
clusion of Lemma 4. Let us denote H;=g(¢;)Reh; for j=1,2,..., M. We have

® f ke 1§ HIP AR+

= [ee,n -l dute @y [

K(&r)

HPd
cm,,,)' iIP dp

[L—h;lP dp+g (&) [

CK (@)

Ih le dﬂ.
Since (b) fails for z;=¢; and z,€K(¢;, r), we get

©® S, 8= 8EIP A = 11200(K (&, M) 8 (2"

Using the same argument, we show that

(10) [(A1—1/20) g ()P (K (5, ) = [ sy & O
Combining (8), (9), (3) and (10) we obtain

AD S B HP AR+ [ B P dp = (=120 (K G D)g E)

= — 12 P = — ¥ 14
= (1-1/2077 [ ke & =179 fmy,) g7 dy,
where t™*=1—(1—-1/26)12. Let D:U?’=1 K(;,r). On K(¢;,r) the following
inequality

lg—Reh|P = |g—H;|P+ 3, ; |H?
holds, and on CD,

lg—RehlP = g2+ ¥ |HP.

Hence

Sole~Rehpdu= 3 [f

K,

lg—Hjlpdﬂ'*‘Zi;ejf

K, 0

|H;[P dﬂ]

+[_ g dut [ S, H P du.

Each function |H;[P is integrated over CD and over all K(¢ i, ¥) with j>i, hence
over CK(¢;,r). Thus

(12) Jole—RehPdu= 31, [

+305 )

CK@pr)

—H.7d
€0 lg—H;? du

H [P du+ [ 8" dp.
Summing (11) over j=1,2, ..., M and applying to (12), we get

Jslg—RehPdu=(-) [ grdu+[ gdp= [ gdu—s*[ goap,
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and because of (7)
T*
(13) Jolg—RehPdu= [ grdu——[ g dp= (01— [ g dp,

*
for ‘cz—TF. This proves (ii).

Next, we prove (i). Let us fix a point z€S. Define
4y = 4,(2) = {{;: 2g(2) = g(¢) < 2"*'5(2)}
for n=1,2,..., A4;=4,(2)={{;: g(¢)<2g(2)}. Let us assume that €4, for

some n>0. Then R>/3(g)>g(f)q( £)1=2"q(z, £;)7*, hence

q(z, &) =2"R™1 = 2"r.

Hence, if Ak={£;€4,: kr=q(z, &;)<(k+1)r}, then A*=0 for k=1,2,...,2"—1.
Since K(él,r)CK(z,2(k+2)r) for ¢,€A4% (this inclusion follows from the fact
that ¢'/2 is a metric on S), we have

44 (K (&5, 1) = (K (2, 20k +2)7) = G2k +27 u(K (2, 7))

and since p(K(&;, r))=p(K(z, r)), it follows that |4*|=C;2(k+2)*. Because of
(2) and the definitions of A* and a, we have

9 @ =3, h@IeE) = 37,3 2y e kN )24 g (2)

- e nily— 1
= Do Daon G224 (k422" kNag(2) = To—g(z),

which proves (i).
We turn to (iv). Let &,z€S. For ¢ jeA{‘,(z), we have
&, Epl = IKE, 2|+ &—2)]
= (& )+ 1E—2) = K& D +V2 (g, D2 = |G H+V2[(k+D)r]v2.
Now, applying (4) and (5), we obtain

8N (D) = ESk—N1g(5)I(Z, &)

E—?— k=N-12m+ g (2)(ICE, 2)|+V2[(k+ D r]H?).
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Summing over j=1,2,..., M and applying the same argument as before, we get
(15) hi(2)] = 3%, 18(€)(hi(2)| = Ear~*C;2°g(2)
S0 S (RADTRTN 12, )]+ V2[(k+ 1))

= Cog(2)(I¢& 2)|R+VR),
where C, is some constant. This inequality shows that
(16) T(h) = 2GR gl -

Proof of (iii): Because of (15) and (14), we have

7e(g—Re 1)(2) = [r:(8) + |hill(2) = (1+CH(I(E, 2)IR+VR)2(2)

= 5 1+ C(I(E D R+VR) g—Reh) (),
This proves that

2
(17) yg—Reh) =[5 (1+C)) &
g(z) 9

_Reh
_gg__?_)_(ZQ:szZ. Because of (14), we have =7
(s—Reh) @) g 11

9
If —I-TSEZ, then (because B(g)=R)

Let us assume that

9
(Zs)acn=x

hence
(g—Reh)(z)) It
(g—Reh)(Zz) q(zla ZZ) =_9_'R
9 . . . def 9 18
If —ITS§2, then applying Lemma 3 and the inequality s0==~1—l—séﬁ, we
—1)2 49
have q(zl,zz)zcg(so J R™1=(C, 9 R™1, hence
0
(g—Re h)(z) o 324 _ 792
(e—Rehy(z) 10 @7 =535, R= 356, %
22 11 792
because s=—. This shows that f(g—Re h)=max (—, ———)R and together
9 9~ 49C,

with (17) concludes the proof of (iii).
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Lemma 5. To every Yr=>0 corresponds a number W=W(y)=0 with the fol-
lowing property: If g€ C(S), g=0, max (B(g), y(g))=R, then there is an h€ A(B),
with Re h(0)=0, so that

@ [rle=Wg|e,

(i) Reh<g on S,

@iii) g—Reh|f=y]gl},

(iv) mhax (B(g—Re h), y(g—Re h)) = WR,

) T(h) = WR|g| .

Proof. Let us take a function g satisfying the assumptions of Lemma 5 and a

1
number n= [l_g%i—)]—l- 1. We shall construct two sequences of functions:
og(1—1

{80s 815 ---» 8u} and {hy, hy, ..., h,}. Let us put go=g. Now let us assume that

for 0=i<n we constructed a sequence {g, g, ..., g;} of positive and continuous
functions on S such that

(@) max (B(g),y(g))=C'R,

where C is a constant as in Lemma 4. Of course, this condition is satisfied for {=0.
Lemma 4, applied to g;and C'R in place of g and R, yields a function #;,,€A(B),
h;+1(0)=0, satisfying the following conditions:

1
(b) |hi+1(2)‘§*16gi(2) for z€S8S,

© Jgi—Reh; )t =1-17)|gl2,
(d) max (B(g;—Re k1), y(2i—Re hyyy) = CHIR,
(®) T(h) = C*R|g..

Let us define g;,;=g;—Reh;,,. From (b) it follows that g;,,=0. The condi-
tion (d) is the condition (a) for i—1.

We shall prove that the function h=37 | A, satisfies the conditions (i)—(v)
of Lemma 4 with W=Q2C)"*!, where C=max(l,C). We claim that |g].=
2l goll for i=0,1,...,n. The equality holds for i=0. Let us assume that this
is true for some 0=i<n. Then

lgi+illee = lgi—Rehirile = gl ot hiii]eo = l]gillw'l"'l% l&ill

= [1+-1—15) 2| gollee = 21 | gof s
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because of (b) and our assumption. Hence,

Ihle = 27 bl = %Z{'ﬂ lgi-al = 27, 27 8ol = 27 (8],

because of (b) and the definition of g,. This proves (i), since 2"=W.
We have 0<g,=g,—(Re/s,+Rehy+...+Reh)=g—Reh and (ii) follows.
We shall show that ||gi|l§§(1—r)"||g[]§. The equality holds for i=0. If it
is true for some 0=i<n, then ||gi+1||§§(1—r)|[gi]|§§(1—'c)"*‘lllgllw, JDecause of
(c) and the definition of g;,,. It follows that ||g—Re hllgzllg,,||5§(l—r)" lgllp=
¥llgl?, because of our choice of n. This proves (iii).
The condition (iv) follows from (d) for i=n—1, since g,_;—Re h,=g—Reh.
Finally, because of (¢) and the inequality | g;|l..=2']g]l.., we have

T(h) =27, Th) =3, C'R|gia]. = 3., C'2'Rg].,
which proves (v).

Lemma 6. Let us assume that h€C(S), [hlle=w,27% T(h)=w,W*, where
Wi, Wy, W are some constants, W=2, i=1,2,.... Then h=3 hclipa for
1 log2
=— .
2 logW

Proof. Let us take any number O<x=1 and an integer n such that W~ ®+3=
w=W=>. Define fi=3  h, f,=2, .15 Then T(f)=3, T(h)y=w, W™,
Hence, if ¢(z;,2,)=x, then |fi(z)—fi(ze)|=w, W " e=w,W-"*!, For V=

1 log2
2 max (w,W2, 4w,) and a=— o8
2 logW
|h(z0)—h(25)] = | f1(2) ~fi(@)|+ ] o (z) —/2(22)|
= W2W_”+1+2i:n+1([hi(zl)]+[hi(zz)l) = w1 2w, 27"
= 2max (W2, dw) 20D < 1 = Vo(zy, z,).

, we have

This ends the proof of Lemma 6.

To prove the assertion of the Theorem, let us assume at first that g€Lip 1 and
g>0. Let 1/2=£>0, y=1/4¢ and let W=W(}) be a corresponding number
from Lemma 5. It follows that max (B(g), 7(g))=R for some number R=1. We
shall construct two sequences of functions: {g;};>, and {4};>, such that g,cC(S),
g2:>0 and
(*) max (B(g), 7(g)) = RW'
for i=0,1,....

Let go=g and let us assume that, for some i=0, we constructed g;¢C(S),
8>0, satisfying the condition (). Lemma 5, applied to g; and RW' in place
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of g and R, yields a function A;;,€4(B), h;,,(0)=0, satisfying the following con-
ditions:

@
@iiyy Relh,<g on S,

(i) |gi—Re by = ¥]gi,

(ivY max (B(g;—Re h;yq), y(g;—Re hyy ) = R,
)Y T(his) =W*R| g

’

~—r

11l = Wligilles

We define
(Vi)' gi41 = min(g—Re ki, 2777 g[L).

The definition (vi)” and the condition (iv)” show that y(g;,,)=RWt1, Let z;, z,€ S
8i+1(2)

8i+1(z2)

gi+1(z2) = (&;—Reh;1)(zy)

be points such that =2. Then

and
= (g:i—Reh;.1)(z)
(gi—Reh; 1) (z0)

(g:i—Rely1)(z0)

(g;i—Reh;14)(22)
and this ends the proof of (%) for i+1 instead of i.

Moreover, from (vi)’ it follows that |lg;]..=2"| g]l... Hence, because of (i),

@ [hale =W27g|..

gi+1(20)
gi+1(22)

Q(zla 22)_1 Q(Zly 22)—1 = RWH-I,

=2. Hence, B(gi+) SRW'*!

because of (iv)” and the inequality

Since 0<g;,,=g;—Re#;,,, from (iii)’ and by easy induction, it follows that

®) lels = ¥'lgl.

The condition (v), applied for i—1 instead of i, together with the inequality
lgi-alle=2""*"|gle=llg]-. gives us

Y T(h) =W'R|g|...

Because of Lemma 6, (a)’ and (c)’, it follows that f=3.", h€Lipa, for o=
1 log2

— . Moreover Ref=g. Let

3 oV oreover Ref=g. Le

A4; = {g;—Rehy; =27 g} = {gi—Re b1 = giva)
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Then, because of (iii)’ and (b)’,
lg; —‘Re hiiq ”g
R gl1
Hence, p(Ni, 4)=1-p(Ui, (S—4))=1-3=, p(S—4)=1-37, Q) =1--e.
For z€(;., 4;, we have Ref(z)=g(z). This ends the proof of the assertion
of the Theorem in the case g=0. The general case follows by replacing g by g-+c,
if necessary, where ¢ is some positive constant.

p(S—4) = =Yg
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