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O. I n t r o d u c t i o n  

An algebra B is a Banach algebra if there is a norm defined on it such that B is 
a Banach space and the multiplication is continuous. As far as we are concerned, all 
Banach algebras are assumed commutative. For standard facts in the elementary 
theory of commutative Banach algebras we refer to [10] and [22]. 

Suppose w is a locally bounded measurable (weight) function on R, which satisfies 

~ w(x) >= 1, x~ll,  
(0.1) t w ( x + y )  <= w(x)w(y), x, yER. 

Then the space L~w (R) of  (equivalence classes of) functions f,  Lebesgue measurable on 
R and satisfying 

{Ifll w = f 2= If(x)lw (x) dx < ~o 

is a Banach algebra under convolution multiplication, which we denote by �9 : 

( f .  g) (x) = f s _  f ( x -  t) g (t) dt for arbitrary fi g~L~ (R). 

Since they were introduced by Beurling in [3], these Banach algebras are called Beur- 
ling algebras. 

One can show that the limits 

= lira x - l logw(x )  

3 =  lira x- l logw(x)  

are finite, and that fl_<-0<_-cc 
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In Beurling's classification, one speaks of the analytic case when fl< ~. When 
~=fl=0,  one distinguishes between the non-quasianalytic case when 

f_= (1 +x2)-1 log w(x) dx < oo 

and the quasianalytic case when this integral is infinite. 
Let Sw be the strip or real line {z~C: f l<=Imz~}.  If we extend L~(R) by 

adding a unit, the corresponding maximal ideal space can be identified with Sw u {~}, 
the one-point compactification of Sw, with the Gelfand transform on L~(R) identi- 
fied with the Fourier transform 

y ( z )  = f=_= f ( O e  -''z at, z~sw .  

Since L~(R)cLI(R),  L~(R) is semisimple, that is, the Fourier transform f~--~f 
is injective. Hence L~(R) can be viewed as a subalgebra of Ao(Sw), the Banach 
algebra of functions, holomorphic in S~ and continuous on Sw w {~}, having the 
value 0 at ~, under the supremum norm on S~. One can easily show that L~(R) 
is dense in Ao(S~). Let us sketch the argument: One shows that functions with ratio- 
nal Fourier transform with poles outside S~ belong to L~(R) and that they are dense 
in Ao(S~). 

An ideal 1 in LI(R) (or Ao(Sw); then the Gelfand transform is the identity) 
is said to be primary at ~ if it is closed and 

z ( I )  = (~ (z~S~: f (z )  = 0} = o. 

If there are no non-trivial primary ideals at ~, spectral analysis is said to hold 
in the algebra. 

If  a = f i - 0 ,  so that Sw is a line, it is evident that Ao(S~) is regular, which im- 
plies that the only primary ideal at oo is the trivial one: the algebra Ao(Sw) itself. 

N. Wiener [21] showed in 1932 that the same result holds for the subalgebra 
LI(R). This is often referred to as the General Tauberian Theorem. 

A few years later, A. Beurling [3] extended Wiener's theorem to the algebra 
L~(R), where the weight w has some slight regularity properties and satisfies the 
non-quasianalyticity condition 

f_== (1 + ~ ) - 1  log w (x) dx < o~. 

In his thesis [16] 1950, B. Nyman managed to construct counterexamples in 
some quasianalytic cases, which is to say that he found certain non-trivial ideals, 
primary at oo. 

Recently, Y. Domar [9] showed by extending the technique developed by Vret- 
blad in [19] that counterexamples can be found in all quasianalytic cases. His result 
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will be used to give a relation between two conditions on subadditive functions; it is 
presented in Lemma 2.6. 

W e  shall discuss here the analytic case ~t>fl, that is, when the strip Sw has 
positive width. 

Let D be the open unit disc in the complex plane, and let the disc algebra A (D) 
be the Banach algebra of holomorphic functions in D which extend continuously to 
the boundary, with the supremum norm. 

Mapping SO,, conformally onto D, we can identify Ao(S~,) with the closed ideal 

{fEA(D): f ( - - 1 ) = f ( 1 ) = O }  in A(D). 

The Beurling--Rudin theorem (see [17]) can be used to give a description of  all 
closed ideals in A0(Sw), especially those primary at ~o. However, this result turns out 
to be non-trivial. It is proved in Theorem 3.1. 

One obtains a doubly indexed chain {leg }, which contains all ideals that are pri- 
mary at oo. 

B. Nyman [16] showed that the corresponding ideals appear in L~(R), too, and 
that every primary ideal at ~o is contained in one of these ideals; if w is the weight 

w(x) = e ~lxl (~ > 0), 

which clearly satisfies (0.1). 
In 1958, B. I. Korenblum [14] showed, independently of Nyman's thesis, that all 

primary ideals at oo are indeed of the form Ig~ n L~(R), where w is the weight con- 
sidered by Nyman. 

In 1973, A. Vretblad [19] extended Nyman's investigations to very general 
weights, in a way which connects the evasive ideals in the analytic and quasianalytic 
cases. 

The object of this paper is to investigate for which analytic Beurling algebras the 
primary ideal structure at infinity is tha same as in Ao(Sw), in the sense that every 
ideal, primary at 0% is of the form 

~r~.nZL(R). 

The conclusion, formulated in Theorems 3.3, 3.5 and Remark 3.6, is that this is 
the case if the weight w satisfies certain rather weak conditions on w: s deviation from 
the exponential case. 

This is a generalization of  Korenblum's result which cannot be obtained without 
major modifications of  his method. In a sense, one could say that the method is 
simpler because it is more dearly seen why certain arguments work. For  example, we 
use Domar's [8] method to obtain the analytic continuation of the Carleman trans- 
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form, the rather strong theorem of Levinson and Sj6berg, and Ahlfors's delicate 
distortion inequalities. 

The question if the description of the evasive ideals in the quasianalytic case 
given by Vretblad in [19] is complete is still open, although there might be reason to 
suspect that his description is incomplete. 

I. Assumptions and notation 

Now and onwards, we let w be a real-valued, continuous function satisfying the 
following set of conditions, (1.1--1.2). 

(1.1) w(x )=  e x P ( 2 I x , + ~ ( x )  ),  xER, 

where O(x)=o(Ix[) as [xf ~ ,  

(1.2) w(x+ y) <= w(x)w(y), x, yER. 

From (1.1) and (1.2) it follows that OJR+ and OlR_ are subadditive, and in a 
second step that ~b(x)=>0, xER. For all weights w satisfying (1.1-2), Sw={z~C: 

[Im z [ ~ - } ,  so to simplify our notation, we write S instead of Sw. 

The condition that 
7C 

lim x-llogw(x) 

and 
7C 

lira x-X log w (x) ---- -- -~- 

is only a normalization and the results can be transferred easily to all other analytical 
cases, that is, when 

lim x - l l o g w ( x ) >  lim x-l logw(x).  
X ~ + o o  X ~ - - o o  

Define 

Note that if ~ is subadditive, which is a slightly stronger condition than (1.2), 
~(x)<=~(-x) for every real x. Define for e>0  

[ M,(,) - -  e-~lxZ+r 

(1.3) / 
t = e-~l"l+$(")dx: 
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Sometimes we shall need the following additional assumptions: 

(1.4) f ~  log + log + M,(e)de < o% 

(1.5) f o  l~ l~ Mr d~ <oo. 

The dual space (L~(R))* can be identified, in an obvious way, with the space 
L~(R) of (equivalence classes of) measurable functions f such that f/wEL=(R). 
In bracket notation, ( f , g )=- f~ f (x )g (x )dx ,  for fEL~(R) and gELS(R). This 
identification could, of course, be made for continuous weight functions w not satis- 
fying (1.1--2), too. Put 

6+(f) = - l imsup  e - q o g  I f (OI  =~ 0 
~--+~ 

and 
6_(f) = - l i r a  sup eClog [f(~)[ ~ 0. 

Define, for ~,/3=~0, the ideals 

I + = {fELa~(R): fi+(f) >= ~} 
and 

I~- = {)rE L~ (R) : a_ ( f )  => fl} 

which satisfy I ~ c I  + for al~a2 and I~=I~, for fla~fl~. For a = f i = 0  this 
means that 

I + = ~ = L~(R) .  

According to the classification of A. Vretblad [19], it follows that I + and I~- 
are closed primary ideals corresponding to the point at infinity and that I~ # I ~  
if ~ # a ~  and I~#I; ,  if fl~#fl~, under the growth condition 

~(x) dx <oo (1.6) f-== 1 + 

He adds the condition that w be even, but his results remain valid without it. However, 
in our restricted case, the fact that these ideals are closed is most easily demonstrated 
using the Beurling--Rudin theorem in the way suggested in the introduction. This will 
be done in the proof of Theorem 3.5. 

Lemma 2.6 shows that in case g, is subadditive, (1.4) is equivalent to (1.6); 
since then ~(x)<=r for xER, (1.5) is a simple consequence of(1.4). 
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2. Preparatory lemmas 

Our first lemma relies heavily on a technique developed by Y. Domar  in [8]. 

v denotes the transform f ( x ) = f ( - x ) ,  as is standard in Fourier analysis. 

Lemma 2.1. Let fEL~(R)~{0} and gELS(R) satisfy 

(2.1) g .j~ = 0 

or, in other words, let g annihilate the non-zero ideal generated by f Denote by Z ( f )  
the set {zES: f(z)=O}. Then the function 

fo g(t)e"Z dt, lm z > 2 '  
(2.2) ff (z) = 

/ s ~ - -  g( t ) e i t zd t ,  I m z  < - ~ - ,  

which determines g uniquely, can be continued analytically to a function holomorphic 
in c \ z ( f ) .  

By (2.1), we can define 

(2.3) h ( x ) = f o g ( t ) f ( t + x ) d t = - f ~  xER. 

I f  Mr defined by (1.3), is finite for every e>0 ,  so that 

f _ ~  ]h(x)l e ('~-8)lxl dx .<~o 

for all e>O, which implies that 

h(z) = f S= h (t)e -''z dt 

is holomorphic in S ~ the extension o f  fr is given by 

~(z) for z E S ~  (2.4) f ( z )  ' 

Proof Let B be the algebra L~(R) extended with a unit. The unit can be identi- 
fied with the Dirac measure 6. 

Let q~ be the M6bius mapping 

(2.5) z ~ ( z - 2 i )  -1,  

and define the function a by 
fie-St, t >- O 

a(t) = tO' t < 0 
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which obviously belongs to L~(R). Then the Fourier transform ~ of a, defined as 0 
at 0% coincides with ~0 on S. 

Let us introduce the functions 

and 

f e -~t, t ~- 0 
b+(t) = 10, t < 0 

~ e ~t, t ~= 0 
b_(t) = L O, t > O, 

and call them cut-off exponentials. To ensure that 
7C 

where eCC is arbitrary, 

b+, b_~L~(R), Ree has to be larger t han - - .  
2 

We claim that rational functions of a with poles in C \ d ( S u  {~}) form a dense 
subspace of B. To see this, observe that the Fourier transforms of cut-off exponential 
functions belonging to L~w(R) are rational functions of d, and that these cut-off 
exponentials span a dense subspace of L~(R). The maximal ideal space of B can be 
identified with S u  {~}, or, in the sense of [8], with a ( S u  {~o}). 

Now regard B as a function algebra on ~ ( S u  {~}), which is a compact subset 

z i 1 and - 4 - ' - ~  - 4 + ~  of C, bounded by the two circles - 4 - - ~  4 - r c  

touch at the origin. This can be done since B is semi-simple. 
Extend the functional g on L~(R) to B by defining (6, g)=0.  
By assumption g . f = O ,  which implies that (f ,  g)=0,  so that the extended g 

annihilates (f) ,  the closure of the ideal ( f )  generated by f i n  B. 
Therefore g defines a corresponding continuous functional go~ on B/( f )  by the 

relation 
(b + (f), g(y)) = (b, g) 

for all b~B. 
In [8] Domar defines the analytic transform G of g: 

o ( O  : 

r C ~ a ( Z ( f )  u {~,}), 

which is shown to be holomorphic in C \ a ( Z ( f )  u {oo}) (Theorem 2.4 [8]). 
For ~ E C \ ~ ( S w  {~o}), G( [ ) =( ( a - {6 ) - l , g ) .  
Substituting ~=q~(z), with ~o defined by (2.5) and recalling that (6, g)=0,  we 

obtain the relation 
(2.6) Gocp(z) = - i ( z -2 i )~ fC(z ) ,  z E C \ S ,  

where (q is the analytic function defined by (2.2). Sinee G is holomorphic in 
C \ f i ( Z ( f ) u  {~,}), we conclude that ff can be extended analytically to C \ Z ( f ) .  
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We will keep the symbol ~ for the extension. By Theorem 5.1 in [8], there exists 
a one-to-one correspondence between the functional g and the holomorphic function 
G; hence f# determines g uniquely. The first part of the lemma is now proved. 

It should be observed that C \ Z ( f )  is a connected open subset of C since f 
is non-zero and f is analytic in S ~ so that f# is determined by its behaviour on one of 
the connected components of C \ S .  This means that g is determined uniquely by 
its values on, for example, R+. 

Now we assume that Mc,(e) is finite for all e>0. For zES ~ a simple estimate 
gives that the function 

cz(t)=/ f~ t~=O 

l - - f ~  f(xq-t)e -* '~dx,  t < O  

belongs to L~(R) and satisfies 

(2.7) Ilczll,, <= I]fll,,,Mr c3S)) 

(d is the Euclidean metric in C). By (2.3) and the definition of cz, 

(2.8) /~(z) = (cz, g) 

for zES ~ A straightforward calculation shows that 

(2.9) 
o~ t -i tz ~xz ezo(Z) = fs fs f (  +x)e -" odxdt=f~ f ~  f(t+x)e-*'=-'X=odxdt 

i i 
Z_Zof~ (e-':~-e-'~oDS(O& - (f(z)-f(zo)) 

Z - -  Z o 

for zoES ~ and zES. 
We are going to show that 

* ( : ) = 7 - - ~  for zcS~ 

By (2.6), this amounts to proving that 

G(() = - i(-~ ~~176 
7o ~-1 (0 

for ~EFt(S~ Substituting (=~0(z) in (2.8), we obtain 
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Using (2.9), we find that 

_ ~-~ f ~ 1 7 6 1 7 6  ~-1 - -  i~- -2  e~~ - 1(~) ((P --1 (Z) )  - -  ~ --1 - -  f o  (p--1 (~)  ( p - - l ( z )  __ q0--1 (~)  

_ 1 z~ -1  1~ 
z - ~  ( f~ fo q,-1 (~) ) 

Multiplying this expression by z - ~ ,  we see that 

i~ -2 1 
f oq _l (r e~-,(~)- T a 

is the inverse of a - g a  modulo ( f )  for ~<a(a0 \z ( f ) ) .  Recalling that (6, g )=0 ,  
this proves the lemma. 

Remark 2.2. The function f# defined by (2.2--4)is frequently called the Carleman 
transform of g. The, e has been some doubt about who invented this device; maybe 
the analytic t ransform is a better term. 

We shall need the following estimate: 

L e m m a  2.:t. Assume (1.4--5). Suppose f6L~(R)\{O} and gELS(R) satisfy 
g.  f =O, and that the function f# defined by (2.2--4) is entire. Then there exists a posi- 
tire constant c such that 

[f~(z)l ~ exp(ce~lR~l), z6C. 

Proof. Note that (1.5) implies that M~(e) is bounded for every e > 0 .  This is 
due to the fact that M~ is a decreasing function. 

In the following we use the function h as defined in (2.3). Let us write z=x+iy .  
A simple calculation shows that the first of the following estimates is valid. 

(2.10) I~(z)l <= flgllLr Mo(d(z, OS)), z<C\S ,  

(2.11) lh(z)l <= IlgllLT~il.fll~,M~(d(z, as)), z~S ~ 

where d is, as in Lemma 2.1, the Euclidean metric in C, and 2140 and Mff were de- 
fined in (1.3). (2.11) is a combination of  (2.7) and (2.8). 

In the upper half-plane, we have an explicit formula for the Poisson kernel. 

To use this, let (p~ be the conformal mapping z~+iexp , zES ~ for 0~e<=~ - 

(see Figure 2.4). 
7~ 

Let S, be the set {z6C: lira z f<~-  (1 -e)},  which ~o, maps onto the open upper 

half-plane. 
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Figure 2.4 

~0e, 
) 

and 

Define 

r , (0  = foe ; l (0 ,  ~~ --- eoe:l(~), 

H,(~)=ho~o2~(ff) for ~6cp=(S). 

By (2.4) and (2.11), fg, is a quotient of  bounded holomorphic functions in the 
upper half-plane for every e~0 .  

Without  loss of  generality, we can assume that  fq,(z) ~ 0. Hence, according to 
a factorization theorem for Hardy spaces (see [13], pages 160--161) we have for 
every e > 0  and ff in the open upper half-plane H that 

(2.12) i? iaF~ 
F~(() = e  r . .Be=(Oe = 

and 

(2.13) 

�9 exp [-~--f~_ ('-'(-~_ t q-t2-7-~)(log iF~ (t)l <,t-...:,>)} 
H.(ff) = e u=-Bn=(~)e El 

i ~ 1 t 
�9 exp {~- f__ {-~-Z-}-+ t-T-~- } (log I H. (t)[ dt-dp.. ('))1, 

where 7r= and 7H= are real, 

(2.14) av= = - l i m  sup ~-~ log IF~(i~)] --> O, 
~ + ~  

(2.15) an~ --- - l i m  sup ~-1 log IH~ (i~)[ --> 0, 
~ + ~  
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and the positive singular measures/~Fo and #~o satisfy 

and 
f= 1 + t  ~ 

l + t  z "<~" 

BF~ and Buo denote the respective Blaschke products. 
Since ~F, and %.  are finite for every e>0,  we conclude, by the definition of q~,, 

(2.14) and (2.15) that 

(2.16) ~r~ = ~a. = 0 
for all e>0.  

To see this, choose ~' >e  >0. We will show that e fo , -  0 provided that e v <  oo. 
Now we have that 

~eo, = - l i r a  sup r log ]F., (i~)l 
~ + ~  

= - lim sup ~-~ log ]Fo q07~ (~)l = - lim sup ~ -~ log [Foq~f~oq)~oq)Fa(i~)] 
r  ~ + ~  

1 - - E  r 

= - lim sup r -~ log IF~(ir 1--i-2T)] = --lira sup 
r  ~ + ~  

~-" log ]F~(ir = O, 

since eF.-<oo, which is the desired conclusion. The corresponding calculation for 
%~ is similar. 

Since F, and He are analytic in ~0,(S~ which contains H\{0} ,  we conclude that 

and 
/~n. = fln.6o, 

where 60 is the Dirac measure at 0, and flv~ and fl~t are non-negative. 
flF, and flu~ are given explicitly by the relations 

fie. = - r e .  lim sup 4" log ] F . ( i ~ ) I ,  
~ 0  + 

fi~. = -- n - l im sup ~. log ]H,(i~)I. 
~ 0  + 

In the same fashion as we derived (2.16) we obtain 

(2.17) fir, = fin, = 0 
for every ~>0. 
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Inserting (2.16) and (2.17) into (2.12) and (2.13, resp.) we get for e > 0  
ff~/-/ that 

(2.18) F,(~) = e  F~.Be,(~).exp ~ - ~  + t--~-l- l o g ] f ~ ( t ) l d t ,  

(2.19) & ( 0 = e  H~ 7f_  loglH.(t)ldt o 

By (2.4), we have the equality 

H,(~) 
~ , ( 0  - -  /~ ( 0  " 

Inserting (2.18) and (2.19), we obtain the following estimate i n / / :  

and 

Imr  ].= log lH, ( t ) l - log lF~( t )  I dt. 
(2.20) logl~.(r ~ ~ ~ - ~  ir 

The reason why 1 in H is that f# is entire. By (2.11) and the definition of %, IBr~ 

(2.21) ]H,(t) I ~ ],gllLr~]lf]lw.Mr tER. 

Choose a point ~o in the open upper half-plane/7 such that 

Fo(r # o. 

Then, due to the boundedness above and the subharmonicity of  ~-~log IF.(~)[, 
we have the following inequality: 

loglF,(~o)t ~ lm~o logiEr(t)} dt, 0 -< e -< - -  

re  ~ I ~ 0 - - t }  2 = = 2 "  

Since F0(~0)r the left hand side of this inequality is, by continuity, uniformly 
bounded from below for e less than some co>0 and we obtain the estimate 

(2.22) f=_ l~ d t ~ - C o  ( > - ~ ) ,  O-< e <  eo . 
oo 1 + t  2 = = 

Letters C with indices stand, here and in the following, for positive quantities inde- 
pendent of ~ and 5. 

Similarly, if  we vary ~0, we get an estimate (2.22) on a lot of open intervals, the 
union of  which covers [ 0, ~]- By a compactness argument, a finite number of  open 
intervals suffice to cover [s0, -~], so that the estimate (2.22) extends to the whole inter- 
val [0,-~], possibly with a different constant Co. 
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We get from (2.20), (2.21), (2.22) and the observation 

I/F, II < llfll < Ilfll H ~ ( I I )  ~ ~ ~ w ~  

so that F, has a bound from above independent of e, 

log 1~(()  1 < log Mff ( 2  e ) +  C1 1 +[([_____~ z 
= I ra (  

for e~O and (E/-/. 
I f  z(S~, this means that 

(2.23) log+lC~(z)] ~ log+Mc,(2e)+C ~ 
elx][(1-~) 

for 0 < e < - 4  
Thus we have the desired estimate in every strip $2~, e>0.  

1 
In particular, this is the case for ~=~- ,  giving 

cos(y/(1-e)) 

4 

(2.24) log+Ifg(z)l ~ C3e Tlxl, zESa/2. 

To extend the estimate to all of  C, we proceed as follows. 
1 

Choose 0<e=-- .< On the lines OS~,, (2.23) becomes 
4 

- - .  (2.25) log+lN(z)l ~ log+M~ cosy  +C4 c o s y  

Combining (2.24) and (2.25), we find that the inequality (2.25) holds for every 
Let n be an integer and zE[n, n + 2 ] •  ~]. Then 

log + log + (l~(z)lexp<-~l.I)) ~ max (0, -2 In[  + log  + log + ]f~(z)t), 

which by (2.25) can be estimated from above by 

max(0 
for tyj< 2 ,  and by 

max (0, 2+ log  + log + (llglIL7 �9 M~(d(z, OS)))) 

for --<Jyl<=~, due to (2.10). 
2 ,  

141 

zE S ~ 
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We have thus established the estimate 

log+log + (lff(z)]~xP(-ml"l)) <_ 

{ 1} 
max 0, Cs+log+log+Mff -~-cosy + log  + , lYl < 5- 

7g 
max(0, 2+log+log+(llgllL= .M~,(d(z, 0S)))), 5 " <  lY] ~ ~- 

Observe that z~-~log + log + (l~r ~ is a subharmonic function. 
Since the above estimate of  z~-~log + log + (l (z)l does not depend on x 

and n and is integrable in the y-interval [-~z, ~], due to (1.4--5), there exists, accord- 
ing to the log-log theorem of Levinson and SjSberg (see [15], Theorem XLII, Theo- 
rome III in [18] or Theorem 4.1 in [11], and, for some further developments, [7]) a 
(finite) constant M, independent of n, such that 

3 Iff(z)l ~ <: e u if lY[ <- ~-~. 

or, equivalently 
]fq(z)] <- exp (Me ~1"1) 

for zE[n, n+ 2]Xi [ - 3 z c ,  3~z] . 

Thus we have the estimate 

tff(z)l <= exp (C6e zlxl) 
3 

for ]y[ < - -  ~. 
4 

Since ~(z) is bounded for [yl > ~  ~ by (2.10), this inequality is valid in the whole 

complex plane, which proves the lemma. 

Remark 2.5. When one tries to obtain a Tauberian theorem like Theorem 3.3 
for the ideal chains in [19] in cases when (1.4--5) are not satisfied, the extension of  
Lemma 2.3 is the major crucial point. 

Here follows a lemma about subadditive functions. Recall that My was defined 
by (1.3). 

Lemma 2.6. Assume 

0.4)  

and 

(1.6) 

are equivalent. 

is subadditive. Then the conditions 

f [ l o g  log + Mr dx < co 

~p (x) clx < oo 
f_=oo 1+ x-----~ 
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Proof That (1.4) is a consequence of  (1.6) for subadditive ~b tollows from Gu- 
rarii [I I], Lemma 3.5. At least he shows that log + log + M~ is integrable over every 
finite interval (0, ~), but since Mq,(x)---O as x ~ o  by (1.1), this amounts to the 
same thing. 

To get the opposite implication, assume (1.6) does not hold, that is 

O(x) ax= o, 
- ~  l + x  2 

which makes 1 L~xp0(R ) a quasianalytic Beurling algebra. Domar  shows in [9] that 
there exists a proper closed ideal I in L~po(R ) which is primary at oo. For any ar- 
bitrary functional 1 , _  gELe~p0(R ) --L~xpo(R ) which annihilates /, we define its 
analytic (Carleman) transform 

] f o  g(t)e~'Z dt, Im z > 0 
C ( z )  = 

I - f ~  g(t)e"Zdt, I m z < 0 .  

Domar  [8] shows that G extends to an entire function (see [8], Theorem 2.4 and 
Example 3.2), and that G determines g uniquely (see [8], Theorem 5.1). 

A simple calculation shows that the following estimate is valid: 

[G(z)[ ~ IIg[[L:~pg, . Mr R)), z~ C\R,  

where d is, as in Lemma 2.1, the Euclidean metric in C. 
If  (1.4) holds we can apply the log-log theorem of Levinson and SjSberg (see 

[i5], Theorem XLII) to deduce that G is bounded in the whole complex plane. By 
Liouville's theorem G is a constant, which has to be 0, since by the definition of  G, 
G(z)~O as ]Im z[---~o. Hence g = 0 ,  and by Hahn--Banach 's  theorem, I=L~(R) .  
This gives us a contradiction; hence (1.4) cannot hold. That does it. 

Remark 2.7. Observe that the previous proof  implicitly proves the Tauberian 
theorem for Beurling algebras, without using the fact that L~xp0(R) is regular if ~k 
satisfies (1.6). This should be compared to Dales and Hayman's article [6]. 

Lemma 2.6 could probably be deduced from Lemma 1 in [4]. 
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3. Main results 

As in the introduction, Ao(S) denotes the Banach algebra of functions analytic 
on S o and continuous on S to {~}, having the value 0 at 0% under the uniform norm. 
Mapping S o conformally onto the unit disc D, we identify Ao(S) with the closed 
ideal 

lo = { fEA(D):  f ( - 1 )  = f ( 1 )  = 0} 

in the disc algebra A (D). 
For each closed ideal I in A (D) we can form the ideal I n I0, which is a closed 

ideal in I0. 
Conversely, is it true that each closed ideal J in I0 is an ideal in A(D)? We shall 

see that the answer is affirmative. Hence the Beurling--Rudin theorem (see [17]) 
can be used to give a complete description of all dosed ideals in Ao(S). 

Theorem 3.1. Each closed ideal J in Io is a (closed) ideal in A (D). 

Proof. Define, for each positive integer n, 

z - 1  z + l  
e,(z) = n n zED. 

n ( z - 1 ) - I  n ( z + l ) +  1 ' 

One readily sees that e, EIo for each n, and that 

(3.1) e , ( z ) ~ l ,  as n-+~o 

uniformly on each compact subset of ~ \ { - 1 ,  1}. Putting 
z + l  

---iz_-7-i-, which 

z - 1  
is trans- maps D onto the lower half  plane, we see that the first factor n 

n ( z -  1 ) -  1 
2ni 

formed into , the modulus of which is bounded by 1 in the lower half- 
2 n i -  ~ + i 

plane. A similar argument for the second factor yields that 

Ile.ll=o~ 1, n = 1 , 2 , 3  . . . . .  

This, together with (3.1); implies that 

(3.2) [le, x--x[[o~-+O, as n-~oo, 

for each x E l  o. 
This is to say that {e,} form an approximate identity in Io (see [22]). Select two 

arbitrary elements, xEJ and yEA(D).  It is sufficient to prove that xyEJ. Since 
J c I o  and I0 is an ideal, xyEIo. Hence, by (3.2) 

xye n-+ xy, as n~o~.  
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Now ye, EIo since e, EIo. Thus xye, EJ, so that 

xyEJ  = J, 
which establishes the theorem. 

Remark 3.2. The main ingredient in the proof of Theorem 3.1 is (essentially) 
the fact that A(D) meets the strong analytic Ditkin condition, which for instance 
is satisfied for the Wiener algebra F(/I(N)), too. 

Here the two main results follow. 6+ ( f )  and 6_ (f)  were introduced in Section 1. 

Theorem 3.3. Assume (1.4--5). Let M be a family o f  functions in La~(R) whose 
Fourier transforms have no common zeros in S and suppose that 

inf 6+ ( f )  = inf 6_ ( f )  = 0. 
f E M  f E M  

Let I M be the smallest closed ideal in 1 Lw(R ) containing M. Then 

IM= L~(R). 

Proof  Write z = x + i y .  Let the functional gELS(R) annihilate the closed 
ideal IM. 

Due to the theorem of Hahn--Banach it is sufficient to show that g=0 .  gEI~ 
is equivalent to 

g . f =  0 
for all f in M. 

Let ~ be the corresponding analytic (Carleman) transform, that is, the function 
defined by (2.2--4). By Lemma 2.1 ~r is entire. Applying Lemma 2.3, we find a con- 
stant c such that 

(3.3) Iqr <-- exp(ce~l~l), zEC. 

We will first investigate the behaviour of fr in the right half-plane. L e t f b e  an arbi- 
trary non-zero function in M. By the Ahlfors--Heins theorem (see [2], p. 341, or [5], 
Theorem 7.2.6), 

lira e-Xlog If (x + iy)] = - 6  + ( f )  cos y, 

for almost all y in the interval - 7 '  " 

For this dense set of  y in the interval - ~ - ,  ~- , fg(x+iy) does not grow faster 

than exp ((6+(f)+e)e~), as x ~ + ~ ,  where e > 0  is arbitrary, since ~(x+iy)  

is bounded for each fixed y in the interval - ~ - ,  ~- , by (2.11). Taking into account 
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(3.3) and applying the Phragm6n--Lindel6f principle, we get 

f# (z) = 0 (exp ((6 + ( f )  + e) e~)), as x ~ + ~, 

3 3 
for all e >0,  uniformly in ---re  <=y <_--- re. A second application of the Phragm6n-- 

8 8 
Lindel6f principle, using (2.10) and (3.3), easily shows that 

f# (z) = 0 (exp ((6 + ( f )  + ~) eX)), as x ~ + ~,, 

for all e>0,  uniformly in yER. Since, by assumption, 

inf 6+(f) = O, 
fEM 

this becomes 

(3.4) fq(z) = 0(exp (eeX)) as x -~ + 

for every e>0,  uniformly in yER. 
Put 

f#0 (z) = exp (-- 2e ~/~) ~ (z) 
and 

2(x) = log+log+Mo(x),  x > 0. 

Then 2 is a colltinuous decreasing function. In our terminology, decreasing does not 
demand strict decrease. Due to the definition of M~, 2(x) is unbounded as x--0,  
and ,~(x)=O for x sufficiently large. 

In {xER+ : 2(x)>0}, which is a connected neighbourhood of 0, 2 is a strictly 
decreasing C ~ function, and therefore it has an inverse ,~-1. 

Let 0: R + ~ R +  be the bounded continuous decreasing function 

X -1  x 

O(x) tends to 0 as x-* + o~. By (1.4) 

f ~  ~ (x) dx < 
so that 

(3.5) 
Define the domains 

and 

f o  0 (x) dx < ~. 

(2+ ={z=x+iyEC:  x > 0  and 

f2_={z=x+iyEC: x - < 0  and lY[ < ~ + 0 ( - x )  . 
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For x > 0  we have, by the definition of 0, that 

(3.6) M, (O (x)) = exp (e z~176 ~- exp (eXit). 

Combining (3.6) with (2.10), we get 

Ifq(z)] ~ I]gJJz~exp(e x/2) for zeal2+, 

with Re z>0 ,  which makes f#0 bounded on Of2+, say by the constant M. 
Put 

~ (z) = ~o (z)/M. 

Then either tfr in t2+, or there exists a point Zo=Xo+iyo in O+ such that 

I~(~0)l >1. 
We assume the latter and will try to obtain a contradiction. 
Let co(z, 4) be the harmonic measure having the value 1 on the set {zE0f2+: 

7C 
x = r  and ty[<-~+O(x)}, and the value 0 on the parts of the boundary 0f2+ 

i 

with x < ~  (see Figure 3.4). 

~ 0 
x = ~  

Figure 3.4 

Define 
M(~) = sup I~,(z)l. 

zEO~+ 
Rez=~ 

We are now about to use a generalized Phragm6n--Lindel6f argument. 
According to the first distortion inequality of Ahlfors (see [1] and K. Haliste 

[12], p. 3 or Theorem 3.2) we have the estimate 

co(z0, ~) <__ 4 exp ( 4 n _ n f ~  d t )  f~ dt -7 rc +TO (t) if r - -  > 2. o o n + 2 0 ( t )  

In the following, letters C with indices stand for positive (finite) quantities that 
do not depend on 4. 
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Since log l~ll is a subharmonic function, we have 

f - 0 < log I~l(z,)l <= re(z0, ~) log M(~) <= C~ log M(~) exp _ ~o 1 + 2 0 ( t )  

---< C2 log M(~) exp ( - f ~  (1 - 0 (t)) dt) <= C3e -~ log M(~) 
0 

due to (3.5), so that 
M(~) =~ exp (C3-1e r log INl(z0)l), 

contradicting the estimate (3.4). Thus 

l~0(z)l <=M in ~2+, 
so that 

[f#(z)l <= Mexp (2e ~1~) in f2+. 

By (2.10), this inequality (possibly with a different constant M) is valid in the 
whole right half-plane, since [~(z)l~_[lg[IM~(O(x))<=llgl] exp(e ~/2) for all z~f2+ 

right half-plane. However, since f#(z) is bounded for lY[ >~- n, again by (2.10), in the 

the principle of Phragmfn--Lindel6f yields that it is bounded in the right half-plane. 
The same kind of argument works in the left half-plane, too, so that ff is bounded 

in the whole complex plane. 
Applying Liouville's theorem, we find that f~ is a constant which has to be 0 

by (2.2). Thus - -  by Lemma 2.1 - -  g=O, and the theorem is established. 
The proof of the following theorem was inspired by ideas from Korenblum and 

Nyman. This time (1.4--5) do not suffice; observe that by Lemma 2.6, the condition 
on ~k in Theorem 3.5 actually implies (1.4--5). The ideals 1 + and 1~- were introduced 
in Section 1. 

Theorem 3.5. Suppose ~ is decreasing on ( - ~ ,  O) and increasing on (0, ~)  and 
satisfies the non-quasianalyticity condition 

O(x) dx< f= (1.6) 
J - =  1 

o o .  

Let M be a family o f  functions in Llw(R) whose Fourier transforms have no 
common zeros in S;  let 1 M be the smallest closed ideal containing M. I f  

6~= inf 6+(f)  and 62= inf 6_(f) ,  
fEM f E M  

then 

Proof. It is evident that Iu  c I~ n 1~, since I~ + and 1~ are closed ideals, a fact 
which was mentioned in Section 1. We will now prove this. By the Beurling--Rudin 
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theorem (see [17]) 

J~ = {fE A (D): f ( - -  1) = f(1) = 0 and lim sup (1 - x) log If(x)[ <= - ~} 
X - - l -  

is a closed ideal in A(D) for ~_->0. 
e z -  1 

Map S o conformally onto D by z~-~ e~+------i-. Identifying Ao(S) and 

J~ corresponds to 
{fE A (D): f ( - -  1) = f(1)  = 0}, 

{fEAo(S): limsupe"loglf(x)l <=-2}" 

I~z is the intersection of  this closed ideal in Ao(S) with L~(R); hence by the simple 
norm inequality Ilfl[=<-ll/llw, 152 is closed. This shows that I ~  is closed. 

A similar argument for I~  shows that this, too, is a closed ideal. Vretblad [19] 
showed this result with some extra regularity on the weight w, but his technique was 
quite different from ours. 

To show the opposite inclusion, that is, that IM~I~ nI~, it is sufficient to 
prove that every functional gELS(R) satisfying 

g ~ f =  0 

for all functions f i n  M also satisfies this equality for all fEI f  n I~. Roughly speak- 
ing, our technique will be to multiply the functions in IM by a suitable growth function 
and then to apply the Tauberian Theorem 3.3. 

We write z=x+iy and ~---~+it/. Let us keep the notation 

2(x) = log+log+M~(x) 
and 

from the proof of  Theorem 3.3. 
According to the assumptions on 0 (one of which is (1.2)), 0 is subadditive, so 

by Lemma 2.6, (1.6) implies (1.4--5). Hence the conditions of Theorem 3.3 are sati- 
sfied. 

Put ~=~2+u-O~,  or explicitly, 

f2 = {z = x+iyEC: 'Yl < 2 +  0('xl)} �9 

Let q~ denote a conformal mapping ~2~S ~ which can be extended continuously so 
that + ~ and - co are mapped onto themselves. Such a function ~0 exists and extends 
to a homeomorphism ~ u { -  o% + ~} ~ S u { - ~o, + ~o} __ due to a famous theorem 
by Carath6odory - -  since the boundary Of~ w { - ~ ,  + co} is a Jordan curve. 
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By a refined version of Ahlfors's distortion inequalities, due to Warschawski 
(see [20], pp. 290---296, Theorems III(a) and IV(a)), we find, using (3.5), that 

(3.7) Re ~p (z) = x+0(1), 

as lxl~o~, uniformly in y. 
We have to check that Warschawski's conditions are satisfied. To this end, we 

will first show that log M r is a convex (and decreasing) function. Choose 0< t<  1 
arbitrarily. Then, by Hrlder's inequality, 

Mq,( tx+(1- t )y )  = f= e -(t~'+(1-t)y)f~l+r d~ 

= e-tXlr162176 

<= (f==e-Xm+*~, a{J'(f=_=e','~'+~,o ar = (Mr 1-t 

for x ,y>0 ,  which shows that log M~ is convex. 
Since log M r is strictly decreasing, unbounded, and convex, a simple argument, 

which we are about to present, shows that 

- - ( l o g  M r ) '  ~ c log M r 

in some interval (0, co), co>O, where e is a positive constant. 
In fact, we can choose c as 

{(log M~o)'(eo)l 
log M~0 (Co) + eo ](log Mo)'(eo)l 

if M~(e0)>l, which is shown by. Since 

d (x logM,(,x) ] =  
ax (log Mr) (x)) 

in the interval (0, e0), we have that 

(log M~,)"(x) log M r (x) 
" 2 ((log M~) (x)) 

~ 0  

log M~ (x) log Mq, (x) log Me (e0) 1 
~ X - -  ~ ~0  - -  

- -  (log Mr) (x) (log Mr) (x) (log Mr) (e0) = c 

with our particular choice of c, for all 0<x<g0. Hence 

in some (possibly smaller) interval (0, el), ~ > 0 ,  which implies that 

1 
< 0 , < 0  

C 
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in some interval (A, oo). Finally, we show that 

(O'(x)) ~ 
f ~  .+2O(x) d x < ~ .  

To see this, we make the following estimate: 

f ;  (O'(x))= a~ <= -~  f ~  10"(x)l ax - I f ;  o'(~) ax = ' O(A) < ~, 
n + 20 (x) nc nc 

1 , 
where we have used that ---<_-0 <-0 on (A, ~). 

c 
We have now verified all conditions for Warschawski's Theorems III(a) and 

IV(a). 
Let dQo(z, ~), ~012, denote the Poisson measure in f2. Then each bounded 

harmonic function h on f2, which extends continuously to the boundary, satisfies 

h (z) = f~ ~ on h (~) dQa (z, ~), z~ f2. 

Let r(z)=O(Ixl)e I~1, for zEOf2, and let e(z) be the Poisson integlal o f r  in f2, that is, 

(3.8) Q (z) = f~ ~ 0~ r (~) dQ~ (z, ~). 

We have to check that (3.8) converges. To this end, we map f2 onto S O by e and 
then onto the open upper half plane H by z~--~& z. 

The Poisson kernel Pn(z, ~) for / - /can be estimated from above and below by 
1 

times constants depending on z. I f  Ps(z, ~) denotes the Poisson kernel in S ~ 
1 + ~  

this means that there exists a constant C~ only depending on z, such that 

Ps(z, ~) <= C~e -t~t, z~S  ~ ~60S. (3.9) 
By (3.8--9), 

Let us put 0(~)=0([r for ~CC. Then, by (3.7), 

f 0a  e-Ir~, ~;)1 r (() }de (~)} 

-- fo. e-I"""~;)l elr 0(C) ]de (ff)l --< cf.~ o(o  Id~o (r 

where C is a positive constant. Since e maps 012 homeomorphically onto OS, d~o(z) 
is a positive measure on 0f2 if we assume that the integration on 0f2 is directed from 
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- ~  to +co. By (3,5), (3.7), and partial integration 

f~,~o(o Id~o(0l = fo,~ 0(0 d~o(0 = - f o  Req~(OdO(O = fo Re~o(O(-aO(O) 

<= x+ f o ~ r = x+ f o ~ O(Oar = K+2f== 0(1r d e  < ~ ,  

where K is a positive constant. 
The term from infinity vanishes because of  (3.7) and (3.5), which implies that 

xO(x)~O, as x-~+o~. 
Combining the above estimates we have now shown that ~ is a well-defined har- 

monic function. 
By the construction Q coincides with r on 0f2. Let R denote the holomorphic 

function which satisfies 
ReR(z )  -= Q(z), zEf2 

(3.10) Im R(0) 0. 

Thus Re R(z)=>0 in f2. 
Put 6=31+62. Define 9 to be the holomorphic function 

3 

z--,- exp(--2eYZ--2e -'Tz) exp(--Z6R(z)), zCf2. 

We will now show that 9 is the Fourier transform of  a function v in L~(R). 
By the Fourier inversion formula, 

1 
, ( t )  = -~-~f_= 9(x)e '~' dx. 

Changing the path of  integration, which evidently is allowed, we obtain 

1 lf2~r r, 9(z)e't=dz, v(t) = -~  f r19(z)e~'=dz = 

where/ ' i  and F~ are the two components of  0f2, directed from - ~ to + ~,/"1 being 
the upper one. 

We get, by (3.6), 

f :  [v(t)lw(t)dt <= C o L  f o  exp(-2e~x) e-'~ 

~ C 0  exp --~-e Mo(O(x))dx= Co e x p t - ~ - e  +e"l' dx <o~. 

3re 1 
We have used the simple numerical fact that 2 cos - - >  - - .  Here and in the following, 

8 2 
letters C with indices are positive constants. 
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The corresponding result for ( - co ,  0) yields that vEL~(R). Let 

8 8 

K(z) = e x p [ - e  ~ - e  )exp(-6R(z))exp(-6~e~-6~e-Z), zEf2. 

We now intend to prove that z~-~K(z), zE S, too, is the Fourier transform of a func- 
tion kELp(R). 

First we will show that 

K0 (z) = exp ( -  6R (z)) exp (-' 61 e ~ - 62 e-5) 

is bounded in ~2. By (3.10), this expression is bounded on 0~2: 

IK0(z)l <: e x p ( -  6e Ixt 0(]xl))exp (6dxl sin 0(Ixl)) <_- 1 

for zEO0. Since 

lexp ( -  61 e z - 6~ e-S)! <_- exp (6e Ixl sin 0 (Ixl)) <-- exp (6e I:'10 (Ix])), zE O, 

and Re R(z)>=O in O, we have that 

]Ko(z)]<=exp(6elxlO(lxJ)) for zEO. 

The generalized Phragm6n--Lindel6f argument using distortion inequalities, 
used for ~qo in the proof  of  Theorem 3.3, applies to Ko, too, and together with the fact 
that 0(]x])-*0 as Ix]-* co, it shows that Ko is bounded in ~2, since K0 is bounded on 
0~2. Hence 

Changing the path of integration in the Fourier inversion formula, which is allowed 
by (3.11), we obtain 

1 1 
1,(t) = f r, K(z)e'tZ dz = 5-Y  f ,-, 

We get by (3.6) and (3.11) that 

Ik(t)lw(t)dt <- exp - e q-~ e -~ 

= C2 f o  exp ( 1  e~X)M~, (0 (x))dx = C~ f o  exp ( _ 1  e-~:, + e , )ax < co. 

We conclude that kELp(R). We will soon establish that to each fEI~ c~Is there 
exists a unique fEL~(R)  such that 

(3.12) v * f  = k *f. 

Taking this for granted for the moment, we will show how the theorem follows. 
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Let gELT(R) satisfy 

g * f  = 0 
for all f ~ M .  Then 

g * f * ~  = O, 
so that 

g . l c % ? =  0 
for f ~  M.  

By the definition of  K = ~ ,  

/ x f im e -~ log IK(x)l = - - a l ,  

(3.13) [ l+ im e ~log IK(x){ = - 6 s .  

To see this, we will show that 

(3.14) 0(x) = o(elxl), Ixl - ~ ,  

from which (3.13) immediately follows. Q was defined as the Poisson integral in t2 
of the positive function r. Mapping f2 onto the open upper half-plane H by z~-~ie ~m 
and z~-~/e -~'r it suffices, by (3.7), to show that every positive function foe 

L1 ~ d t ) ,  1 + t ~ ) which the Poisson integral formula extends harmonically to H, satisfies 

fo( iy)  = o(y),  y ~ + ~ .  
Let y ~ 1. Then 

y ~ fo(t) Y fr fo(t) dt+Y__f fo(t) fo( iy)  = 7f-= dt = t2 + Y 2 "-~ ~-IG t2 + Y 2 7r R~(_I/7, ]/~) t~ + y z 

The first term satisfies 

yr• fo(O at< fv; v fo(O d t <  l f~_ fo(t) d t < ~ .  
- ~ _ ~ t 2 + y  z = _ ~ l + t  2 = ~ -  ~ l + t  ~ 

The second term satisfies 

Y fR fo(t) dt<=y f fo(t) d t = o ( y ) ,  y ~ + , ~ . .  
--~ \ ( _  r 1/-~) 12 q_ y--------T 7z R\(--1/7, t~) 1 + t 2 

Combining these estimates, we obtain the desired result 

fo( iy)  = o(y),  y ~+oo .  

This completes the verification of  (3.13--14). By (3.14), 

lim e -Ixl log lg(x)l -- 0, 

~ d t .  
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and taking (3.12--13) into account we obtain the relations 

6+(f) = 6+(f)--6~, 

6_(f) = 5 _ ( f ) -  62, 

so that Theorem 3.3 implies that 

hence 

for all f E I f  n I ; .  Since 
again to obtain 

g.k=0, 

g . f . ~  = 0 

6+(v)=a_(v)=O, by (3.14), we can apply Theorem 3.3 

g . f =  0 

for all functions fEI~ nI~,, which was the desired conclusion. 
All that remains to us now is to establish the existence of  f in (3.12) for every 

fEI~ n I ~ .  
(3.12) can be reformulated in the following way: 

3 3 

(3.15) /(z)=f(z)exp(a,e=+a~e')exp(--e'-g=--e--g=)exp(--aR(z)), zES. 

By the Phragmdn--Lindel6f principle, 

f (z)  exp (61 e = + 5s e - ' )  

is bounded on S. Combining this with the expression (3.15) and the Fourier inversion 
formula, we obtain 

(3.16) 

1 0• ~( .= ]  d-+i~]t . 1 f (  2 )  e,(--,~- ). fit)= --~ J_ f [ x + , T J e '  " ax= -27f=__ x- - i  dx. 

Put 
f ~ ( t ) ,  t >= 0 

4'1 (t) = i - "  O, t < 0 
and 

4'2 (0 = 4' ( 0 -  4,1 (0. 

By the assumptions on 4', the functions 4'1 and 4'2 are subadditive, making L~xp~l(R) 
and 1 Lexp~,(R ) into Banach algebras under convolution multiplication. If  we can 

show that x+i  and x - i  are Fourier transforms of functions in Lexpq, l(R) 

and L~xp~,(R), respectively, this will be sufficient by (3.16) to prove that fELa~(R). 

 inoe ' fELw(R ), we have that f x+ i  and f x - i  are Fourier trans- 

forms of  functions in 1 1 Lr and L~xp~,(R), respectively. 
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By (3.15), it will therefore suffice to show that 

3(.) 3(=1) - -  x + i - -  - - - -  x + i - -  
Hi(X) = exp(- -e  4 ~ - -e  4 

�9 exp --SR x + i  exp(Sl e ~4-52e 3) 

1 is the Fourier transform of a function hlELexpg,1 (R), and that the corresponding 

h2E L,xv~ ' (R). expression for y = - ~ -  is the Fourier transform of  an element 1 

We shall make the necessary verifications for hi. For h2 the process is analogous. 
Hi(z) is analytic in 

{z~C: - ~ - O ( I x l )  < y < O(Ixt)). 
One easily sees that 

u exp (5 le  +f~e  ) exp - f i R  z +i-~ 

is bounded on 
{zEC: - e  -I~1 < y < O(]x])}, 

since Re R=>O. Hence we can change the path of  integration in the Fourier inversion 
formula to obtain 

1 __LLf hi(t) = ~f,1 ei'"Hl(z) dz - 2re ~, e~t~Hl(z) dz, 

where 7t and 7~ are the curves 

y=O([x]) and y = - e  -u~l, 

respectively, both oriented from - o o  to + ~.  
We get by (3.6) that 

�9 f: ]h1(Olexplb(t)<=c3,fo J'o exp ( - ~ ' )  e-'o(x)+~'(') "xdt 

f f  ( 1 Z~h f f  1 C 3__  exp t -  ~ e 4 J M~ (0 (x)) dx = C3 _ _  exp - ~- dx ~ o o  

On the left semi-axis, we get 

0 fo th~(Olat ~ c~f"_~f~ exp - -~-e  ~ et~-~exp(feXsine-~)dxdt 

<= c s f ~ e x p  - e i ~ e ~ d x < ~ ,  

hence t h 1~ Lex  p ,/q ( R ) .  

This finishes the proof  of the theorem. 
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+ 
R e m a r k  3.6.  T h e o r e m  3.5 is ano the r  way  o f  s ta t ing tha t  the  chain  {I~ n I~'},,,_~o 

conta ins  all  c losed ideals  p r i m a r y  at  infinity.  

I t  is easily es tabl i shed  t ha t  

N I  Z=  NX~-={o}. 
�9 >0 ~>0 

In the  last  p r o o f  we cons t ruc ted  some elements  in L~(R) ,  a m o n g  them the func- 

t ion k, which  by  (3.13) belongs  to  I f  n I ~ .  In  fact,  k generates  I ~  c~I~,  by  (3.13). 

Since f~(z) has  no  zeros  in S,  I f  n I ~  is a (closed) p r ima ry  ideal  a t  co for  each pa i r  

61, 62~0 .  

Na tu ra l ly ,  under  the  res t ra ints  imposed  on ~ in the  fo rmula t ion  o f  Theorem 3.5, 

Theo rem 3.3 is a s imple  consequence  o f  The o re m 3.5. 
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