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w O. Introduction 

Let G be a discrete group and let #~P(G) be a probability measure on G. I shall 
define three random walks on G by the following three doubly stochastic matrices. 

P/'(~): P,(x, y) = ~({y-~x}); x, y, ~O, 

P,"(c): PAx, y) = ~({xy-q);  x, y~G, 

Pg(G): P~(x, y) = Pl(x, y )+P, (x ,  y).  x, y~6 .  
2 

From the general theory (cf. [1])it is an easy matter to verify that i f~ ,~0#"({e))<  + 
(#" indicates the convolution power of # and eCG is the neutral element of G) then 
the above three walks are transient and if ~,~0#"({e})= + ~ the above three walks 
are reccurent. What  is also true but less well-known (cf. [2], [3]) is that if we restrict 
our attention to these measures p~P(G) that satisfy: 

(i) supp # is finite, 
(ii) /~=~ (i.e. ~({g})=/~({g-~}), gEG), 

(iii) Gp (supp # )=  G, 
then the transience or recurrence of the above three walks is independent of the partic- 
ular choice of/~ and only depends on G. We say that G is transient if these walks 
(for # that satisfy (i), (ii) and (iii)) are transient, otherwise we say that G is recurrent. 
The following seems to be a reasonable: 

Conjecture. Let G be a finitely generated group then G is recurrent i f  and only i f  
there exists G* c G such that the index [G : G*] < + oo is finite and G* ~ {e}, Z or Z 2. 

So far the conjecture has been proved when G is either soluble or linear (of. [3], [6]. 
Observe incidentally that the linear case can be reduced to the soluble case by a theo- 
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rem of Tits cf. [7] w 10.16). One of the results that will be proved in this paper is the 
following: 

Theorem 1. Let G be a finitely generated group and let G ~ H1 D H2 be two 
finitely generated subgroups such that 

IG=Hxl  = IH~=H~I = IH~I = + ~ ,  
Then G is transient. 

This theorem shows that if the above conjecture is false then the conterexample 
must be close to the "Tarski monsters" that have been constructed only recently 
(el. [8]). 

Randoms walks on groups are closely related to Brownian motion on manifolds 
(cf. [4], [5]) and to the "convergence type" of Fuchsian groups (cf. [9]). 

Let F be a Fuchsian group acting on U= (zEC, ]z[< 1} (assume that it is of the 
first kind for otherwise the problems in question do not even arise). We say that F is 
of convergent type if: 

Z ~ e r  (1-]70t) < + ~, 

otherwise we say that it is of divergent type. 
Let now F0 be a finitely generated Fuchsian group and let F<~Fo be a normal 

subgroup. I shall distinguish the following three cases: 

Case (A):  Either there are no parabolic elements in F0 or for every Z cyclic 
parabolic subgroup of  F0 (i.e. Z consists entirely of parabolic elements, we have 
then Z--- Z) we have 

I r n z l  = + oo. 

Case (B) : We are not in case (A) and the group Fo/F is finite or a finite exten- 
sion of a cyclic group (we say then that Fo/F is "cyclic by finite"). 

Case (C): We are not in Case (A) and the group Fo/F is not a finite extension 
of a cyclic group. We shall prove the following 

Theorem 2. Let Fo be a finitely generated Fuchsian group and let F c Fo be a 
normal subgroup, then: 

In case (A):  F is of convergent type if and only if the group Fo/F is transient. 

In case (B) : F is of divergent type. 

In case (C): F is of convergent type. 
An equivalent way to present the above is to say: 

(i) I f  Fo/F is cyclic by finite then F is of divergent type. 
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(ii) If Fo/s is not cyclic by finite and each parabolic element in s generates 
a finite subgroup in Fo/F then F is of  convergent type if and only if Fo/F is transient. 

(iii) If Fo/F is not cyclic by finite and there exists one parabolic element in s 
that generates an infinite subgroup of Fo/F then s is of convergent type. 

w 1. Statement of the results 

The main technical result on which everything else rests is the following 

The Step-up Theorem. Let G be a group generated by the fni te  symmetric set 
S =  {gl, ..., g~}=S-1 and let H c G  be a subgroup of  infinite index IG: H I = + oo. 
Let ~,=f~2"d~(2) where ~EP([0,1]) is a probability measure on [0,1]. Let 
#=/~EP(H) be a symmetric probability measure on H that satisfie s 

(I.1) ~,>=1 n-1/~,l~"( {e}) < + ~o. 

Then for every v~P(G) satisfying: 
(i) oqt<=v for some ~>0 

(ii) v({e})>0 and v(gi)>0 VgjES 
we have 

(1.2) ~ ,>o  ~,v"({e}) < + D. 

Corollary 1. Let G be an infnite finitely generated group and let v be a symmetric 
measure such that Gp {suppv}=G. Then v'({e})=O(n -1/2+~) (Ve>0) (and also 
=0(nl/2(1Og) nl+~), 8 > 0  etc.). 

Proof: If we take in the step-up theorem H={e}, # = ~  and ~,=Cn -lt2-~ 
we deduce that ~,-->1 n-a/Z-~vn((e})< +oo. The result follows because v~"({e}) is a 
decreasing sequence in n (observe that v2((e})=supo~ ~ v2({g})). 

Corollary 2. Let G be a finitely generated group and let H ~ G  be a subgroup 
that is also finitely generated and such that 1HI = [G: HI  = + co. Then for every sym- 
metric probability measure vCP(G) that satisfies Gp (supp v)=G we have v"({e})= 
0(n-l+~), V~>0, (and also 0(n-l(log n)l+~), e>0 etc.). 

Proof: If we take ~,=n -1/2-~ in the step-up theorem and p=~EP(H)  some 
measure that satisfies #" ({e))= n-1/2 + ~/~ (by Cot. 1) we deduce that ~,-~1 n-~v"({e})< 
+ co. The result follows as before. 

Proof of Theorem 1. In the step-up theorem take 8,---1, H=H~ and # =  
/~EP(H1) such that #"((e})=0(n -2/~) (by Cor. 2). It follows that ~'~-~0 v"({e})< 
-[-co. 
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w 2. The tools for the proof of the step-up theorem 

The proof  of  the step-up theorem is based on the same analytic principle that 
was already used in [4] and [5] and which appeared in a special form for the first 
time in [2]. 

Let X be a discrete space and let Kl(x, y), K2(y, x) be two doubly stochastic 
kernels on X (i.e. Ki(x,y) and K*(x,y)=Ki(y,x) i = 1 , 2 ,  are all Markovian). 
Let us also assume that for some ~>1 we have KI(y, x)<=o~K2(x, y) and also that 
Kl(x, y)=K~(y, x) (i.e./s is symmetric). Let further O<=fEI2(X) and ~ , = f ~  2"d~(2) 
where ~EP([0, 1]) is a probability measure on [0, 1] (e.g. ~ ,~n  -a of  n-P(log n) a, 
/~>0). The conclusion is that 

(2.1) 2,>=o ~,(K~f f> <-- c~ Z,>=o ~,<K~f, f )  

(K~f indicates the corresponding/2-operator and < ) is the scalar product in 12). 
The other main ingredient in the proof of the step-up theorem is essentially of 

geometric nature. Let G be a discrete group generated by the symmetric finite set 
S={gx . . . . .  gs}. Let HcG be a subgroup such that 1G: H [ = + . o .  Let now P =  
{?0 =e ,  Yl, 72, ..-} be a sequence of  points in G. We say that P is a path (relative 
to H a n d  S) if 

(i) ? k - l ? k + l E S  , k = O ,  1 . . . .  

(ii) the cosets H?j, . /=0,  1, : . . ,  are distinct. 
The only thing that we shall need is that paths exist. Indeedlet d be the canonical 

quotient distance induced on G/H by the left invariant distance d~ on G relative to the 
set of  generators S (cf. [11], [5]). Let OEG/H be such that d(d, O)=N (d=HEG/H) 
and let gEO be such that dt(e,g)=N. We have then g=gilgi.~'"giN with giSS 

�9 ' '~  ? N s---l, N. But then the sequence { j}j=0 given by ?0=e, ?,,=gqg~...g~,, (n=>l) 
is clearly a "path of length N".  A standard Tychonov diagonal process gives then 
"infinite" paths as required. 

One more construction will be needed from the theory of  random walks. Let 
Xi ( i= I ,  2) and Ki(x,y) b e  two Markovian matrices generating random walks W/ 
on Xi, then we can clearly define the product walk W~| on the space X=X~XX2 
by the matrix K(x, y)=K~(x~, y~)K2(x2, Y2) with x=(xl, x2), y=(y~, y~)EX. 
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w 3. Proof of the step-up theorem 

Let G, H, #, v, S and {~,} be as in the statement of the step-up theorem. Let also 
P =  {70, ~1, -..} be a path in G relative to H and S. Let us now define a random walk 
on G/H by the following symmetric stochastic matrix: 

1/2 if 2 = H  and ~ = H o r  HVl 

W(2, )?) = 1/2 if 2 = Hy k and )~ --- H~'k+ 1 (k ~ i) 
1 if 2=fcy~HTk (Vk_~ l )  
0 in all other cases, 

The above walk is essentially a reflecting standard coin tossing game on the image of 
the path P =  {~, k>=O}cG/H and it is clear that W"(O, ~)~Cn -~/2. 

Let us now observe that, at least as a set, we can identify G with H• 
by identifying (h, 9k) with hgk~G where (Ok; k ~ 0 )  is an enumeration of G/H and 
F= (gk~Ok) is a system of  coset representative. We shall assume that PoE.  

We can now define on H• the Cartesian product walk K=Pf(H)|  
where P](H) is the right walk defined by/~ o n / 4  as in w Using the above identifica- 
tion we can then identify K with a symmetric random walk on G, and that walk satis- 
fies 

(3.1) K"(e, e) =/P({e})W"(~, ~) ~ Cn-~'21~"({e}). 

The pivot of the proof  lies in the simple observation that: 

(3.2) K = P,U(H)| <= o~(P'~(G)) ~ = ~ (the square of the matrix P~) 

for some positive e. In fact this is the "raison d'etre" of _P~. The verification of (3.2) 
is immediate and rests on the conditions (i) and (ii). 

The estimate (3.1) together with (2.1) and the hypothesis (1.1) on # gives then 
that ~,_~0 ~,v~"({e}) and completes the proof of  the Theorem. 

w 4. Proof of theorem 2 

The proof of theorem 2 is based on the step-up theorem and on the results of [9]. 
For F c F0 as in Theorem 2 let us proceed as in [9] and let us fix Fi ( i=  1 . . . .  , k) a 
complete set of  representatives of inequivalent under conjugation maximal cyclic para- 
bolic subgroups of F0 (cf. [10] w 10-3) and let us also fix symmetric measures #iCP(Fo), 
i=0 ,  1, ..., k. Where supp Po is finite with Gp(supp ~t0)=Fo and where #i, l<-i<-k, 
is the Cauchy distribution pi(~7)=C(l+n2)-I (nEZ) on Gp(~i)=Fi . Let us 

denote by v = e  ~--f~i-~,~=,# j where ct: Fo~Fo/F is the canonical homomorphism. 

What  emerges from the main theorem of [9] is that F is of convergent type if 
and only if the random walk P~(Fo/F) is transient. 
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Proof  o f  Theorem 2: 

Case (A) :  v is compac t ly  s u p p o r t e d  and  the resul t  fol lows f rom the  previous  

few lines. 

Case (B):  Let  Z be  a cyclic p a r a b o l i c  subgroup  such tha t  IF c~ Z I <  + co; we have 

then F ~ Z =  {e} and  the g roup  F1- -  Gp (F, Z )  is then o f  finite index in F0 (this fol lows 

f rom the  a lgebra ic  hypothes is  on  Fo/F). FI is then also finitely genera ted ,  and  we 

can  therefore  assume tha t  Fo=G p (F, Z ) = F  1 and  choose  F~DZ.  I t  fol lows tha t  

wi th  the  obvious  ident if icat ion,  v(p)<=~vl(p) ( p ~ Z ) ,  where  v l ( p ) = C ( l + p 2 ) - i  

is the  Cauchy  d is t r ibu t ion  on Z.  But  then since v~(0)~ 1 the  es t imate  (2.1) gives 
n 

~,=>0 v" (0 )=  + oo a n d  p roves  our  asser t ion.  

Case (C):  Argu ing  as on Case (B) we can choose  F1 such tha t  A = ~ ( F 1 ) ~ Z  

a n d  [Fo/F: A ] =  +co .  But  then  with  the  obvious  ident i f icat ion we have  vla>-_~vl 

for  some c~>0 (vx is the  Cauchy  d is t r ibu t ion  on A ~ Z  as above) .  

The  s tep-up theo rem appl ies  then wi th  G=Fo/F, H = A ,  # = v ~ ,  r  and  

gives ~'n-~O v"({e})< + , ~ .  
The  p r o o f  is complete .  
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