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1. Introduction 

Both Phragm6n---Lindel6f's and Lindel6f's theorems consider behavior of a 
function at a boundary point and, originally, cf. [PL], [L], the proofs for these theo- 
rems employ harmonic measure. In local properties the measure theoretic aspect of 
harmonic measure plays a minor role and in this paper we Show that even for non- 
linear partial differential equations and quasiregular mappings it is possible to prove 
corresponding results using so called F-harmonic measure, which is intimately con- 
nected with the corresponding differential equation or variational integral, cf. 
[GLM2]. 

We shall study the conformally invariant case, i.e. we consider extremals of the 
variational integral 

f F(x, Vu) din, 

where F(x, h)~ {h I" and n is the dimension of the Euclidean space R". Thus the plane 
harmonic case is included but the classical harmonic case in space Rn, n~3 ,  is not. 
In general, our methods only work in the "borderline" case F(x, h)'~ Ihl". 

The proofs for Phragm6n--Lindel6f's theorem in domains more general than 
sectors usually combine the method invented by T. Carleman [C], cf. also [T, Theorem 
lII. 67], with a principle which we call Phragm6n--Lindel6f's principle. This is a 
slight misuse of the name, cf. e.g. [A, p. 40]. The principle, Theorem 3.5, relates in 
classical terms the growth of a harmonic function with the density of a harmonic 
measure at oo. The density concept extends to the non-linear ease and hence the prin- 
ciple holds in the more general situation even in a sharp form. Carleman's method is 
based on the study of the Carleman mean 

f ansl(t) u 2 ds 

of a suitably chosen harmonic measure u. For a good account of the development in 
the field see [Ha]. Via Wirtinger's inequality [T, p. 112] the Carleman mean can be 
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related to the gradient of u and the estimate of the harmonic density at oo then makes 
ingenious use of differential inequalities. Our method is based on a direct study of 
maX~nsl(0 u which, via a refinement of F. W. Gehring's oscillation lemma [G], is 
compared with the gradient of u. The linear structure of  solutions is not employed 
and no differential inequalities are needed. Instead we make use of an inequality 
similar to the so called standard estimate, well-known in the theory of  non-linear 
partial differential equations. Thus our approach considerably simplifies Carleman's 
method even in the plane harmonic situation. However, we do not obtain the best 
possible constants. 

The second part of  the paper deals with Lindel6f's theorem which in the classical 
form states that if a bounded analytic function f :  B 2 ~ C  has an asymptotic limit at 
a boundary point ZoEOB 2, then it has the same limit in each Stolz angle at z0. For 
quasiregular mappings in higher dimensional Euclidean spaces this theorem does not 
hold as shown by S. Rickman [R]. However, we shall show that the corresponding 
result in all dimensions can be formulated by means of a principle which we call 
Lindel6f's principle. This principle again employs the density of the F-harmonic 
measure and it rests on the sub-F-extremality of log Ifl for a quasiregular mapp ing f  
and for a suitable kernel F. The principle can be formulated in any domain without 
any restrictions on the set along whichfhas  a limit. It is also best possible for plane 
analytic or quasiregular mappings. As a consequence of this principle we prove Lin- 
del6f's theorem, Theorem 4.27, in all dimensions. 

For the proof of Lindel6f's classical theorem see [N, p. 44] or [A, p. 40] and for 
the theory of  quasiregular mappings we refer to [MRV] and [GLM1]. 

The paper has been organized as follows. Non-linear variational integrals and 
the F-harmonic measure are considered in Chapter 2. Chapter 3 deals with Phrag- 
m6n--Lindel6f's theorem and Chapter 4 is devoted to Lindel6f's theorem. We have 
also included basic facts about quasiregular mappings in Chapter 4. 

2. F-harmonic measure 

2.1. Variational integrals and extremals. Suppose that G is a domain in R ~ and 
let F: G•  be a variational kernel satisfying the assumptions: 

(a) For each 5>0 there is a closed set C in G such that r n ( G \ C ) < ~  and 
F ] C •  R ~ is continuous. 

(b) For a.a. xEG the function h ~ F ( x ,  h) is strictly convex and differentiable 
in R". 

(c) There are 0<e<_-]?<~ such that for a.a. xEG 

c~lhl n ~ F(x, h) ~ ~lh[ ~, hCR". 
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(d) For  a.a. xEG 
F(x, 2h) = 121"F(x, h), 2ER, hER". 

An example of  a kernel satisfying (a)--(d) is F(x, h)= lhl". 
Let W,I(G) denote the Sobolev-space of  functions in L"(G) whose distributional 

first partial derivatives belong to L"(G). The corresponding local space is denoted by 
loc W,I(G). A function uEC(G)nloc W,I(G) is called an F-extremal if for all do- 
mains D c o g  

IF (U, D) = inf Iv (v, D), 
v E .~u 

where 

z (v, D? = f . F(x, Vv (x)) dm (x) 

is the variational integral generated by F and 

o~, = {vEC(D)nW~(D): v = u in OD}. 

A function u is an F-extremal if and only if  uEC(G)n loc W.~(G) is a solution 
of  the Euler equation 

V. VhF(x, Vu) = 0 (2.2) 

in the weak sense, i.e. 

f GVhF(X, VU)- V~0 dm = 0 

for all (pECo(G), cf. [GLM1]. 
For  later reference we recall some basic properties of  F-extremals. The form of F 

and (d) imply that u+~  and ,~u are F-extremals whenever u is an F-extremal and 
).ER. Each F-extremal is locally H61der-continuous, more precisely, 

(2.3) osc (u, B"(xo, r)) <= c(r/R) ~ osc (u, B"(xo, R)), 

where O-~r<=R, B"(xo, R)cG,  ~ depends only on n and fl/~, c is an absolute const- 
ant and 

osc (u, A) = sup u - i n f u  

denotes the oscillation of  u on A. I f  u is a non-negative F-extremal, then u satisfies 
Harnack's inequality 

(2.4) sup u ~ Co infu 

in B"(xo, r) where Co is of  the form 

o0 = exp (c' Oog R/r)-l), 

O<r~=R, B"(xo, R ) c G  and c' depends only on n and fl/a. F-extremals satisfy Har- 
hack's principle, i,e. if ui: G-~R is an increasing sequence of F-extremals in G, then 

u = lim u, 
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is either = + ~ in G or u is an F-extremal in G. Finally, there are plenty of Dirichlet- 
regular sets. Especially if G is a bounded regular domain, i.e. OG is without point 
components, then for each fEC(OG) there exists a unique uEC(G)nlocWol(G) 
which is F-extremal in G and u=f  in OG. If f E C ( G ) n  Wol(G), then also uEC(G)n  
W.I(G) 

For  simple proofs of the above facts see [GLM1]. 

2.5. Sub-F-extremals. An upper semi-continuous function u: G ~ R  u {_oo} is 
called a sub-F-extremal if u satisfies the F-comparison principle in G, i.e. if D c c G  
is a domain and hEC(D) is an F-extremalin D, then h>-_u in OD implies h>=u in D. 
The PWB-method applies to sub-F-extremals, cf. [GLM3]. Let G be bounded and 
let f :  OG~R u {_0% oo} be any function. The family 

~e s = {u:G -~ R u { - o o } :  17-~u(x) <=f(y), y~0G, u 
X ~ y  

is a sub-F-extremal and bounded from above in G} 

is called the lower Perron class associated with f .  Note that 5r s ~ 0, since u -  - o o  
belongs to ~r The function H i = s u  p {u: uE~s} satisfies one of the following con- 
ditions: 

(i) H s is an F-extremal in G, 
(ii) Hs(x)=~o for all xEG, 

(iii) H i ( x ) = - o o  for all xEG. 
If  m<=f<=M, then also m<=Hr<=M and hence only (i) is possible. 
A function u: G-*R u {oo}, G domain in R", is called a super-F-extremal if 

- u is a sub-F-extremal. In a similar way we define the upper class ~ s  of  f :  OG ~ R  u 
{ _ ~  oo} 

~u s = {u:G - ~ R u { = } :  li__m u(x) =>f(y), y~OG, u is 
X ~ y  

a super-F-extremal and bounded from below in G} 

on a bounded domain G and set H ; = i n f  {u: uE~//i}. The function H s also satisfies 
one of the conditions (i)--(iii). 

The use of  sub-F-extremals and super-F-extremals is based on the following 
F-comparison principle, of. [GLM3, Lemma 2]. Suppose that G is a bounded domain 
and that u is a sub-F-extremal and v a super-F-extremal in G. I f  

(2.6) lim u(x) <= lira v(x) 
X ~ y  x ~ y  

for all yEi)G and if the left and right hand sides of (2.5) are neither oo nor  - oo at 
the same time, then u<-v in G. 
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Finally we note that the above concepts can be used in an arbitrary open set G 
of R" or in a bounded open set G of R", if necessary. The corresponding properties 
then hold in each component of  G. 

2.7. F-harmonic measure. Suppose that G is a bounded open set and that C is 
a subset of  OG. Let f be the characteristic function of C. The F-extremal H s in G is 
called the F-harmonic measure of  C with respect to G and denoted by co(C, G; F). 
The upper Perron class q/I associated w i t h f i s  written as ~ G; F). Clearly 

0 ~ c o ( C , G ; F ) ~  1 

and if C'cC,  then ~o(C',G; F)~CO(C, G; F). For  n--2 and F(x,h)=[h[ 2, 
co (C, G; F) is the classical outer harmonic measure of  C with respect to G. 

In order to form the F-harmonic measure co(C, G; F) the set C should be a sub- 
set of OG. However, in Chapter 4 the following extension of  the definition will turn 
useful. Suppose that G is a bounded open set. A set C in R" is called G-admissible, 
if  G n C is closed in G. I f  a kernel F is defined on G, then the F-harmonic measure 
co (C c~ 0 ( G \ C ) ,  G'-,.C; F) is defined for all G-admissible sets C in the open set G \ C  
and we denote it simply by co (C, G\C;  F), although C need not be a set on 0 (G\C).  
The same notation r G ~ C ;  F) is also used for the corresponding upper class. 
Note that any set C in R n \ G  is G-admissible and that any closed set C in R" is G- 
admissible for all bounded open sets G. 

The following basic principles will be employed in Chapters 3 and 4. 

2.8. Lemma. (Carleman's principle) Suppose that a set C is both G1- and G2- 
admissible, that G1 ~ G2 and that the kernel F is defined on Gz. Then 

o9(C, GI~C; F) ~ co(C, G2~C; F) 
in G I \ C  

Proof. If  q~ belongs to qA(C,G~\C; F), then ~oIGI\C belongs to 
J#(C, GI\C;  F) and the lemma follows. 

2.9. Lemma. Suppose that the sets 6'i and C2 are both G-admissible with C1c C2. 
Then 

co(C~, G~CI; F) ~ co(C~, G~,C~; F) 
in G~ C2. 

Proof. Let ~p belong to the upper class q/(C2, G \ Q ;  F) and let e>0 .  The 
function v=min  (q~q- e, 1) in G\C2 and v=  1 in G ~ (C2\C1) belongs to ~ll(C1, G\C1; 
F). Hence 

o~(C~, G\C1; F) ~ v ~ ~+~ 

in G\C2 which proves the desired inequality. 
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If  C is a closed subset of the boundary OG of a bounded open set G, then it is 
possible to define the F-harmonic measure co(C, G; F) in a more practical way. Let 
q~iEC(OG), i----1, 2 . . . .  , be a sequence of non-negative functions such that (Pi IC ~1 ,  
~Pl-->q~2~... and 

1, yE C, 
l in~o~(y)= 0, yEOG",,C. 

In [GLM3, Chapter 5] the following lemma was proved under the hypothesis that 
G is a regular domain. 

2.10. Lel~ma. limi_~= H~ =co(C, G; F). 

Proof For i-=1,2, ... write hi=H~0 ,. Now ~oi=>q~i+i yields hi>=hi+l and 
since ~011C~l, hi~=Hf=o9(C, G; F), where f is the characteristic function of C. 
Hence 

lira h~ => co(C, G; F). 

To prove the converse inequality let e>0.  Pick vEq/s and set 

v*(y) = li___~_m v(x), yEOG. 
X ~ y  

Then v*: 9 G ~ R  w {~} is lower s~mincontinuous and since OG is compact and 
~o1_->~0~..., there is an i~ such that for i>=i, 

in OG. On the other hand v+eEq/v.+~ and thus v + ~ H ~ , + ~  in G. Hence for 
i>=i~ we obtain 

(2.11) v+e  -> R~.+~ ~ hi- 

If we let i ~  and then e~0,  (2.11) yields v ~ l i m ~ =  he. Thus co(C, G; F ) ~  
limi_~ he as desired. 

I fG is a bounded regular open set, i.e. each component of G is a bounded regular 
domain, then it is possible to give a variational interpretation of the sequence H~o ' 
in Lemma 2.10. Let ~0 i be a (C,G)-boundary sequence, i.e. ~oiEC(G)c~W,I(G), 
l~o~=>rp2~.. .~O, r on C and 

spt cp~ = C, 
i 

cf. [GLM2, Chapter 2]. For i=1 ,  2 . . . .  let u~EC(G)n W,~(G) be the unique F-extre- 
real in G with boundary values ~p~. The sequence ui is called a generating sequence for 
co(C, G; F). Now R , = u  i in G and by Harnack's principle and Lemma 2.10, the 
sequence ui converges uniformly on compact subsets of G to ~o(C, G; F). Actually, 
a little more is true in this case. For the next lemma observe that a regular open set G 
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may have point components in its boundary. Especially, a boundary point XoEOG 
need not be a boundary point of any component of G. 

2.12. Lemma. Suppose that G is a bounded regular open set in ',R" and that C ~ OG 
is closed. Then the sequence ui converges uniformly on compact subsets of  G\C.  

Proof. It suffices to show that the family {u~} is equicontinuous at XoEOG\C. 
Choose a ball B=B"(xo, ro) 
O<t<-r_ o. Set ui(x)=0 for 
i>=io, and 

such that BnC=~)  and S"-1(Xo, t)nOGr for 
xEB\G.  Then u~EC(B)nW,~(B) for large i, say 

fB IVuil" dm <= M < oo 

where M is independent of i. This follows from the proof of [M, Lemma 2.8] since 
0~=u~l  and u~=0 in B \ G .  

Fix i>=io. Since S"-~(xo, t)nOGr for 0<t<=r0 and u~ is monotone in G, 
cf. [GLM1, 2.8], 

osc ( .~,  s " - l ( x 0 ,  t)) = osc (u~, B"(~0, 0),  0 ~ t ~ r0. 

Hence for O<r<=t<=ro 

osc(u,, S"-Z(Xo, t)) >= osc(u~, S"-~(Xo, O) 

and F. W. Gehring's oscillation lemma, see [GLM1, Lemma 2.7] or Lemma 3.2 
below, yields for each r, 0<r<r0 ,  

Thus 

osc (u,, B'(xo,r))" log--~ = osc (u~, Sn- I (x0 ,  T)) n log @- 

= f;.o osc s ~  (xo, t)). , a, A.LIVu, l"dm  = = A . M  

�9 , \ - - l l n  

and since the right hand side is independent of i and approaches 0 as r~0,  the equi- 
continuity of {ui} at x0 has been proved. 

2.13. Corollary. Let G and C be as in Lemma 2.12. Then lim,_~y o)(C, G; F)(x) 
=0 for all yEOG\C. 

2.14. Remark. If we set co(C,G; F)(x)= l ,  xEC, and oo(C,G;F)(x)=O, 
xEOG\C, then a slight modification of the above proof shows that the sequence ui 
converges uniformly in G to ~o(C, G; F) if dist (OG\C, C)>O and if C is a non- 
degenerate continuum. In fact, to prove the equicontinuity of {ui} at x0E C, the 
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proof  of  Lemma 2.12 can be applied to 1 - u .  The above proof  also implies that u~ 
converges uniformly on compact subsets of  G\OoGC to co(C, G; F) provided that 
C is a non-degenerate continuum. Here 0oG C means the boundary of C with respect 
to OG. 

2.15. Lemma. Suppose that C is a closed and connected set in OG and that C 
contains at least two points. Then 

(2.16) lira co(C, G; F)(x) = 1 
X ~ y  

for all interior points y o f  C with respect to OG. 

Proof Let y be an interior point of  C with respect to OG. Choose r > 0  such that 
OGnB"(y, r ) c C  and let C '  be the component of CG which contains C. Write 
G'=B"(y, r ) \ C ' .  Then 
quence for co(C, G'; F), 

(2.17) 

By Lemma 2.8 

G ' c G  is a regular open set and if  u~ is a generating se- 
then Remark 2.14 yields 

lim co(C, G'; F)(x) = 1. 
X ~ y  

1 _-> co(C, G; F) >= co(C, G'; F) 

in G' and (2.16) follows from (2.17). 

3. Phragm~n LindelOf's theorem 

The classical version of  PhragmdnILindel6f ' s  theorem [PL] considers a sub- 
harmonic function u in the plane sector larg z1<0/2<=~. The theorem states that if 
lim u<=0 on the boundary, then either u ~ 0  in the whole sector or an asymptotic 
growth condition 

m(r)  = max u(re ~) > :/o 
q~ 

holds as r ~ o .  
In an arbitrary unbounded plane domain G the method of T. Carleman [C], 

see also [T, p. 112], can be used to prove an asymptotic growth condition 

dt 

where O(t), 0_<-0 (t)<_-2~, is the angle measure of  G on the sphere S l(t)  and the star 
* indicates that the integration is extended only over those radii t for which OG c~ Sl ( t )  
is non-empty. 

Let G be an unbounded domain in R" and let O(t) denote the angle measure of 
G c~ S"-l( t) ,  i.e. : - 1 0 ( 0  is the (n-1) -a rea  of G n S"-l(t) .  In this chapter we shall 
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derive an asymptotic growth condition 

n ~ r 1 
M(r)>~ exp [ c . ~ f : ,  dt 

tO(t)l/~"-l) J 
for a sub-F-extremal u in G with lqm u<=0 on the boundary. Here the constant c , > 0  
depends only on n. The proof considerably simplifies that of M. Tsuji. On the other 
hand our constant c, for n = 2  is less than re. 

3.1. An oscillation lemma. We start with a refinement of F. W, Gehring's lemma. 
If A is a set in R" and u: A ~ R u  {-~o, ~o} is a function, we recall that osc (u, A) 
is the oscillation of u on A. With minor modifications the proof of Lemma 3.2 fol- 
lows from the proofs of [G, Lemma 1] or [Mo, Lemma 4.1]. A direct proof based on 
a slightly different reasoning is given in Yu. Reietnjak's new book [Re, pp. 57--59]. 

3.2. Lemma. Suppose that Kr is an ( n -  l)-dimensional spherical cap on S"-~(r) 
with the (n-l)-area r"-lO. Let u be continuously differentiable on K,. Then 

(3.3) osc (u, K,)" <= A, rO 1/~'-1) f ]Vu[" dS, 
, /  K r 

where the constant A,-< co depends only on n and S is the ( n -  1)-measure on S"-l(r). 

3.4. Phragm~n--Lindel6f's principle. Suppose that G is an unbounded domain 
in R". Then each component of G,=GnB"(r) ,  r>0 ,  is open and we let co(x; r) 
denote the value of the F-harmonic measure c9(S"-l(r), Gr; F) at the point xEG, 
}xl<r, see 2.7. 

The following general principle easily follows from the construction of the F- 
harmonic measure, see [GLM2, Theorem 3.10]. We assume that the kernel F satis- 
fies (a)--(d) of 2.1 in G. 

3.5. Theorem. Suppose that u: G ~ R u  {-o~} is a sub-F-extremal with 

u(x) <= 0 for all ~EOG. 

Then, either u<=O in G or 
M(r) = sup u(x) 

x E G  

grows so fast that 
(3.6) lim M(r)co(x ; r) > 0 

for each xEG. 

Proof. Suppose that u(xo)>O at some point xoEG. 
see 2.5, 

M(r) = sup u(x) > 0 

By the maximum principle, 
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at least for r_-> Ix01. 
ql(S"-l(r), G~; F). 

By (2.6) 

in Gr and hence 

Let v be any super-F-extremal in the upper Perron class 

u 

M(r) = v 

U(Xo) ~ M(r)co(Xo; r) 

for r>Ixol. We have shown that (3.6) holds for X=Xo. 
If x, yEG, then Harnack's inequality (2.4) and the form of c0 give a constant 

L <  ~o such that 
co(x; r) <= Lco(y; r) 

for all sufficiently large r and L is independent of r. Hence if (3.6) holds at some point 
x0EG, it holds for each point xqG as desired. 

The following simple examples of plane harmonic functions illustrate Phrag- 
m6n--Lindel6f's principle and also show that it is the best possible: 

(1) Suppose that G is the infinite annulus l<lz[<:~ in the plane and that 
F(x, h)={hl 2. Then co(z; r )= log  ]zl/log r for l<:]z]<:r and (3.6) takes the form 

lim M(r) > O. 
r~---~ log r 

The functions ,~ log [zl, 2>0,  show that it is not possible to replace (3.6) by 

lim M(r)co(x; r) >= y 

for any ~>0. The same example can be used in all dimensions n for the kernel 
F(x, h)~ Ih ['. 

(2) Suppose that G is the upper half plane Im z > 0  and F as above. Now 

(, 1 z -  r'L 
co(z; r) = 2(1---~-- arg-7-~)  

and the condition (3.6) takes the form 

lira M(r) 

This is again the best possible as shown by the functions 2 Im z, 2>0.  

3.7. A standard estimate near the boundary. Suppose that ~G contains no point 
components. Then Gt is a regular open set and the F-harmonic measure co(x; r ) =  
co(s"- l (r) ,Gr;F)  is in C(G,), 0<:t<:r, when extended as =0  to OGc~B~(r), 
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see Corollary 2.13. The proof of the next lemma shows that r is actually in W,I(G0, 
O<t<r, and, moreover, it gives a useful estimate for 

fo, Ivo [" dm. 

3.8. Lemma. Let R:~O and let 

r e ( t )=  max o~(x;R). 
]xl=t,x~G 

Then for O<r<r2-=R 

(3.9) Ivo l" dm ," [fr; dt V o 
~ tm (t) "/(n- 1) 0 (t) 1/C"-1) j , 

where eo(x)=w(x; R). 

Proof. Choose a generating sequence ul>-_u2>=.., of F-extremals in C(GQ c~ 
W,a(GR). By Lemma 2.12 the sequence ui converges uniformly on compact subsets 
of G~ \ ( i nS" - I (R )  to o~. We recall that co(x)=0 for x~OGR\GnSn-I(R).  

Consider a test-function ~ for the condenser (B"(r~), B"(r)), see [GEM1, 
2.3]. Especially, ~]B"(r)=l ,  0<=~<=1, and ~IR'~'..,B"(r2)=O. The proper choice of 
a radial ~ will be specified later. 

The function 
v, = (l--~")ui 

has the distributional gradient 

Vv, = (1 - ~") Vu , -  n~"-% V~. 

Now the functions v~ have the same boundary values as u, in Gr, for large i and 
hence by the extremality of u,, 

(3.10) I~(ui, Gr,) <= Iv(v,, G,=). 

The convexity of  F and (c) yield 

r(x ,  Vvi) <= (1 - ~n) V(x, Vu,) + finn[u,Vr n 

for a.e. xEGr. Integrating this inequality over Gr~ and using (3.10) we have the 
estimate 

f % ~"V(x, Vu,) dm <= fin"f, [ui["[V~ln dm 
Gr 2 

for i=1 ,  2 . . . . .  Thus 

(3.11) = f o ]Vo~ln drn ~ fln" f ~ [o)lnlVr 
r r 2 
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by the well-known lower semicontinuity, cf. e.g. [GLM1, Theorem 3.10], 

f a  [Vco[" dm <- .lim f ~  [Vu~[" dm 
r I ~  r 

and by (c) of  2.1. 
Next we choose 

dt 
1 - ( ( x )  = [ flXl tm(t)"/c"--iS-O(t)l/~"-l)] [ J ]Jr dt . ]-a tm (t) "/("-l) O(t) 1/C"-1~1 ' 

r<  lxl<r~, and ( ( x ) =  1, Ixl <-r, ~(x) =0,  Ixl ~r2~ Then ( is a radial test function; 
observe that if the integral in the denominator is zero, there is nothing to prove. 
Using the definition of m(t )  we can now write (3.11) in the form 

(3.12) ~t f ~, ]Vco]" dm <= f in" f ; '  m(t)"l( '  (t)]"O(t)t "-1 dt, 

where we have used the same symbol for the radial function ~(t)=~(Ix[) as for the 
function ~. The inequality of the lemma follows from (3.12). 

In the next lemma the star is used to indicate that the left hand side integral in 
(3.14) is taken only over those radii t for which OG r~ Sn-~( t )~0 .  

3.13. Lemma. For O<r l -<r<R 

(3.14) / ,  m(tr dt fo < A n IVco]" din, tO (t) 1/(n-1~ = 
t ,  1 i .  

where the constant A ,  is the same as in Lemma 3.2. 

Proof  Consider the radii t meeting the boundary of  G, i.e. OG n S"-~( t )~O.  
For almost all such radii t, 0 <  t <  R, the inequality (3.3) via an obvious approxima- 
tion argument, cf. [GLM1, Lemma 2.7], yields 

m(t)  n = osc"(co, Kt) <= A.t(Or)X/("-~) f ~: IVcopdS, 
t 

where Kt is an open cap in 

and K't meets OG. Moreover, 
above inequality yields 

G c~ S"-~(t )  chosen so that at the midpoint x0 of  K t 

co (x,,) = max co (x) 
xEGMS"-x(O 

t~-10K, is the (n-1)-area  of Kt. Since O~<=O(t), the 

L L -< A, IVw]" dS  <= A,, IVco]" dS. tO (01/("-1~ = ~ n s,- 1(o 

An integration now completes the proof. 
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3.15. Carleman's theorem. The following theorem gives a counterpart of T. 
Carleman's method to the non-linear case. 

3.16. Theorem. Suppose that G is an unbounded domain in R" and that the kernel 
Fsatisfies (a)--(d) in G. Let u: G - ~ R u  { - ~ }  be a sub-F-extremal in G such that 
1-~ u-<=O at each boundary point o f  G. Then, either u<=O or the quantity 

grows so fast that 

M(r)=- max u(x) 
Ix[ =r, x E 6 

(3.17) ,~o~iim M(r) exp - c ,  tO(t ,-1) > O. 

Here e , > 0  depends only on n and the set o f  integration is [1, r] n {t: OG n S"- l ( t )~0} .  

Proof. First observe that it suffices to prove the theorem for regular domains. 
In fact, given e > 0  the function u , = m a x  (u, e ) - e  is a sub-F-extremal in G and 
li--m u , ~ 0  on the boundary of  some regular domain G, contained in G. Moreover, G~ 
approximates G from inside. If  the growth condition (3.17) holds for u, and G, for 
all e :-0, then clearly it holds for u in G. 

Next assume that G is a regular domain. Now (3.17) follows from the next lemma 
and Phragm6n--Lindel6f's principle, Theorem 3.5. 

3.18. Lemma. Suppose that G is a regular domain. Then 

(3.19) O(X) ~ 4 exp [--G If*~ dt 
tO (t) 1/C"-~ ] 

for XEGR. Here co(x) denotes the value o f  the F-harmonic measure co(S"-l(R ), G~; F) 
taken at the point x. 

Proof. The proof  is a technical interpretation of  Lemmas 3.8 and 3.13. First, 
by the maximum principle 

m(t) = max {co(x): xEG,}, 0 < t -< R, 
and thus 

m (q) ~ m (t2), tl ->- t~. 

Hence (3.9) and (3.14) yield 

= [ m ( r~)J  tO(t)-~("71)] tO(t) -i7("-1)] 

= l, m ( r ~ ) J  .1 
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for O < r l < r < r 2 < R  with an obvious abbreviation on the last line. Now choose 
r, r ~ < r < r ~ ,  such that 

r 2 r 

L = ( , - 1 ) L  . 
/" r 1 

Then 
/'2 

(3.20) m(rl) f, 
r 1 

where K =  Aln In n ~ (n -- 1)(1-")/" (fl/c01l.. 

that 

-< K m  (r~), 

Let xEGR and set r =  Ixl. It suffices to prove (3.19) for m ( r ) .  We may assume 

R 

f ,>0  
r 

since m (r)-<_ 1 and the inequality follows in the opposite case trivially. 
To this end we iterate (3.20). Choose radii 

0 < r ~ ro<= r I < . . . <  r k ~ R 

such that 
r~ r~ rk 1 R 

f , = f ,  . . . . .  f ,  
ro ~i rk - i 

Applying (3.20) successively to each pair of consequent radii we obtain the upper 
bound 

( 1  "/k 
(3.21) m (r) I,"k--K-/*) <- m (R) <= 1. 

Finally we choose a positive integer k so that 

1 g 
(3.22) e ( k - 1 )  _<- < ek, 

/ .  

where e is Neper's number. Write 

1 a 
~ / ,  = a  > 0 .  

If  k = l ,  then a < e  and hence 

4e -ale > 4e -*  > 1 >= m(r ) .  

Thus the inequality (3.19) follows with 

C n ~- K - l e - 1  = A Z  (11") n - 2 e - l ( n  - 1) ("-1)1". 
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If  k ~ 2 ,  then 

and hence by (3.21) and (3.22) 

re(r) ~ ~_ = 1 -  e -k ~ 4e -k < 4e -(~/e) 

and (3.19) again follows with the same c, as before. The proof is complete. 

3.23. Remark. If n=2 ,  then A s = l ,  and hence c~=1/4. 

3.24. Remark. Phragm6n--Lindel6f's theorem for subharmonic functions can 
be used to study the growth of analytic functions, see e.g. IN, p. 43]. In view of  4.1 
and Theorem 3.16 these results can be extended to quasiregular mappings in a natural 
way. We leave these quite straightforward applications to the reader. 

4. Lindel~f's theorem 

Suppose that f :  B2-~R 2 is a bounded analytic function in the unit disk B 2 
and t h a t f h a s  an asymptotic limit at Xo~OB, i.e. there exists a path ~: [0, b]-~B 2 
such that y[0, b ) c B  2, 7(b)=x0 and 

lira b f (y  (t)) = Wo. 

LindelSf's classical theorem [L] states that f has the same limit w0 in every Stolz 
angle with vertex at x0. There are various generalizations of this result, see e.g. [He]. 

This chapter is devoted to study this problem for quasiregular mappings in any 
Euclidean space R", n~2 .  In the classical formulation the theorem is not true for 
quasiregular mappings of  B 3, see JR] for an example. However, our approach is 
based on the density concept of the F-harmonic measure and the method works in 
the same way in all dimensions. In particular, it can be used to prove the aforemen- 
tioned Lindel6f's theorem in the plane. Our main result, Theorem 4.21, seems to be 
new even for analytic functions. Theorem 4.27 exhibits, together with Rickman's 
example, some basic differences in the boundary behavior of quasiregular mappings 
in R ~ and in R", n~3 .  

4.1. Quasiregular mappings. A mapping f :  G ~R"  is called quasiregular (qr) 
if the coordinate functions o f f  belong to C(G) n loc W,I(G) and for some K ~ I  

(4.2) }f'(x)l" -~ KJ(x, f)  
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a.e. in G. Here IA1 is the supremum norm of a linear map A: R"~R"  and J(x , f )  
is the Jacobian determinant of f a t  x. For the basic theory of  qr mappings we refer 
to [MRV]. We remind the reader that if n = 2  and if (4.2) holds with K =  1, then f 
is analytic. 

We shall employ the following property of qr mappings f :  G~R" .  Suppose 
that G' is a domain in R" and G'Df(G). Let F: G ' •  be a variational kernel 

satisfying (a)--(d) in G'. Define fl~ F: G •  as 

~F(f(x), J(x,f)l/"f '(x)-l*h), if J(x , f )  ~ O, 
J'~ F(x, h) 

[ "lh[, if J ( x , f ) = O  or J(x , f )  does not exist. 

Here A* means the adjoint of a linear map A: R"~R".  It follows from [GLM1, 

Lemma 6.4] lhat f~. F satisfies the same assumptions (a)--(d) in G possibly with dif- 
ferent ~ and ft. Note that for n=2 ,  f :  G ~ R  2 analytic and F(x, h)= lh[ 2 the kernel 

f~  F(x, h) will again be the classical Dirichlet kernel ]hi 2 in G. In fact, we shall only 

use the kernel F(x, h)= [hi" and the induced kernel f ~  F of  a qr mapping f :  G-*R". 
Suppose that u: R " ~ R w  {oo} is a super-F-extremal in R" and that f :  G ~ R "  

is qr. Then [GLM1, Theorem 7.10] implies that uof: G ~ R w  {oo} is a super-f ~ F- 
extremal in G. It is easy to check that the function 

u(x) = - l o g  rxl 

is a super-F-extremal in R" for the kernel F(x, h)= ]h]". For this one merely calcula- 
tes that u satisfies (2.2) in R"\{0}. Hence 

(4.3) uef(x) = --ln If(x)] 

is a super-f ~ F-extremal in G. This is the only property of quasiregular mappings 
employed in the Lindel6f-type results. 

4.4. Cones and F-harmonic densities. Let G be a bounded domain in R". For 
XoEOG and A c G  we use the abbreviation 

A, = A•B"(x0, r)\{x0}, r > 0. 

If  E is an open, non-empty subset of G, we let 

K(E, Xo) = {x=txo+(1-t)x: 0 <= t < 1, xEE} 

be the open cone generated by E with vertex at x0. The cone K(E, Xo) is a Stolz-eone 
in G if  for some 6 > 0  

K(E+B"(6), Xo) c O, 

where E+Bn(~) is the 6-inflation of  E, i.e. 

~+~n(~)  = {x~R":  a(x, E) < ~}~ 
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Suppose that the kernel F satisfies the assumptions (a)--(d) in G. Let xoEOG 
and let C c G  be a G-admissible set. For  r > 0  the F-harmonic measure 

u, = o9(C,, Gx,.Cr; F) 

is defined in the open set G \ C , ,  cf. 2.7. I f A  is a subset of G with x0E-4, then the 
double limit 

(4.5) D(xo, C, A; F )  = lim li_mm ur(x) 
r ~ O  x ~ r  0 

x E A ~ C  

is called the lower F-harmonic density o f  C along A. I f  Xo ~ A \ C ,  we set D (x0, C, 
A; F ) =  1 and call this situation the trivial case. Observe that for O<r<=r" Lemma 
2.9 implies u ~ u , ,  in G \ C  and hence the first limit in (4.5) exists. 

Let  yEG and suppose that the segment 

L(y, xo) = {ty+(1-t)Xo: 0 < t <= 1} 

lies in G. The number D(x0, C, L(y,  x0); F)  is called the lower F-harmonic radial 
density of  C along L(y,  xo). Together with this concept we shall mainly use the lower 
F-harmonic density of C along a Stolz-cone in G. 

4.6. Density in the plane. Since the definition for D(x o, C, A; F) is complicated, 
we compare it in the classical plane case with more familiar concepts. Let B 2 be the 
unit disk in the plane and let F(x, h)-~ thl S be the classical Dirichlet kernel. Suppose 
that xoEOB 2 and that A c B  2 with xoE.g. 

4.7. Theorem. I f  C is a subset o f  OB 2, then 

D (x0, C, A ; F) = lira u (x), 
X ~ X  0 
x E A  

where u=a)(C, B~; F) is the classical outer harmonic measure o f  C with respect 
to B ~. 

4.8. Remark. If  C is Lebesgue measurable in OB 2, then the function u in Theo- 
rem 4.7 has an ordinary Poisson representation in terms of the characteristic func- 
tion of C. For  a general kernel F the authors do not know if the theorem holds in B", 
n ~ 2 ,  with u=co(C, B"; F) even for a closed set C in OB". 

Proof. First note that points on OB 2 have zero F-harmonic measure and the 
classical outer harmonic measure is sub-additive. Hence u<=ur+~, in B 2 where 

~r = o)(C\B~(x, ,  r), B~; F) 
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and since lim fir(x)=0 as x tends to Xo along A, cf. Corollary 2.13, 

lim u (x) ~ li__mm u, (x) + lim ~, (x) = lira u r (x). 
x ~ x  o x ~ x  o x ~ x  0 x ~ x  o 
xEA xEA xEA x~A 

Now r-*0 yields the non-trivial part  of the desired result. 

4.9. Radial density and the density in a Stolz-cone. In this section the lower F- 
harmonic radial density and the lower F-harmonic density along a Stolz-cone are 
compared. 

4.10. Lemma. Suppose that G is a bounded domain in R" and that C is G-admissible. 
Let E be an open connected subset o f  G, yEE and xoEOG. I f  K(E, Xo) is a Stolz-cone 
,n G and i f  D(xo, C, L(y,  Xo); F ) > 0  then D(xo, C, K(E, Xo); F ) > 0 .  
1 

For  the proof  technical preparations are needed. First we present a useful esti- 
mate for F-extremals. 

Let  D be a domain in R"; ZoEOD, ro>0 and YoED. Suppose that there is a con- 
nected set K in CD such that B" (zo, ro) n 0D c K  and K n S "-* (Zo, ro) # 0. Suppose, 
furthermore, that there exists a rectifiable curve 7: [0, l] ~ D ,  arc length as parameter, 
with 7( l )=yo,  7(0)=zo and 

(4.11) d(7(O, O D \ K )  ~= . t ,  a > o, 

for all tE[0, l]. In this situation we prove 

4.12. Lemma. Suppose that u: D-~[0, 1] is an F-extremal in D with 

lira u (x) =~ c > 0 
X ~ y  

for all y E K n  OD. Then 
u(yo) => c' > 0 

where c" depends only on n, a, c, fl/o~ and max (1It o, 1). 

Proof Since zoEOD, a<-l. Set a'=a/2 and let 

t o ----- sup {tE[0,/]: d(7(t), K) <= a't}. 

Pick ZoEK such that 

Then 
Is (to)- 4I -- d (7 (to), K). 

17(to)-z;I  -<- 0%. 

Let 71 be the straight line segment from z o to 7(to). The curve 72=Tj[/- to,  l]&7,: 
[0,/2]-~/) joins z o to Yo and we parametrize 72 by arc length starting from z o. Observe 
that 

12 = l - - t o + l ,  
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where/1 is the length of Yl. We shall prove that 

(4.13) d(72(t), 019) ~= a' t 
for all tE[0,12]. 

To this end note that (4.13) clearly holds for 
suppose that l l<t~l~.  Then 

rE[o, h] 

d(y2(t), OD) -= d(7( t -11~ to) , 01)) 

>= a'(t--la+to) => a't 

l < 1 =  to 

contradicts the definition of to. 

since 

(4.15) 

If  ' " zoEB (z 0, r0/2), 
then to>= ro/4, for 

a' ~ l /2 .  Next 

d(z~, O D \ K )  ~= d(7(to), O D \ K ) - l a  >= ato--a" t o 

= a'to >= aro/4 = to. 

On the other hand ~ is a continuum which contains Zo and z 0,' thus ~,_l.tz o,' t) n 
0 D e 0  for 0 < t < r ~  and (4.16) clearly implies (4.15). 

After these preliminaries we shall complete the proof. Letting v=  
1 

- -max(0 ,  c - u )  we obtain a sub-F-extremal v: D~[0,  1] which is monotone in 
c 
D. The proof for Lemma 4.4 in [GLM2] can be used to conclude that there is zE(0, 1) 
and c1< 1 both depending only on n and fl/~ such that 

v ( x ) < c t <  1, " ' ' = x E D n B  (zo, gro). 
Hence u satisfies 

(4.17) u(x) >= c(1--cl) = ca > 0 

for all xED ~B"(z" o, zr  o) and c2 depends only on n and ilia. Next choose points 
to=gro, t j=(1 +a/4)ito, j =  I, 2, ..., and let k be the f i rs t j  such that t,>12. Write 

a 
z'j=Tz(tj), r j = ~ t  s and Bj=B"(2j,  rs) for j = 0  . . . . .  k - 1 .  Then ~jEBj_z, j = l  . . . .  

.... k - l ,  and by (4.13) 
B"(Sj, 2rj) c D 

H e n c c  

(4.16) 

since 
(4.14) 

for ll>to 
Set ro-=a'ro/4. We shall show that o.v "-at~z o', t) meets OD for all 0 < t < r  o and 

that 

ODnB"(z;,  r;) = K. 

then this follows from the assumptions made. If  z o 6 B" (Zo, ro/2), 
to<ro/4 would imply 

IZo-Z;I <= IZo-~(to)l+ [~(to)- z;I 
<= to + a" to< ro/4 + rd8 < ro/2. 
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for j = 0  . . . . .  k -  I. Harnack 's  inequality implies 

sup u _<- cs inf u 
Bj Bj 

where c~E(1, oo) depends only on n and fl/c~. Hence 

1 1 1 
(4.18) U(yo) >= inf u _-> - -  sup u ~> - -  inf u => cg sup u 

Bk - 1 C3 B k -  1 C3 Bk -  2 Bk -  

1 1 
> ~ "~ sup U - -  6'2 ~ _  . .  _ _  

C 3 BO C 

where (4.17) has been used in the last step. On the other hand, tk_lNl 2 or in other 
words 

(l +a/4)k-l~a'ro/4 <: 12 <= l 

by (4.14). Hence k has an upper bound in terms of max (//r0, 1), a, n and fi/e and 
(4.18) gives the desired result. 

Proof of Lemma 4.10. We may assume x0=0.  Since K(E, Xo) is a Stolz-cone in 
G and G is bounded, E is compact  in G. Pick r ' > 0  so small that B ' ( r ' ) n E = 0 .  
Let 0 < r < r '  and set 

v, -=- o)(L(y, Xo)r, G~,L(y, Xo),; F). 

We shall show that there exists c > 0  independent of  r such that 

(4.19) v,(Yo) ~ c, yoEV(r) = K(E, Xo)m\L(y, Xo). 

Fix yoEV(r). The sets K(s)=Sn-l (s)nK(E,  xo), 0 < s < r ' ,  are similar do- 
mains in sn-l(s) and their 8s-inflation for some 5 > 0  is contained in G. Hence it is 

easy to see that the point  z0 = ]YolY/]Y] can be joined to Yo with a rectifiable curve 
7: [0, l]-~S~-~(Jyo] ) satisfying 

d(7(t), OG) >= at, tC[0, [], l ~ M[Yol, 

where a > 0  and M <  ~o are independent of  r. We use Lemma 4.12 in the domain 
D = G \ L ( y ,  Xo) with K=L(y,  xo)~. The number  r0 in Lemma 4.12 can be chosen 
equal to lyolh. By Lemma 2.15 lim~_~, Vr(Z)= 1 for all z'6L(y, Xo)r/2, hence Lemma 
4.12 yields (4.19). 

To complete the p roof  we first consider the non-trivial case, i.e. xoEL(y, xo)\C. 
Fix r > 0  such that  r<r" and 

li___m_m u~ (x) > m = D (x0, C, L (y, Xo); F)/2 > O, 
x ~ x  o 

x E L(y, Xo)~C 

where u~=co(C~, G\C,;  F). Let ~p belong to the upper class ql(C,, G\C,;  F). 
Fix 0 < s < r  with u,(x)>=m for xEL(y, xo),",,C. Now the function O=9/m 
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belongs to the upper class q/(C, u L(y ,  Xo),, G \ ( C ,  u L (y, x0)s); F), hence by Lemma 
2.9, vs<=O in G' , . , (CwL(y ,  xo)). Thus (4.19) yields (p>=cm in V ( s ) \ C  and, conse- 
quently, ur>-cm in V ( s ) \ C .  By continuity 

li__.mm u r >= cm, 
X ~ X  0 

X E K(E ,  X o ) ~ C  

which is the desired inequality since cm>O is independent of r. 

In the trivial case xo~L(y ,  x o ) \ C ,  ur~v,  in G", , (CwL(y ,  xo)) for small 
r > 0  and the result follows from (4.19). This completes the proof. 

4.20. Lindelgf's theorems. We begin with a theorem which may be called Lin- 
del6f's principle. Let G be a bounded domain in R" and let F: R"XR"-+R be the 
kernel F(x, h) = Ih] ~. 

4.21. Theorem. Suppose that A c G  and that xoEe]r~OG. Let C c G  be a 
G-admissible set and let f :  G u C',,,{x0}-~R" be a continuous bounded mapping which 

is quasiregular in G. I f  D(xo, C ,A;  f $  F)>O and i f  

lim f ( x )  = w o, 
x ~ x  o 
xEC 

then f has the same limit wo at x o along the set A. 

Proof. If x,  ~ A \ C ,  then there is nothing to prove and we may assume that the 
trivial case is excluded. We may also assume that Xo=0, that [ f(x) l<l  for all 

xEG and that Wo=0. Write ~=D(xo, C , A ; f # F )  and for r>0  let ur=cn(C r, 

G",,C,; ft~ F), see 4.4. 

Set v(x)=ln (l/If(x)}). Then v is a super-f ~ F-extremal in G, see 4.1. Let M > 0  
and choose / > 0  such that 

(4.22) v(y) >= M for all yE C,,. 

Fix r, 0 < r < r ' .  Since v:~0, (4.22) implies that v/M belongs to the upper class 

~ G \ C ~ ; f ~ F ) .  Hence v/M>=u, in G \ C  and thus 

lira v(x) => M li_._mm ur(x) 
x ~ x  o x ~ x  0 

x E A ~ C  x E A ~ C  

and letting r-~0 we obtain 

Hence 

!ira v (x) ~ M3 > O. 
x ~ x  0 

xE A \ C  

]f(x)l <- e -M~ 
x ~ x  o 

x E A \ C  
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and thus M ~  yields f ( x )~O=wo as x-~xo along A \ C  and since the limit is 
wo along C, the theorem follows. 

4.23. Remarks. (a) Let ~p: [0, ~)-+[0, 0o) be an increasing function with 
limt-+0 q~(t)=0. For x~G let D(x, t) be the ball centered at x of radius t > 0  in the 
quasihyperbolic metric of G, cf. [V3, 2.8]. Write C' = C m G where C is as in Theorem 
4.21. If a bounded quasiregular mapping has a limit as x-~xo along C', then it has 
the same limit in the set 

C~ = (j O(x, 9(IX-Xol)), 
x ~ C '  

cf. [VI, Lemma 4.5]. Hence the set C in Theorem 4.21 can always be replaced by a 
larger set (C ~ OG) to C~. 

(b) If n=2 and f i s  analytic in Theorem 4.21, then f g F = F  is the classical 

Dirichlet kernel and D (x0, C, A ; f ~  F) reduces to the usual lower harmonic density 
of C at x0 along the set A. 

Theorem 4.21 implies several results on the boundary behavior of quasiregular 
mappings. These results are well-known for plane analytic functions. 

4.24. Corollary. Let f ,  C and Xo be as in Theorem 4.21. Suppose that K(E, Xo) 
is a Stolz-cone in G and that E is connected with y~E. I f  D(xo, C, L(y,  x0); 

f g F ) > 0  and i f  
lira f ( x )  = Wo, 

x ~ x  o 
x E C  

then f h a s  the same limit Wo as X~Xo in K(E, Xo). 

Proof By Lemma 4.10, D(xo, C, K(E, Xo);f ~ F ) > 0  and the corollary follows 
from Theorem 4.2l. 

4.25. Corollary. Suppose that f :  B ~ R "  is a bounded quasireguIar mapping. 
I f  f has a radial limit at Xo~OB ~, then f has the same limit in each Stol2-cone 
K(E, Xo)~B ~ at Xo. 

Proof We may assume that E is connected, since otherwise we could replace E 

by a larger connected open set. Now D(x0, L(0, x0), L(0, xo) ; f  ~ F)----l, the trivial 
case, and the result follows from Corollary 4.24. 

4.26. Remarks. (a) In [MR] Corollary 4.25 was proved using a normal family 
argument. In [V3] another proof based on Remark 4.23 (a) has been given. Note 
that Lindel/Sf's principle, Theorem 4.21, covers the tangential and non-tangential ap- 
proach at the same time. 

(b) The sharpness of the condition D(xo, C, L(y,  xo); f~F)>O in Corollary 
4.24 can be easily proved in the classical analytic case for a closed set C on the boun- 
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dary OB 2 of the unit disk B ~ such that the symmetric derivative of the measure 
xcdO exists at xoEC. Let L be the radius {tx0: 0 ~ t < l } .  In view of Theorem 4.7 

and Remark 4.23 (b) the condition D(xo, C, L ; f  ~ F ) > 0  takes the form 

lira ml(CcaB~(x~ r)) > 0. 
r ~ o  2r 

Now this condition is also necessary for a radial limit of a bounded analytic function 
at x0. Indeed, if  the above limit is =0,  then there is a function uEC=(OB2\{xo}) 
such that u belongs to L 1 on 0t? ~, u~0 ,  u(x)--,-~, as x--,-Xo along the set C and 
the upper symmetric derivative of the measure udO at Xo is finite. Let u be the 
Poisson-representation of  u in B 2, v its conjugate function and define 
f = e x p  ( -u - i v ) .  Then f i s  continuous on B2\{x0}, Ift-<l a n d f  does not have the 
radial limit 0 at x0 although f(x)-~O as X~Xo along C. 

For  quasiregular mappings f :  B2-+R 2 the condition D(xo, C,L;f#F)>O 
is sharp as well since f=goh where g: B ~ R  2 is analytic and h: B 2 ~ B  z is a 
homeomorphism quasiconformal in B 2 with h(xo)=Xo provided that h(C) satis- 
fies the above condition. Now 

D (Xo, C, L; J'$ F) = D (Xo, h (C), h (L), h-~J'~ F) 

= D(xo, h(C), h(L); F), 

cf. [GLM2, Theorem 5.4], and since the quasiconformality of h shows that h(L) re- 

mains in a Stolz cone with vertex at x0, the condition D(xo, C, L; ffr F ) > 0  takes 
the form 

lim ml(h (C)~B2(xo, r)) > O. 
,~0 2r 

Thus the above construction can be repeated in the plane quasiregular case. It remains 

an open question in which sense the condition D(x o, C, L ; f  ~ F ) > 0  of  Corollary 
4.24 is necessary for the radial limit of a quasiregular mapping f :  B " ~ R  ", n=>3. 

Next we apply Theorem 4.21 to prove the classical Lindel6f's theorem for plane 
analytic functions and its counterpart  for quasiregular mappings in R", n ~2.  Let G 
be the domain 

G=B2c~{xER~: x 2 > 0 } ,  n = 2 ,  

G = B ' \ { x ~ R " :  x~ = x~ . . . .  = x ,  = 0}, n ~ 3. 

The essential difference of  the domain G for n = 2  and for n=>3 is that the line 
{xER": x~=x~ . . . . .  x, =0} cuts for n = 2  the ball B" into two parts. Let ? : [a, b)---G 
be a path such that ?(t)~O as t~b. 
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4.27. Theorem. (Lindel6f's theorem) Suppose that f:  G~R" is a bounded 
quasiregular mapping and that 

l imf(7(t))  = wo. 

Then f has the same limit at x0=0 in each Stolz-cone K(E, O) in G. 

Proof. For each i=1 ,  2, ..., n we let L~ denote the x~-axis and L + its positive 
half. We write T + for the two dimensional positive XxX,-half plane x , > 0  in R ". 
For A c G  the set S(A) is the rotation of A about L1 in G, i.e. 

S(A) = {xEG: d(x, LO = d(y, La), xl = Yl for some yEA}. 

Observe that for n=2 ,  S(A)=A.  We also recall that for a set A c R "  and r>0 ,  
Ar =B"(r) n A \  {0}. 

We shall show that 

(4.28) D (0, y, L +nB";  f ~  F) > 0, 

1 e, EE represents no restriction, Corollary 4.24 will where F(x, h)= ]hi". Since ~- 
then complete the proof. To this end choose r > 0  such that sn-l(r)  meets y and 

let u,=co(Tr, G'-,,y~; f~F) .  By Lemmas 2.9 and 2.15, limx_.yu,(x)=l for all yE 
(7 n 0 ( G \ 7 ) ) n B " ( r ) ,  hence we may extend u, as a continuous function to B"(r)n 7 
b y  setting 

(4.29) u~(x) = 1, xEB"(r)nT. 

Next we shall prove that there is e ' > 0  independent of r such that 

(4.30) ur(yo) >= c" 

for all y0E S(7~/2). The inequality (4.30) is the crucial step in the proof. Note that for 
n=2 ,  S(7~/~)=7~/~ and (4.30) follows from (4.29). 

To prove (4.30) we fix yoES(Tr/2)\7 and employ Lemma 4.12 in the yo-compo- 
nent D of  G \ 7 .  Now YoES(zo) for some zoET,/2nOD and for a curve 7 in Lemma 
4.12 we choose a circular arc from z0 to Y0 in the set S(zo). Lemma 4.12 together with 
(4.29) then implies (4.30). 

To complete the proof of (4.28) we again use Lemma 4.12. It suffices to show that 

(4.31) ur(yo) >= c, YoE(L+)~/~\S(~), 

where c > 0  is independent of r, since (4.30) takes care of the points in S(7~/2). Fix 
yoE(L+)~/a\S(7). Now a component K of S(7)~ separates Y0 either from L + or from 
the negative half of  L1 in (T+)r. Let D be the y0-component of Bn(r/2) n G \ K  and 

write u for the f ~  F-harmonic measure co(K, D , f  ~ F). By (4.30), u<--u,/c" in D 
and it suffices to prove (4.31) for u. To this end let 71: [0, l ]~D u {z0} be a circular 
arc in the half plane T + with [71(0[=ly01, rE[0, l], joining a point zoEK to Y0. 
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The curve 71 has been parametr ized by arc length f rom z0. N o w  l<=rc lyol/2 and the 
number  r 0 in Lemma 4.12 can be chosen equal to lyol/2. Since d(y l ( t ) ,  t ) D \ K ) > =  

t/4 for  all tel0, 1] and since lim~_~ u ( x ) = l  for  all y 6 O D n K c ~ B " ( r / 2 )  by L e m m a  
2.15, Lemma 4.12 finally gives the estimate (4.31) for  u. The p r o o f  is complete.  

4.32. Remark.  R ickman  [R] showed that  a bounded  quasiregular mapping  f 
o f  the upper  hal f  space H + into R n has a limit in each Stolz-cone K at 0 provided that  

the limit 

l imo f  (X) 
x (T  

exists, where T is a smooth  (n -1 ) -d imens iona l  relatively thick tangential  surface 

ending at 0. It  is no t  difficult to  see that  D (0, T, K; f ~  F)  > 0  and  hence Rickman ' s  

result follows f rom Theorem 4.21. 
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