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Summary 

Due to the length this work is published in two parts. The second palt will 
appear in Vol 23:1 of this journal. 

Part 1 has the subtitle "'Duality for the de Rham--Witt complex" and Part 2 
is entitled "A Ki~nneth formula for the Hodge--Witt complex". 

Abstract 

The behaviour of the cohomology of the de Rham--Witt complex of smooth and 
proper varieties over a perfect fieM of positive characteristic under products of 
varieties and duality are considered..4 triangulated category is defined and given 
the structure of a rigid tensor category..4 Kiinneth formula and a duality formula 
is proved with respect to the tensor product and dual of  the tensor category. 

Keywords: Crystalline cohomology, de Rham--Witt complex, duality, Kunneth 
formulas. 

Both papers are concerned with aspects of the multiplicative structure of the 
de Rham--Witt  complex (cf. [9]). Namely, the behaviour under products of varieties 
and the behaviour under duality. Usually for cohomology theories the following 
situation occurs: One has a triangulated category D, an exact bifunctor ( - )  | ( - )  
on C, having an adjoint Horn ( - ,  - )  and an identity for the tensor product 1, 
giving its dual Hom ( - ,  1). The cohomology of our geometric objects takes its 
values in C, with the aid of the tensor product the cohomology of a product of 
two objects are expressed in terms of cohomology of the two objects and with the 
aid of the dual the cohomology of an object is expressed as the dual of itself together 
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with a shifting depending on the dimension of  the object. This will be seen to be 
true also in the present situation. 

In Part  I we study the duality aspect of  this. In that case it turns out that the 
full tensor formalism is not necessary and we develop an ad hoc construction 
sufficient for our needs. We also get a duality formula for the truncated de Rham 
complex. 

In Part  II we develop the above-mentioned tensor formalism and apply it to 
obtain our Kiinneth formula. We do not, however, obtain a Kiinneth formula for 
the truncated de R h a m ~ W i t t  complex except at level 1 and it seems highly unlikely 
that such a formula should exist. 

The introductions to the individual parts offer a more thorough description of  
their contents. 

Introduction 

The purpose of this article is to prove a duality theorem for the de R h a m - -  
Witt complex (cf. [8]) of  a smooth and proper  N-dimensional variety X over a per- 
fect field k of positive characteristic p. As long as we stick to fixed finite levels 
n things are very much as expected. We will have isomorphisms HN-i(x, W, g2N- J)---~ ~- 
Homw(Hi(X, W,~2J), W,) induced by cup multiplication and a trace map. When 
we try to patch together these dualities to a duality for the limit Hi(X, Wf2J)= 
li_m_m {Hi(X, W, f2J)} the situation changes radically. The reason for this is the fol- 
lowing. Combining the dualities at each finite level gives us a duality between the 
prosystem {Hi(X,W,~?~)} and a certain indsystem {HN--i(X,W,~?N--J)}. In 
order to get an auto-duality for H*(X, Wf2*) we need to be able to express in 
a covariant way the indsystem {H*(W,~*)} with the aid of  H*(W~*). The means 
for doing this is the following formula, which appears in the work of  Illusie and 
Raynaud: RV(W,~?')=R,~RV(W~2"), where R is a certain ring operating 
on W~?" giving the cohomology R[-(W~?') of  W~" a structure of  R-comPlex 
and where the cohomology of  R V(W, ~2") are the H*(X, W, g2*). The final result 
is a canonical isomorphism in D(R): R HomR(R[-(W~2"),k)(-N)[-N ] " ,  
R F(Wf2") where R is a certain bi-R-module. This should be compared with 
the crystalline duality formula: RHomw(RF(X/W),W)[-2N]-~.R[-(X/W). 
There is, however, one major difference. The functor R Horn w ( - ,  W) is trivial 
to compute in the cases of  interest, whereas there are considerable difficulties in 
computing R H o m  w (-- , /~)  in the cases needed for the application of  the duality 
formula. A consequence there of  is that the major part of this paper is taken up 
with the very problem of  computing D ( - ) : = R H o m R ( -  , k)  on a certain trian- 
gulated subcategory of D(R), which by results of Illusie and Raynaud contains 
RV(W~'). One of the obtained results shows that D ( - )  fulfills the property 
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desired of a dualizing functor, namely biduality, I will show later that we actually 
get, in the terminology of [11], a rigid tensor category, which is all the mole remark- 
able as R is a non-commutative ring. 

I have attempted to compute everything in sight concerning the functor D(- ) .  
That this is not an excessive ambition will be seen in the last chapter where we will 
consider the case of a supersingular K3-surface. In that chapter we will also see 
that the combination of crystalline duality and the present duality for the de Rham-- 
Wilt complex sometimes forces R V(Wf2") to be more complicated than perhaps 
expected. 

I would like to thank L. Illusie for carefully pointing out obscurities in a version 
of this manuscript. He is also responsible for the present definition of the trace 
map, a definition more general and much slicker than my original one. I would 
also like to thank O. Gabber for putting my attention to a non-proof of mine of 
I: Lemma 3.4 and to N. Suwa for correcting a mistake in Chapter III. Finally I 
would like to express my appreciation of the hospitality shown to me by the IHES 
during the major part of the writing of this article. 
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O. Definitions and preliminaries 

X will always denote a smooth N-dimensional scheme over S=Speck ,  
k being a perfect field of positive characteristic p. IX[ will denote the underlying 
topological space. Let us recall (cf. [9]) that there exists an inverse system of sheaves 
of differential graded algebras on IX I: 

(o.1) w. Ox -% w. ~ ~ ... L w. s 

whose inverse limit is denoted WO" x. W~)x then is the sheaf of Wilt vectols and 
W~2 x is a commutative graded w(gx-algebra. In particular, the evident morphism 
W~W(gx, where W is the constant sheaf of Witt-vectors of k, then makes WY2 x 
a sheaf of graded W-modules. 

There further are (cf. loc. cit.) endomorphisms (as a graded sheaf of groups) 
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F and V of Wf2 x with relations: 

(0.2) co 1 �9 Vco~ = V(Fco 1 �9 c~2) F ( ~ .  ~o~) = Fool. Fco2 

cos, cos E Wg2x 

F V =  p = VF; F d V =  d. 

As F and V restricted to the constant sheaf W are o- resp. pa  -1, where o- is 
the Frobenius automorphism of W,, (0.2) shows that WO x is a sheaf of graded 
modules over the Raynaud-ring R, the graded W-ring generated by F and V 
in degree 0 and d in degree 1 and relations: 

(0.3) 

Every element in 
as a sum: 

(0.3.0 

Fa = a~F aV  = Va ~ F V  = VIe = p 

da = ad FdV  = d d 2 = 0  a E W  

R (resp. R , : = R / d V " R + V " R )  may then be written uniquely 

~ , > o a _ , V " + ~ , > = o a ,  F " + ~ , > o b _ , d V " + Z , > = o b ,  F " d  a , , b ,  EW 

resp. 

,~n>m>O a-mVm'~- ~am>o amFm'+" ~an>m>o b-m dVm"~- Zm>o bm Fred 

a_m, b_mW/p "-m, n :> m :> O, a m, bmEW/p ~, m >-0. 

Here the description of R is [10, I: 1.1.4--5] and the one of  R, is [10, I: 1.3.3]. 
From now on, unless otherwise mentioned, all R-modules will be graded left 

modules. We will use the following sign conventions: A complex of R-modules may 
be regarded as a (naive) double complex of W-modules and sign changes will be 
made accordingly. That is, F[i](j)  which denotes F shifted i times in complex 
degree and j times in module degree will be affected by a change of d by ( - 1 )  j 
and by ( - 1 )  i in the differential of F and, furthermore, the sign changes of [2, 
XVII: 1.l] will be used when applying a functor to F. The reader should note the 
distinction between the morphism d: F ~ F  of degree 1 and the morphism 
d: F ( - 1 ) - ~ F  of degree 0, which on the underlying ungraded object is the negative 
of the first. The reader should also note that the morphism d: R ( - 1 ) ~ R  which 
is multiplication by d on the left induces - d :  F ( - 1 ) = R ( - 1 ) | 1 7 4  

If  M is an R-module we will denote (cf. [10]): 

Fil" M := V " M + d V " M  

(0.4.1) gr" M := Fil n M/Fil" +2 M 

gr~ M := Fil  n+a M/p Fil "+1M. 

Note that R , = R / F i l " R .  Fil"R is a right R-ideal and evidently p Fil"M-~Fil"+~M, 
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so we may define right R-module homomorphisms n and 0: 

(0.4.2) ~ 1Q 

R n + l  

where zc is induced from the identity map and 0 is uniquely defined by the com- 
mutativity of the diagram. Using (0.3.1) one sees that 0 is injective. As M/FiPM= 
R, |  we get induced maps M/FilnM+M/FiP+IM and M/Fil"+IM-+M/Fil"M 
which we will also denote 0 resp. re. From [10, I: Prop. 3.2] we get the following 
resolution of R,: 

(0.4.3) 0 + R ( - I )  (v" ' -v"a)+R(-1) |  dv.+v., R + R , + O ,  

where F", F"d etc. denote multiplication by F", F"d ere from the left considered 
as morphisms of degree 0. 

The ringed space (IX], W~(~x) is actually a scheme which we will denote W,X. 
Note that for different n they all have the same underlying topological space but 
are, of course, all different as schemes. 

I will denote the projection W,X+W,S  by fn, the nilimmersion W,,,_IX+ 
W,X induced by the projection W~Ox+W,_~(9 x I will denote j ,  and, finally, the 
nilimmersion X + W , X  induced by the projection W,(gx+(P x I will denote j.  
We will also need the following exact sequence ([9, I: Cot. 3.9]): 

(0.5) 0 + ~2~ v-+ gr"W~2)c + (~2~/Z,) ( -1)  + 0, 

where the surjection is characterized by the fact that the composite 

~2"(1) dV", Fil" Ws + gr"W~2" + (~2"/Z,(- 1) 

is the natural projection. There is a dual lesult for gr~WQ x which, even though 
not found in [9] is easily derivable from it: 

Lemma 0.6. The following two sequences are exact: 

(0.6.1) 0 ~ Wn~'~( ~ Wn+l~ X ~ grTms + 0 

(0.6.2) 0 + B,~2~(1) ~ gr7 Ws ~ Z,Q~ + 0, 

where the injection is characterized by the fact that the composite B,(2"(1)~ 
gr~Ws F - d  ~'(1) is the natural iniection. 

Indeed, the only part in (0.6.1) which is not true by definition is the injectivity 
of ~, which is [9, I, Prop. 3.4]. As for (0.6.2) let us first prove that:  

(0.6.3) Im ~ = Ker F" c~ Ker F"d. 
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As Im F " , I m  F"dC=s x which is killed by p we evidently have Im e =  
p.W,+lf2"=~Ker F"c~Ker F"d. Let xEKer F"c~Ker F"d. Then x =  Vx" for some 
x'EW, O" ([9, I, 3.11.3]) and O=F"dVx'=F"-Idx" which gives x '=Fx"  for 
some x"EW,+~s ([9, I, 3.11.4]). Finally x =  Vx'= VFx"=px"EpW,s 

To conclude let us regard the following commutative diagram with exact rows, 
where the exactness of the lower row comes from [9, I, 3.11.3]: 

(0.6.4) 

0 ~ Ker F" c~ Ker F" d ~ IV.. + 1 s -~ gr7 Ws ~ 0 

+ 

0 ~- K e r F "  . W,+Is ~ Z,,Y2"---~ 0. 

Evidently coker(incl)=Im F"d: Ker F '~f2" ( - -1 )  and Ker F " =  VW, I2"(loc.cit.) 
so F"d(KerF")=F"dV(W, f2")=F"-ld(W~f2")=B,s ([9, I, 3.11.4]). Snake 
lemma applied to (0.6.4) now gives the desired result. 

As WY2 x is a sheaf of R-modules its cohomology has a natural structure of 
a complex of R-modules. When considered as such we will denote it R D(Wf2x) 
and its cohomology modules RiV(Wf2x). Sometimes I will have the occasion to 
write RiD(Wf2x) as 

Z-l '(We;x) . . . . .  

On the other hand, R V(X/W) will denote the hypercohomology of Wf2 x 
considered as a complex of W-modules. According to [9, II, Thin. 1.4] R F(X/W) 
is canonically isomorphic to the crystalline cohomology of X/W. 

Similarly, R V(W,,,f2"x) will denote the cohomology of W,g x considered as 
a sheaf of graded W,[d]-modules and RV(X/W,) the hypercohomology of W, f2 x 
considered as a complex of W,-modules. Again [loc.cit.] shows that R V(X/W,) 
is canonically isomorphic to the crystalline cohomology of X/W,,. 

A complex GED-(R) is said to be coherent if R, | G is a coherent complex 
of W,-modules tot every n and the canonical morphism G-o-Rlim �9 {R,| G, zr} 
is an isomorphism. Here the fact that Rn is a bi-(W,[d], R)-module, where the 
d in W,,,[d] is given by multiplication by d on the left, gives R, | G a structure 
of a W, [d]-complex and a fortiori a W,-complex and furthermore can R,| G, 
evidently be regarded as a complex of prosystems which gives a sense to the R li_imm- 
expression (cf. III, 2.4.2). The argument used in the proof of [10, II, Thin. 2.2] 
can now be used almost ad verbatim to prove that if G is coherent then Hi(G) 
is a coherent module in the sense of [10, I, 3] for every i. (For a complete justifica- 
tion of this claim see [5].) Recall [loc.cit.] that any coherent R-module is a successive 
extension of R-modules of finite type as W-modules together with, shiftings in degree 
of the R-modules: 

deg0 degl  
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with V. v i=v i+I ;  F. VI=0; V.T~=0;  F. T~=Ti-I;  d V i = T  ~+j and with F , d  
and V extended by (semi-)linearity and continuity to all of k[[V]] and k[[T]]. 

Conversely, if M is a coherent R-module then [10, I, Thm. 3.8] shows that 
M is a coherent complex. Therefore a complex GCD-(R) is coherent iff Hi(G) 
is a coherent module for all i. In particular, as the coherent complexes evidently 
form a triangulated subcategory of D-(R),  the coherent modules form an an abelian 
subcategory, closed under extensions, of the category of R-modules. Note that 
in this terminology [10, II: Thm. 2.2] says that if X is proper then R V(WOx)~D~(R), 
where the subscript c signifies that we are dealing with coherent complexes. 

If M is an R-module let us, following [12] put: 

F=BM := U Im F"d 
n 

V - = Z M  := U Ker dV" 
n 

CoeurM i := V - ~ Z M i / F ~ B M  i 

~<=iM := (... ~ M i-1 a.~ V_=ZMi  - - , -  0)~>/M := M/f<=iM 

"~<~M := (... a_~ Mi_ ~ a_~ F . B M  i ~ O) ~>,M := M/~<,M 

dom M i := (~ <,+l ~>,M)(i). 

We will consider Coeur M i as well as M* as an R-module concentrated in degree 0. 
The following result is then contained in [10, I: Thin. 2.9]: 

Lemma 0.8. I f  M is a coherent R-module then Coeur M i is a finitely generated 
W-module and the R-modules dom M i are successive extensions o f  Uj: s. 

We will by the catch phrase "survie du coeur" refer to the fact ([10, II: Thm. 
3.4]) that if X is proper then in the first spectral sequence E~'J=HJ(X, wf2i)=~ 
H*(X/W) B~'~ c= F~BR j f- (W f2")~c=_ V - ~ Z R  j l-(W f2")~c=Z~J. 

Finally recall that the standard topology on an R-module is the one defined 
by FiPM. 

From [10, II: Thm. 1.2] we also draw the result that the natural projection 
W ~ ' ~ W ,  f2" induces an isomorphism (in D(W,[d])): 

(0.9) R,| R f- (Wf2") ~-~ R F- (W~ f2"). 

For general results on coherent duality I will use [7]. This will not always be 
explicitly mentioned. 

If X is proper I propose to call RF(Wf2"x), considered as an object in Db~(R), 
the Hodge--Witt  cohomology of X. 
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I. The dualizing complex of W,X 

1. The aim of this chapter is to prove that there exists a natural isomorphism: 

Tr: W, f2N[N] ~ f 'W, ,  

where f.: is the funetor of [7] for the morphism f , :  W,X-+W,S. To do this one 
first defines a morphism locally and shows that it glues to a globally defined one 
and then shows by a d6vissage that this morphism is indeed an isomorphism. 

2. Let us first note that f.~W, is concentrated in degree - N .  This is seen as 
follows. The short exact sequence of W,,-modules; 

(2.1) 0 ~ j . F . - 1 0  ~ W,(9 ~ j , .W,_10 ~ 0 

(cs (0.5)) gives after applying R Homw. r (--, f , ~ )  and using duality for the finite 
morphisms j F  "-~ and ./, a triangle 

(2.2) ,~.f '_iW,_~ ~ f ' W ,  -+ ( j F " - ~ ) . f ; k  

and as f,!k=f2U[N] induction on n will show that f,:W, is in fact concentrated 
in degree - N .  There will therefore be no problems in glueing together the morphism 
Tr once it is canonically defined locally. 

Assume now that f = f l :  X ~ S  admits a smooth lifting f ' :  X'-~W,S,  (locally 
this is, of  course, always possible). Recall ([9, II, Thin. 1.4] and [10, III, Prop. 1.4]) 
that there exists a canonical isomorphism of sheaves of  W-algebras: 

(2.3) 0.: W,,O~ --~ a,I-IbR(X'/W,). 

In particular, it gives us a commutative diagram of schemes with a cartesian square: 

0 
w.x  ~ (lXl, N~ (X'IW.)) ~ X" 

(2.4) J'"l 1 l' / f  

w . s  .- ~" w , , s  

where e is given by the inclusion H~ ,. I now claim that ~ is a finite 
morphism. Indeed, as this is a local question we may assume that X'  lifts to a smooth 
formal W-scheme X" and that the Frobenius of  X lifts to a morphism U':  X'-+X". 
It is then clear that F": ~ 1 p .  i f , /  f2x,,Iw-~f2x,,/w factors as for some endomorphism 

1 if" and that we have d U ' = p .  F ' d  on f2x,/w. This immediately implies, if we 
put F '  the morphism induced by F" on d)x,, that Im F'": Ox,~Ox, is contained 
in o , F'  Hog (X/W,) which, as evidently is finite implies that ~ is a finite morphism. 

As f '  is smooth of  relative dimension N there exists a canonical isomorphism 
[7, VII, Cor. 3.4]: 

(2.5) Tr: f2xN,/w, ~ f ' : W , [ - N ] .  
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(2.5.1) 

(2.5.2) 

I claim that the composite 

Using (2.4), the finiteness of  0 and ~ and the isomorphism W. -~ -  (a")!W. one 
obtains, from (2.5) and adjunction, morphisms: 

~.f2~,/w. ~ f " W . [ - N ]  

(Oe).f2~,/w" -+ f :  W.[-N]  

(2.6) N-: a (0~), ~x./w. - ~  (00,  ~ . / , .  -~ f.' w.[- N] 

is zero. This is seen as follows. All the sheaves involved in (2.6) are in a natural 
way given as cartesian sections of  the fibered category of coherent W,,0x-modules 
over the 6tale site of smooth N-dimensional W,-schemes X', where X is the re- 
duction modulo p of  X', and the morphisms involved are natural transformations 
of cartesian sections (ef. [6, VI, 5.2]). (The structure of cartesian section on f," W,[ - N ]  
comes from the fact that for an 6tale morphism g, g*=g! [7, VII, Cor. 3.4].) As 
every smooth N-dimensional W,-scheme admits, locally in the Zariski topology, 
an 6tale morphism to pn  w. we may assume that X '  is pN Using adjunction for 

W n " 
D s t~N--1 d a proper morphism we are reduced to showing that the composite ~j ,  ~N/w .--~ 

P N d . , .  ,1 R f ,  f2r,~lw . -  Rf, ,J~"W,[--N]--,-W,[--N] is zero or, as W, is injective as module 
over itself, that the composite on t ,  ,~n-~ a on  c" o n  J,~i,~,lw.---" ,'- J,~oe~/w,,-"W, is zero. This 

, n o ,  o n - :  itself is zero. is obvious as ~,..i ,  ~ 
Using (2.3) and the fact that the composite (2.6) is zero we may now define 

the map Tr(f,) as the composite: 

(2.7) Tr(f,): W.~2x u 0,, (0~). n N-: w~ , 12x,/w,jd(OQ, Ox,/r162 ~ f 2 W ~ [ - N ] .  

This morphism does in fact not depend on the lifting f ' .  To prove this suppose 
that we have another lifting i f ' :  X"--,-W~S and put  

(2.8) )~" := (IXl, H %  (X'/~)) s := (Ixl, H~ 

After possibly localizing on X, which is allowed as Tr(i, ) and Tr(i,, ) are mappings 
between actual sheaves and not only morphisms in D(W.(gx), we may assume that 
there exists a W.S-isomorphism h: X ' ~ X "  inducing the identity on X. This 
gives us a commutative diagram of schemes: 

(2.9) W.X , 0 .~"~ ~ X" 

w . s  
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with f f ' h = f "  and f " ~ = f ' .  Because ~ ' f " ' = f "  and because 

(00, ~2~,,/vzn \0~1 

(2.10) @ 0 ; ~  W~Y2~ 

(0~), s  

commutes ([9, II, 1.1.8]) we get that Tro.,)=Tr(y. ). 
From this and the observation made above we may now patch these mappings 

together to obtain for any X a unique mapping 

(2.11) Tr: W~f2x N -~ f ,  tW~[-N] 

such that on any open subset U of X admitting a smooth lifting U'/W,S, Tr[U 
is given by (2.7). Tr will certainly be compatible with 6tale mappings in the sense 
that it will be a natural transformation of cartesian sections of the fibered category 
of coherent W~ Ox-modules over the 6tale site of smooth N-dimensional k-schemes 
X and 6tale morphisms. 

3. Before we can prove that (2.11) is an isomorphism we will need some 
compatabilities. 

From [10, III, Prop. 1.4] we obtain an isomorphism C-" :  W~y2i-~Iti(W~s ", d) 
making the following diagram commute 

W~.QI r .  ~ ZW,,Oi 

We will denote C n the induced mapping ZW~y21~V/~s *. In the case n = l ,  
C1:F.s163 N is simply the mapping ON of (2.3), (in this case e: J~'-*)?' is 
simply the Frobenius F:  X--*X). 

(1} ~ dt lAd-t2A "'" Ad-tN~ 
Lemma 3.2. Let = ( - f i"  !2 . . . .  t_T .f denote the obvious Cech-N-cocycle 

for the standard covering o f  W~P N, where t_ i is the canonical lifting to VV,(Pr~, o f  
the coordinate function tiE {~e~. Then 

(3.2.1) Tr co = 1. 

Furthermore, this coeycle generates HN(P N, W~ 0 N) as a W,-module. 

Indeed, by definition, the composite HN(P~ , s N, W~O N) ~ W~ 

is the usual trace map. As the cocycle - ~dt~Adt~A ... Ad t~[  " �9 ~ . . . . .  7; for the standard 
t t 1 .  t ~ . . . .  �9 tn  ] 
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covering of P ~ ,  where t~ is the ith coordinate function E S P y ,  has trace 1 and 
generates HN(p~v,g2 N) and as H N ( P ~ , O N ) ~ H N ( p N ,  w.~2N) is surjective it 
suffices to show that this cocycle maps to co. Let us therefore recall the construction 
of 0; in the case of pN. There is a morphism of differential graded algebras 

(3.2.2) ~2~N /w ~ W(2~ 

compatible with the lifting of Frobenius which takes 

(Xo: X l :  . . .  : XN) to (Xg: X~: ... : X~). 

This map is a quasi-isomorphism and combined with C" it gives 0.. According 
to [9, 0: 1.3.18] it takes the coordinate function tiEtPpN to _t i. Therefore it takes 

the element dtl ^ dt2 ^ ... ^ dtN to dtl ^ dt2 ^ ... ^ dtN and to prove the lemma 
tl" t2" . .  �9 tN _tl- _t2" . . .  �9 _tN 

it suffices to show that C" takes co to itself. As C" is multiplicative it is enough 

to show that C" fixes - where xE~ x and hence, by (3.1), that F - - 
x - - ~ - "  

But pF(x-ldx)=x_-Pd(Fx_)=x_-P.dx_P=px-~dx and WO" is p-torsion free. 

Lemma 3.3. The following diagram commutes 

j . .  W._ l g2N o W. ~2N 

(3.3.1) IT~ IT~ 
�9 ! i 

J . , L - I ~ - ~ -  " f g ~  
T ! v �9 l i T/r/ S where i is the adjoint o f  f . -1W._~=f ._ lh 'W.=j~f . 'W,  and h: ,,._1 W.S. 

Proof. Here we have two morphisms between cartesian sections so by using 
the reasoning above we may assume that X = P  N and by adjunction it suffices to 
check commutativity after applying H N ( - )  and composing by the adjunction 
unit. As i clearly induces p: W._x~W,,, after applying H~r and composing 
with the adjunction unit we are reduced to showing the commutativity of the following 
diagram: 

H N ( I V . _  1 ~'~N) ~ H N (W. lff) 

I 
W._l  " , W. 

By (3.2) it is sufficient to show that 0(co._0=pco.. This is obvious. 

Lemma 3.4. The following diagram commutes 

WnON V . (Fj.).W._ION 
( 3 . 4 . 1 )  ITr ITr 

f~W,,[- N]--~-~+ (Fjn).f.'_ll4~_~[-- N ] 
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where ' v* , = f,'W~) ~ R = m:.f,'W~ RHomw, , r  Homrv, ~ ((Fj,), W~_IG fd  W.) 

F" ( F j , ) , ( F j , ) t A ' ~  ( J , ) , f , - ~ - ~ .  

Proof. I claim that the following diagrams commute, for a smooth lifting 
X' /W,  of X: 

Wn~.2i X F ~. Wn_l~.~ l/gnn_l~,-~i X V + Wnff~ix 

(3.4.2) Io, 1o, Io, 1o, 
Hi~'2x, /wn--* HiO'x, , /w._t  gi~2"x,,/W._l --E.p-,. Hil2"x,/w,. 

where X"  is the reduction modulo p"-~ of X', the lower horizontal morphism 
of the first square is induced by the projection and p is induced by multiplication 
by p. The question is local so we may assume that X'  lifts to a smooth folmal 
scheme over W admitting a morphism which lifts Frobenius. We then get a mor- 

H W~(2 x, C-"  phism as in (3.2.2) and we may therefore replace H ~ f2"x,/w ., 0 etc. with ~ " 
etc. The searched for commutativity is now [10, III, 1.4.7 and 1.4.9]. The question 
of the commutativity of (3.4.1) is a local question so we may assume that X admits 

N a smooth lifting X'/W~. The fact that f2x,/w--,W~f2 ~ is surjective and (3.4.2) 
implies that it suffices to show the commutativity of the following diagram: 

(Oe), f2~,/w, ~ - - +  (Oa), t ,  ~-~X,,/W._ 1 
(3.4.3) Ixr IWr 

f ."W~[- N] .-~-~.- " ' N (Fj, , ) , fd_IW~-I[-  ] 

where t is the nil-immersion t: X " ~ X ' .  Adjunction reduces to showing the 
commutativity of the following diagram: 

N N f2x,/w" , t ,  f2x,,/w,~_ 1 
(3.4.4) ]Tr ]Tr 

Z"W,[ -N]  r ~ (Oa)'(Fj.),f. '_IW._I[-N] 

Note also that (3.4.2) shows that the following diagram is where r = (0e) ! (m). 
commutative: 

X" ~  ~ G _ ~ X  

(3.4.5) l' IfJ, 
X" ~  

To show that (3.4.4) is commutative it is enough to show that the following diagram 
commutes: 

N N fdx,/w, ,- t ,  f2x,,/rv,_l 

1 (3.4.6) Tr rr 
+ 

f " ~ [ - U ]  "--* t , f " ' ~ _ d - N ]  ~ ( o a ) : ( G ) , L ' _ I w ~ _ I [ - N ]  
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where a[N] is the composite 

f ' t  W,=R Homr x, "~': . . . .  z* j rv.)----* RHomex,(t ,d)x, , , f ' !W,) = t s ~ J  " 

and b is the base change morphism for the square (3.4.5) (cf. [2, XVII, 2.1.3]) and 
to show that r=ba. The commutativity of the right hand triangle is just abstract 
nonsense. Using R f ,  and f~ we may construct a bifibered category over the cate- 
gory of fni te  type k-schemes and proper morphisms whose fiber over a scheme V is 
D~oh(@V). Then the desired commutativity is just a simple diagram chase and in 
the end the characterization [2, XVII, Prop. 2.1.3] of the base change map. I leave this 
as an exercise for the reader. The fact that r=ba is seen as follows. Applying 
R Homw, ox (--, f "  W,) to the commutative diagram: 

. V 
( F j n ) , W ~ - l e x - - +  W,,ex 

(3.4.7) +1~ ~0, 

(Fj,,), (Oe), (fix" __v+ (Oe), (~x" 

we get the commutative square: 

fdl4~, 'n+ F" , ( Jn),fd-zWn-1 
(3.4.8) l 

(Oe),f'IW, ~+ (Oe), t , f"zW,_l 

where c=(Oe),(a). Adjunction with respect to 0e then gives r=ba. There now 
only remains to show the commutativity of the left hand square. Consider the 
diagram: 

N ~,~N P N f2x,/w. ~- t, x"/w._l + f2x,/w. 
(3.4.9) ]Tr [Tr [Tr 

t ~t, d f " W , [ - N ]  ~--~ , f  "Wn-~[-N] , f " W , [ - N ]  

where d is defined by adjunction with respect to t. The two composites of the 
horizontal morphisms are both multiplication by p and d is injective as it is, 
npto isomorphism, obtained by applying Home, , , ( - , f ' !W, )  to the surjection 
~Px, ~ t,  •x". We are therefore finally reduced to showing that the right hand square 
commutes. This can be done as in the proof ot (3.3) - -  reduce to projective space 
and compute. 

4. We are now prepared to prove the main result of this chapter. 

Theorem 4.1. The morphism (2.11) is an isomorphism. 

I first claim that we have a short exact sequence: 

(4.1.1) 0 -~ j,,fnL1W,_I-M- fdW, q-~ ( j F n - z ) , f  ' k ~ O, 
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where q is m iterated n--1 times. Indeed, this is just RHomw ~x(--,f.'-W.) 
applied to the the exact sequence 

(4.1.2) 0 ~ Fg-X(gx v,-, W,(9 x -~ jn, mn_l~ X --~ 0 

plus the fact that f '_ lW,_l  and f ! k  are concentrated in degree - N .  Furthermore 
by (3.3) and (3.4) the following diagram is commutative: 

o ~ L ,W._Ic~  ~-  o w . ~ u  r"-L. ( j F " - X ) , n  ~ -* 0 

(4.1.3) ITr ITr [T~ 

(o -~ L , f ' _ I ~ _ I  ~--~ L , ~  q ~ ( j e " - ~ ) , f '  k -~  0)[~U] 
and by (0.6) the upper row is exact. We will therefore be able to conclude by induc- 
tion once we have shown that Tr: Wlf2N-~fl:k[-NJ is an isomorphism. I claim 
that this map coincides with the usual trace map which is indeed an isomorphism. 
We reduce as usual to projective space and calculate. The equality needed is exactly 
the one obtained in the proof of  (3.2). 

5. This section discusses the relation with the trace map that has just been 
defined and the crystalline trace map of Berthelot ([15]). It will not be used anywhere 
else in this article. 

We know ([9, 11: Thin. 1.4]) that R~.~)x/ws----W,O" so C" gives an iso- 
morphism RN~.f)x/w~s=W,~2 N (~ is the projection from the crystalline topos to 
the Zariski one). (2.11) therefore gives us a trace map RNg,~)x/ws~f'W,[--N] 
and, by adjunction, if  X is proper a trace map Tr,: H2N(X/W,,)~W,. If  we know 
that T r j p = T r l  and Tr~ is the usual trace map for de Rham cohomology, we may, 
exactly as Berthelot does, prove the duality theorem for R V(X/W,). These two 
compatabilities follow from Lemma 3.4 and the proof of  Thin. 4.1. To be completely 
at ease we would like to convince ourselves that the map Tr~ coincides with Berthelot's 
trace map ([15, VII: 1.4.9]). However ([15, VI: Prop. 1.4.5, Prop. 1.6.1]) shows that 
R~.r  is Cohen--Macaulay for the codimension filtration and hence that any 
trace map is determined by the induced morphisms H~(Rii,~)x/w)~W . where 
x runs over the closed points of X. In the case of the trace map of the present 
article this morphism is defined for any pointed smooth k-scheme and is compatible 
with 6tale morphisms between pointed smooth k-schemes. In the case of Berthelot's 
trace map this is also the case as the morphism H~ (RO, (Px/w) ~ W, is induced by the 
crystalline residue map ([15, VII: Thin. 1.4.6]) which clearly has this property. 
We may therefore reduce to projective space, in which case Lemma 3.2 shows that 
Tr, equals the trace map for the de Rham cohomology of pN which also is true Wn 
for the trace map o f B erthelot ([ 15, VII: 1.4.11 ]). 

Remark. This coincidence of traces was also proved by Illusie by a slightly 
different method. 
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II. Self duality of the de Rham--Witt complex 

1. The purpose of this chapter is to show that multiplication induces an iso- 
morphism W, O ' + R  Homw,~x(W, f2x, W, f2x N)( -N)  of graded sheaves. Using 
the exact sequences (0.6.1) and (0.6.2) and their duals one is reduced to a duality 
between higher boundaries and cycles in the de Rham complex of X which is 
easily proved by induction. 

Lemma 2.1. The following diagrams are commutative 

n N cn 

(2.1.1) ITr Iwr 
+ + 

n I F~,fJW.[--N] k , --+ f g W . [ - N l  

( j ,F ) ,W,_IO~ v + I,V,~?Nx 
(2.1..2) )~ ITr 

( j ,F) , f2_IW,_I[--N] ~ f2W,[ -N]  

1 T n r n , T ~ t  l f f l  Cv h w where k isadjoint to f#W,=f2(a  ) 'W,=(F ) ' f2W, and s to j g_ l , , , _ l= jg_ l  "W,= 
(j',F)t f ' W ,  and h is the composite W, S J~"+ W, S Z-~ W,S. 

Proof. As before we may assume X is pN and we need only commutativity 
after applying H N ( - )  and composing with the adjunction unit. In (2.1.1) we 
need to know that C" fixes the standard cocycle which is proved in (I, 3.2) and 
in (2.1.2) we need to know that V(co,_l)= p .co, which follows from VF=p and 
F(o~,)=co,_l which was proved in (I, 3.2). 

Theorem 2.2. The p a i r i n g  Wn~-2i@wnoWn~-~N-i---~V~rn~'~N given by multiplication 
induces an isomorphism: 

(2.2.1) W, g2 i -+ R Homw.o (W, f2 N-i, W.f2N). 

To prove this let us start by putting 

(2.2.2) gr" := gr" (Wf2") gr~ := gr~ (Wf2"). 

These will be regarded as W,+ld)-modules and we will furthermore consider gr" 
as a submodule of W,+ll2. 

The following relation will hold 

(2.2.3) O(~x. y) = x . o y  xEW.+I g2" yEW.f2". 

Indeed, y=~y" for some y'EW.+IO" so O(rcx.y)=o(nx.rcy')=On(x.y')=: 
p (x. y') =:x. py" = x,  0 V. 
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Lemma 2.2.4. The following diagrams commute: 

jn, Wn~'~N O Wn + 1 ~c~N 

(2.2.5) j , , j ,~;2+lf2zvj~j.  

(jF,),f2u v" , W,+lf2N 

(2.2.6) }' / / ~ j ~ ,  

(jF"), (jr")' W, + a a N 

where the vertical isomorphisms come from [I, Thm. 4.1] and Trj, resp Trjv, are the 
adjunetion units. 

Proof This follows from [1, 3.3] and (2.1.2). 

(W, f2*, W, f2N)=0 for i>0 .  Lemma 2.2.7. Extw. r 

Proof (0.6) shows that 17/, f2" is a successive extension of  locally free d~-modu- 
i les. Using this and [I, 3.3] it sufficesto show that Extve.o(j,M, Jn!W~[-N])=O for 

i > 0  and M a locally free 0-module. However, duality for j gives 
Ext~v.~(j,M,f,:W,[--N])=Ext~(M,f!k[-N])=O for i > 0  because M is locally 
free. 

Remark. W, f2" is not a locally free IV,0-module so (2.2.7) is not automatic 
as in the case n = 1. 

Using (2.2.7) we may dispense with the R when proving (2.2.1). (2.2.3) shows 
that grn. 0W, f2"=Ker re. QW~f2"=0 and we get an induced pairing g r " |  
W,+xf2 N. (0.6.2) and the obvious exact sequence 0~gr"~W,+lf2"~W,,f2"~0 
therefore gives a commutative diagram with exact rows: 

0 ~j,,W,O N-i o ~ W,+xoN-i . 

(2.2.8) ] 1 
0--2 Homw,,+l~ (j..W.~? ~, W.+x~N) R--~L~ * Homw.+~ (W.+xO I, W.+af2 N) -~- 

�9 gr7 , 0 
I 

O n --+ H mw.+~ (gr , W.+x QN) 

Further, (2.2.3) and (2.2.5) show that the following diagram commute: 

j . ,  W. f2 N- ~ 

(2.2.9) x ~ / /  b \ \ Q ,  

L ,  _Homw. ~ (IV,, f21, W, f2N) -~" Homw.+~r (L,W, f2i, W,+ x f2N) 
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where a is j , ,  applied to (2.2.1), b is the duality isomorphism and c is the mor- 
phism in (2.2.8). If  we proceed by induction on n (n= 1 being wellknown) it only 
remains to show that the morphism 

(2.2.10) gr~ + Homw.+~ ~ (gr ~, W,+i f2 N) 

is an isomorphism. 
Recall that we have the following exact sequences (cf. (0.5), (0.6)): 

(2.2.11) 0--,- j,(F2Y2~/B,) v++_ gr" -+  j ,  CF2f2+-I/Z,) ---,.. O, 

(2.2.12) 0 - + - j , B ,  Y2 ~+1 ---+ gr~ J+"> j , Z ,  f2i---+ 0 

and if xCIm V"~gr" and yCKer F"~gr~ then x =  V"x" for some x'  and x . y =  
V"x" . y =  V"(x, F " y ) = 0  (of. (0.2)) so we get induced pairings: 

(2.2,13) Coim F"@Im V" --,.- W,+IY2 u, 

(2.2.14) Ker F" |  V n -+ W,+lf2 N 

and the proof of (2.2) is reduced to show that the induced mappings: 

(2.2.15) Coim F" .-+ Homw,+l ~ (Im V", W,+IY2)N), 

(2.2.16) Ker F" -+ Homw,,+lr (Coker V", W,+IY2 N) 

are isomorphisms. 

Lemma 2.2.17. The following diagrams commute: 

(2.2.18) 

Coim F" 

j , Z , O  N-i 

Ker F + 

t- 1)~r-ig 

�9 n f i N - - l + 1  l , Z ~  - - .  

(2.2.19) 

Homw.+l ~ (Im V", W~+IQ N) 
IW 
§ 

H.omw,, + ~+, (j,  (F: a' ln,) ,  ~ + ~ a ~) 
+ 

j ,  H o  .m,v (F~<'C2~IB,, C2 N) 

lJ, ((TrF-) ,) 
h . j ,  Homo (FN, f2,/Bn, Fg, QN) 

Homw.+l ~ (Coker V", W~+I f2 N) 

U~ +1 ~ (J,  (F~ f2 ~-I/Z"), IV,,, +1 ON) 
4 

j ,  Hom~ (F~.QI-IIZn, f2 N) 

lJ, ((TrFn) ,) 
k . j .  Homo (F~,~2i-IlZ., F~Y2 N) 
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Here a and g come from (2.2.12), b and e from (2.2.11), c and f are duality 
isomorphisms and h and k are induced by multiplication in fF. 

Proof. By (2.2.6) and transitivity of trace we have that Trjoj,(TrF.)=Tr3F.= 
V n : "F n (j ),(2u~W.+lf2 N. Further, if x~g2",yEW,+ls then V " x . y = V " ( x  F"y) 
(cf. (0.2)) and if further F"y=O then; 

V"(x.  F"dy) = Vnx �9 dy = ( -  1)aegd(V"x . y ) + ( -  1)deg+l(dV"x . y) 

= (-- 1)a~gdV"(x �9 F " y ) + ( -  1)d~g+l(dV"x �9 y) = 0+(--  1)d~g+a(dV"x .y). 

Combining these observations and noting that W,+~f2" ~---% f2" is multipli- 
cative, one concludes that (2.2.18) and (2.2.19) commute, using, of course, that the 
duality isomorphisms c and f are the composite of "applying j , "  and (Trj),. 

Lemma 2.2.17 now shows that the following lemma establishes Theorem 2.2: 

Lemma 2.2.20. The composites 

(2.2.21) Z, f2 i ~ Homo (F~f2N_i/B, ' Fg, ON) (Try.), Homo (F~On_i/B, ' f2u) 

(2.2.22) B, f21 _L~ Homo (F~,fFc-i/Z,, Fg~2 u) frrv")*~ Homo (F~,f2n-i/Z,, g2 u) 

are isomorphisms (of. [12] and [13]). 
Recall that by definition (of. [9, 0, 2.2.2]) 

Zlf2 i = Kerd: F, f2 ~ -~ F, f2 i+1 

BIY2 i = Imd: F ,  f l  i -1 _o.. F,~'2 i 
and 

C-a(B,,) = B.+a/B~ 

C - I ( Z . )  = Z.+llZ~ 

where C-a: f2"-~+H'(F,O')  is the multiplicative and dMinear Cartier-iso- 
n �9 / 1 ~  I morphism. Recall, [loc. cit.], that B,,  Z , ,  F,  f2/B, and F,  /Z,  are all locally 

free 0-modules. 

From (I: 2.6) we see that the composite F, f2N-~a-~ F,  fF r Tr'L f2 N is zero 
and as (F, f2", d) is a complex of d~-modules we get a perfect pairing F,O' |  

F, f2i m~U F, f2N[_N] ar,____~r f P [ - N ]  of 0-complexes. This gives the desired result 
for n = l .  Furthermore, by (2.1.1) Trv is simply C, the inverse of the Cartier- 
isomorphism, and as C-a  is multiplicative the induced pairing 

Oi|162 c-,| H ~ (F,f2.)| i(F,f2.) ~f2 N 

is the original pairing. 
Using this and the definitions of B, and Z,  one quickly establishes the desired 

result by induction. 
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Corollary 2.2.23. Suppose that X is proper. For all (i, j) the mapping, 

(2.2.24) H' (X, W, f2J) -~+ Homw, (HN-'(X, VV, y2u-J), IV,) 

induced by cup product and the trace morphism HN(X, VV, DN)--,Wn, is an isomor- 
phism. 

This follows immediately from I: Thin. 4.1, Thin. 2.2, coherent duality for the 
proper morphism f~ and the injectivity of  W, as a module over itself. 

Remark. O. Gabber has indicated an alternative proof of  I: Thin. 4.1 and 
Thin 2.2. Let me quickly sketch how this is done. Once the trace map is defined 
the problem is local, so we may assume that there exists a lifting X'/W, of X. We 

i N ( ~ N - - i  ~e/v have isomorphisms Qx,/w.---" R Hom~x , ,  x,/w.,J ' ~ [ N ] )  which by adjunction 

give (using the notation of  I: 2) an isomorphism 

(Oe), x'lw. , R Homw.ox ((Oe).D~x,l~v, f '  W~[N]). 

Using the fact that (Oe).Dx,lw" has a W, (gx-linear differential and I: 2.6 we get an 
; " "~ N ' isomorphism in D(W.Ox) (Oe).Ox,/w, ---~ R Homw.o,,((O~).Dx,/w[ ],f,'W.[N]). 

As in (2.2.7) we see that * * ' EXtw.~x(W,D , f , 'W,[N])=0 if i>0 .  This togethex with 
I :2 .3  gives us an isomorphism W.D~-~-~RHomw,~(w.DN-*,f.!W.[N]) and 
putting i=N  we get W, QN ~-~+ f ,  tW,[N]. 

Even though this method of proof is somewhat quicker than the present one, 
I have chosen the latter approach finding it more instructive. 

HI. Duality for the Hodge--Witt cohomology 

. 

We will suppose in this chapter that X is smooth and proper over S. 
Corollary 2.2.23 gives us an auto-duality for H*(X, W, D*) at each finite level n. 
Using (0.2), Lemma 2.1 and (2.2,5) we see that this auto-duality is, in a certain 
sense, compatible with F, d and V and exchanges n and 0. We thereby get 
a duality between the prosystem {H*(X, W, D*), ~} and the indsystem 
{H*(X, W. D*), Q}. As indicated in the introduction we will want to express the ind- 
system in terms of the prosystem and by passing to the limit obtain an auto-duality 
for R V(WD'). There is one technical detail. We will want to assure ourselves 
that this autoduality respects R-module structures in the strongest sense possible. 
This will be the reason for the introduction of the notion of de Rham--Wit t  systems 
on X. 

At the end of the chapter we will discuss the relation between the duality for 
R V(X, W~') and the ones already obtained for H*(X, W,D*) and R V(X/W). 
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. 

D e f i n i t i o n  2.1. An inverse (resp. direct) de Rham--Wit t  system on X will be 
a system 

(Mn, re: 34,, ~ ( j . ) .M. -1 ,  F: M.  ~ (F j . ) .M. -1 ,  

d: FgM. -+ Fg, M.(1), V: (Fj .) .M._~ --* 34.) 
(resp. 

(M. ,  Q: ( j . ) . M . - 1  -+ M. ,  F: M.  ~ (Fj . ) .M._x ,  

d: FgM. -+ F~TM.(1), V: (F j . ) .M. -1  -+ 31.) 

where M .  is a graded quasi-coherent IV.O-module and (re, F, d, V) (resp. (Q, F, d, V) 
are graded W. ~)-homomorphisms and where we have the relations 

n F  = Fro, dzc = red, rcV = Vzc (resp. QF = F0, d0 = 0d, V0 = 0V) 

FV = p, F d V  = d, VF = p, d 2 = 0 .  

(I want to draw the reader's attention to the fact that VF is a morphism 
M . - 1 - . M . - 1 ,  whereas FV is a morphism ( F j . ) , M . _ I ~ ( F j . ) . M . _ I . )  

The same signconventions as for R-modules will be used. 
The inverse (resp. direct) de Rham--Wit t  systems form abelian categories 

which we will denote 

(2.1.1) i n v -  drw - X (resp. dir - d r w -  X). 

Example 2.1.2: (W.O', rc, F, d, V) (cf. (0.1)) forms an inverse de Rham--Wit t  
system which, by abuse, will be denoted W.f2". (W.O', ~, F, d, V) forms a direct 
de Rham--Wit t  system which will be denoted W~. O'. 

D e f i n i t i o n  2.2. A dualizing system will be a system 

(Mn, e: ( j . ) .M. -1  ~ Mn, C": F~,Mn ~ M. ,  V: (F j . ) .M._I  ~ M.), 

where M .  is a quasi-coherent IV.O-module, (~,C", V) are W.d)-homomorphisms 
with the following relations: 

V C  n-1 "~" c n o ,  QV-----VQ 

and where it is further required that the adjoints 

M. -1  -+ j t .M. ,  M.  ~ (F")~M. and M._I  -+ (Fj.)~M. of q, C n resp. V 

be isomorphisms. 

Example 2.2.1. (IV.O N, e, C", V) is, by (1:4.1), Lemma 2.1 and (2.2.5), a dualizing 
system. I claim that (Cousin (IV.ON), q, C", V), where Cousin (IV.O N) is the 
Cousin-complex ([7, p. 235]) of W. O u and Q, Co and V are defined by func- 



On the multiplicative properties of the de Rham--Witt complex. I 205 

toriality from ~, C" and V of IV.O N, is a complex of dualizing systems. By 
functoriality the required relations are fulfilled and it remains to check the last 
condition of (2.2). Using the notation and result of [7, VI: Lemma 4.1] we get 
that j~, (Cousin (W. f2s)) is residual, so by [7, IV: Prop. 3.4] there is a unique 
isomorphism of complexes Cousin (W._I ~N) , , -  j.'(Cousin (W. oN)) making the 
following diagram commute (in D (IV._ 1 d~)): 

W~-~ f~ N ~ ~- j2W, f :  

Cousin(W._lf2 N) ~ j.' (Cousin (IV.ON)) 

We therefore get isomorphisms Cousin(Vd,,_lON)'-=-~X(Cousin(~ON) 9 in 
all degrees i. As Cousin (IV. Y2N) ~ is injective and Jn evidently equals j'." on injective 
modules we get isomorphisms Cousin (W._I ON) ̀ ~ j~ (Cousin (IV. f2N)'), which 
are easily seen to be adjoint to the ~:  s. We finish the proof by doing similarly 
for C" and V. 

Suppose that (N., ~, C", V) is a dualizing system. We then get a functor 

(2.3.1) Horn ( - ,  N): (dir - d r w -  X) ~ ~ inv - drw - X, 

where Horn (M, N).:=Homw:(M ., N.) and z~, F, V and d are defined by the 
commutativity of the diagrams: 

Homw.r (M., N.) o* , Homw,,r ((].).M._~, iV,,) 
(2.3.2) ? I- 

(L), Homw._: CM~_~. N~_~)--* HOmw: ((L),M~-~. (L),N.-~) 

Horn,.: (M.. N.) v. . rIomw: ((FL),M._~. _,V~) 
Iv * (2.3.3) , Iv, 

(eLL Hom,. _ :  (M~_~. U._0--* Homw: ((rL), M~_~. (FL),N._~) 

(2.3.4) 

(2.3.5) 

Fg, Homw.r N.) , Homw.r F~,N.) 
I(c-). 

Homw. (FgM., N.) 
d In* 

Homw. (F~.Mn, N,,) (1) 

~(C'D* 
Fg Homw. r (M., N.)(1) ~ Homve.r (F:M., F~.N.)[1] 

(Fj.). Homw._:  (M,,_z, N,,-1) ---,- Homw,,r ((Fj.).M~_z, (Fj.).N._I) 
Iv {~, 

Homw. (M .,  N.) . v* Homw. ((Fj.).M._x, N.) 



206 Torsten Ekedahl 

(2.3.6) 

As 

These definitions, of course, require some justification. By the definition of 
dualizing system the composites 

(.~), Homw._l,  (M,-1, N,-a) ~ H0mw.,  ( (L) ,M,-~,  (L ) ,N , - I )  **~- 

.Horny., ((L), M,_I,  iV,) 

etc. are, by duality, isomorphisms. This shows that there does indeed exist unique 
re, F, d and V making the diagrams above commute. 

Using (2.2.1) we obtain a functor 

Horn (--, Cousin (W. or)): K(dir - drw - X) ~ -~ K ( i n v -  d r w -  X) 

i n v -  d r v - X  --- W. d~ x - m o d  

(M,, re, F, d, V) ~ M, 

is a set of exact conservative functors and Cousin (IV, f2 N) is an injective complex, 
Horn ( - ,  Cousin (W. f2u)) trivially extends to the derived category and we will denote 
this extension 

(2.3.7) ( _ )  v : D ( d i r -  d r w -  X) ~ ~ D (inv-- d r w -  X). 

Remark. I do not know if (_ )v  is the derived functor of Hom ( - ,  W..12 N) 
or not, but I expect it not to be. 

We clearly also have that 

(2.3.8) ((M)V), = RHomw.o(M, .  IV, O N) for M E D ( d i r - d r w - X ) .  

Proposition 2.4. Multiplication in W.(2" induces an isomorphism 

(2.4.1) (Woo. f2") ~ -,- W f 2 " ( N ) .  

This follows from (0.1), (0.2), Thin. II: 2.2, the fact that C"d=O which follows 
from (I:3.1) and (2.3.8) paired with the observation, made above, that the ( - ) , : s  
form a set of conservative functors on D ( i n v - d r w - X ) .  

Taking global sections gives us a functor: 

(2.5.1) V : i n v -  d r w -  X -* inv-- d r w -  S 

(M,, z~, F, d, V) ~-~ ( f (M,), V (~), f (F), r (a), v (v)) 

and correspondingly for direct systems. 
V derives to a functor 

(2.5.2) R [-: D + ( inv-  d r w -  X) ~ D + ( inv-  drw - S) 

resp. RV: D + ( d i r - d r w - X )  ~ D + ( inv-drw--S) .  
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Using again the conservativity of {(-),} we see that Rr- may be computed with 
the aid of ~ech-resolutions, which in turn gives; 

(2.5.3) (n r (M)), = R F (M.) 

which in turn shows that F has finite cohomological dimension so we may extend 
RF to all of D ( i n v - d r w - X )  (resp. D ( d i r - d r w - X ) ) .  

[7: VII, Thm. 2.1] provides us with a mapping of complexes 
t- (Cousin (W.wU))[N]~Cousin (I40 wich induces a morphism 

(2.5.4) R F ( ( M ) ~ ) [ N ] ~ ( R F ( M ) )  v for M C D ( d i r - d r w - X ) .  

Again, using (2.3.8), (2.5.3), the conservativity of {(-) ,} and duality (cf. [7, VII: 
Thm 3"3]) for the proper morphisms f , :  W,,X~VV, S one sees that (2.5.4) is an 
isomorphism. In particular we have an isomorphism (using (2.4.1)): 

(2.5.5) (R~-(W=.f2")) v " ,  RF(W.f2")(N)[N] in D ( i n v - d r w - S ) .  

We have a functor 

(2.6.1) li__m_m: inv - drw - S ~ R -  mod, 

where the limit is taken along 7z:M,+I~M .. As is easily seen, the standard flasque 
system associated to {M,, rr} has a canonical structure of inverse de Rham--Witt 
system, thereby showing that 1A_~_m derives to, 

(2.6.2) R li.__m_m: D (iuv-- d r w -  S) --- D (R). 

As Wf2":=]i_mW, f2" and limXW.f2"=0 (W,+lf2" ~--~ W, f2" are surjective and 
W, f2" is coherent on IV, X) we get an isomorphism in D(R) 

(2.6.3) R V (Wf2") ~ ,  R ~ (R V (W. f2")). 

The system (R,, 0, F, d, V), where F, d and V are induced by multiplication 
to the left, is in d i r - d r w - S  and all the morphisms involved are right R-module 
homomorphisms. It therefore gives rise to a functor: 

(2.7.1) R**.| ( - ) :  R--rood ~ d i r - d r w - S  

M {Rn| M}. 

As (0.4.3) shows that R.| has finite homologieal dimension it (left-) 
derives into 

(2.7.2) R~,. | ( - ) :  D(R) --,- D(d i r - -d rw-S)  

with (R~ .NR(- ) ) .=R, |  (--). (0.9) and a Cech-resolution argument show that 
we have an isomorphism 

(2.7.3) R~,.| L R V (Wf2") ~ R F (W~. f2"). 
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Definition 2.8. Put 

(2.8.1) D(- - ) :  D(R) ~ -~ D(R) 

equal to R li_m_m {(R~. | (--))" }. 

Theorem 2.9. There is a canonical isomorphism 

(2.9.1) D(R r (WO'))(--N) [ - N ]  ~ R [- (W~2"). 

To prove this we simply combine (2.7.3), (2.6.3) and (2.5.5). 

. 

Definition 3.1. Put 

(3.1.1) /~ := lim_m {((R,, Q, F, V))V}. 

/~ is considered as an R-bi-module, the first structure coming from the fact that 
(R,, Q, F, d, V) is a right R-module object in d i r - d r w - S ,  so by functionality 
the limit has a structure of  R-module, and the second comes from (2.6.1). We get 
a bimodule because we get by functoriality a left R-module object in R-mod which 
is the same thing as an R-bimodule. 

We may therefore regard R H o m R ( - ,  k)  as a functor D(R)~ where 
the first R-module structure is used to compute R H o m g ( - ,  ~) and the second 
to provide R H o m R ( - ,  ~) with an R-complex structure. 

Proposition 3.2. There is a canonical isomorphism in D(R); 

(3.2.1) D ( M )  ~ R HomR (M, J~) 

for all MED(R). 

Proof. We have 

D(M) = R li_~_m {Homey" (Rn | M, Cousin (w.))} 
= R li._m_m {R HomR (M, Homw, (Rn, W,))} = R Horn,  (M, R lim_m {(R.)V }). 

Using that the injectivity of  ~: R,,~Rn+I implies that R. has surjective transition 
morphisms and therefore is li._m_m-acyclic we are finished except for the fact that the 
isomorphism is not strictly speaking defined as a morphism in D(R). I leave as 
an exercise to use the technique used in Section 2 to remedy this. 

Lemma 3.3. The ring homomorphism 

(3.3.1) ~o: R -~ R ~ 
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taking F, d, V and aE W to V, d, F resp. a is an isomorphism with itself as an 
inverse (considered as a ring homomorphism R~ 

This is obvious. 
Using ~p we may pass freely back and forth between left and right R-modules. 
(0,3.1) allows us to define a W-linear function 

(3.4.1) ~: R ~ W 

uniquely determined by ~b(V")=~(F")=0 for all n=~0, 

(dV")=@(F"d)=O for n > 0  and ~ ( d ) = l .  

Direct verification shows that the pairing 

R X R  ~ W  

(r, s) ~ ~, (rs) 
passes to a pairing 

(3.4.2) 

giving rise to a mapping 

(3.4.3) 

~J: R, ,XR -+ W~ 

R ~ Hom w (R,, W.) 

r (s 

These mappings give in the limit a map 

(3.4.4) ~: R -~ J~ = ~ {Homw (R,, IV,)} 

Homw(R, ,  IV,) has a natural topology as the Pontryagin dual of the discrete 
W-module R,,  which in this case is the topology of eventual constantness and 
therefore k also has, as an inverse limit of topological groups. As /~ is complete 
0~ extends to the completion of R in the topology on R induced by ~. 

Proposition 3.5. 0~ induces an isomorphism between the completion ~ of R in 
the above mentioned topology and ~. Every element in R can be written uniquely 
as a product 

(3.5.1) ]-L>o V"a-,+~,~_oa, F"+]I,~.o dV"b- ,+~ ,~o  b,F" d, 

where a,, b, EW and R embeds in the obvious way. 
The bimodule structure on ~ coming from the one on k (cf. (3.1)) by transport 

of  structure through o~ has as first structure multiplication by elements in R to the 
left on products as in (3.5.1), and as second structure multiplication to the right turned 
into a left action via (3.3). 
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Proof That a induces an isomorphism on completions and the description 
(3.5.1) are shown by a simple calculation using (0.3.1). I leave this verification to 
the reader. That the first bimodule structure is as claimed is clear as ~,(rs. t )=  
~k(r.st) for r, s, tER. As for the second structure one need only observe, using 
again (0.3.1), that t~(rF)=pa-l~(Fr) etc. for rER. 

Note. The reader should be aware that as ~ is of degree - 1, so is a. 

Corollary 3.5.1. The projection R~Homw(R ., W~) induces an isomorphism, 
where tensor product is taken wrt the second structure 

0.5.1.1) R,| L/~ "~, Homw (R,, W,). 

Proof That R, | P~ ~ Homw (R,, W,) is easily seen and that Tor~ (R,,/~) =0  
for i>0  is proved, using (0.4.3) and (3.5.1), exactly as [10, Prop. 3.2a] with the 
exception that the sums should be replaced by products. 

, 

Identifying graded W,[d]-modules with W,-complexes we get a functor 
Homw ( - ,  W,): (W~[d]-mod)~ which derives to RHomw (--, W,): 
D(W, [d])~ Using the now familiar technique of Section 2 and II Cor. 
2.2.23 we get, for X proper an isomorphism in D(W,[d]); 

(4.1) D (R V (IV. f2")) ( -  N) [ -  N] - ~  R [- (W. f2") 

where I have put D ( - ) : = R H o m w ( - -  , W~). 

Proposition 4.2. There is a canonical isomorphism for MC D(R); 

(4.2.1) R,| D(M) " ,  D(R,| L M) 

in D(W,[d]), taking, for X proper, (2.9.1) to (4.1) through (0.9). 

Proof As R, has a resolution by finitely generated free R-modules (cf. (0.4.3)) 
we have R,| D(M)=R,| R H O m R ( M , k ) = R H o m R ( M  , R,| k), where in 
R, | the tensor product is taken with respect to the second structure, so by 
(3.5.1.1) this is equal to R HomR (M, Homw, (R,, W,))=R Homw (R,| L M, Wn)= 
D(R,| L M). That this isomorphism takes (2.9.1) to (4.1) is clear. 
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. 

Definition 5.1. A n  R-module is said to be of level N > 0  i f  it is zero except 
in degrees i, O<-i <=N and F is invertible in degree N. 

An F-crystal of level N is a module over the W-ring W[F, V](N) with gene- 
rators F and V and relations Fa=a'F, aV=Va ~ and F V = V F = p  N. 

The category of R-modules of level N (resp. F-crystals of level N) will be denoted 
R-mod-N (resp. F-crys-N). It is clear that R-mod-N is an abelian subcategory 
of R-rood, closed under kernels, cokernels, sums, products and extensions. 

Lemma5.2 .  i) R(-i)  O<=i<N and (~i<zWFi)(--N), with the obvious R- 
module structure, form a set of  projective generators for R-mod-N. 

ii) I f  P is projective in R-mod-N then Tor~(R,,  P ) = 0  for i, n>0.  
iii) I f  P is projective in R-mod-N then Ext~ (P, /~)=0 for i>0 .  
iv) I f  MER-mod-N then HomR(M, I~)(-N)ER-mod-N. 

Proof. i) is clear, except for the fact that R(-N+I)ER-mod-N but this 
follows from (0.3.1). As for ii) one may assume that P is one of R( - i )  O<=i<N 
or W[F, F-1](-N):=(~iczWFi)(--N) because of i). For R(i) ii) is obvious 
and for W[F, F - 1 I ( - N )  one uses (0.4.3) and the fact that as here d = 0  ii) is 
equivalent to the bijectivity of F and the injectivity of V which is clear, iii) follows 
from ii) and the formula Ext~ (M, /~)=Homw(l im . {Tor~ (R,, M)}, K/W) which 
follows from (3.2). We may choose an exact sequence P1--*Po-*M-*O with Px 
and P0 projective in R-mod-N giving an exact sequence 0 ~ H o m R ( M , / ~ ) ( - N ) - *  
HomR(M,~)(--N)-*HomR(M, R) ( -N)  in R-mod and as R-mod-N is closed 
under kernels we are reduced to M projective and by i) to M=R(- i ) ,  O<=i<N, 
or W[F,F-I](-N) .  As /~ is concentrated in d e g r e e - 1  and O,M=R(- i ) ,  
O~=i<N, or W[F, F -~] is clear. Proposition 3.5 shows that F (second structure) 
is bijective on R in degree 0, so M = R  is clear. Finally, R,| F - 1 ] ( - N )  
lies in degree N so by the formula above Horn R (W[F, F-1](--N), ~ ) ( - N )  lies 
in degree 0 and therefore in R-mod-N. 

Lemma 5.2 shows that if MED(R-mod-N) then D(M)(-N)  may be given 
a canonical structure of R-rood-N-complex, which we by abuse of notation will 
denote again D(M)(-N).  

If  MEF-crys-N then Homw(M, W) may be given a structure of  F-crystal 
of level N as follows: It is a W-module in the obvious way, F := V ' a .  and 
V:=F*cr ,  1. It therefore derives to a functor D(-)(-N):D(F-clys-N) ~  
D(F-crys-N) and as W[F, V]( -N)  is free as a W-module the underlying W- 
complex of  D(M)(-N)  is RHomw(M,W) for MED(F-crys-N), which shows 
that D(--)( -N)  is indeed defined on the whole of  D(F-crys-N). 



212 Torsten Ekedahl 

As R. is killed by p" the natural projection R-+R. induces mappings R/p"~R. 
which fit together to give morphisms (R/p", p, F, d)~(R.,  ~, F, d) of right R-module 
objects in the category " d i r - d r w - S  without V" (V: R-+R does not take p"R to 
p'-~R) and we then get an induced morphism of R - W [ V ,  d]-modules /~= 

{Horn w (R., W~)}~ ~ {Homw. (Rip", W~)} = Horn w (li__i~m {W/p" | R}, K/W) = 
HOmw(K/W| w R,K/W)=Homw(R , Homw(K/W, K/W))=Homw(R , W). It is 
clear that the R-module structure on Horn w (R, W) is induced by right multiplica- 
tion on R and it follows from (2.3.4---5) that the W[V, d]-module structure is 
given by V=pF*a,  1 and d - d *  where the mappings F and on R are multiplica- 
tion on the left. 

If M is an R-module of level N the we may define morphisms _F, _V: M--,-M 
of complexes: 

(5.3) 
MO ~ M1 a__.~... ~ M N 

M o ~ M 1 . . . .  ~ M N 

M 0 ~ M  1 a - A ~ . . . ~ M  N 

v: lpNlv 
M 0 ~ M 1 . . . .  ~ M N 

and we clearly have the relations: FV=VF=p~; F_a=a~F_ and aV=VaL Similarly, 
if M is a complex of R-modules of level N we get morphisms F and _V ot double 
complexes M-~M and by the relations just mentioned we get a canonical structure 
of a complex of F-crystals of level N on s(M), the associated simple complex, 
thereby giving us an exact functor; 

(5.4) s: D(R-mod-N) -+ D(F-crys-N). 

Using the mapping /~-+Hom W (R, W) from above, we get for a complex M of 
R-modules of level N a mapping; 

s (Hom k (M, ]~)) -~ s (Hom k (M, Homw (R, W))) = s (Homey (M, W)) = Homlv (s (M), W) 

which gives us a mapping 

(5.5) s (Homh (M, ~) (-- N)) -~ Hom;v (s (M), W) [ -  N]. 

So fal it is only given as a morphism of W-complexes, even though both sides have 
canonical structures of complexes of F-crystals of level N by (5.4). I claim that 
(5.5) is, in fact, a morphism of complexes of F-crystals of level N. As the right 
hand side is torsion free it suffices to show that (5.5) commutes with the action of pV. 
As Homw(M, W)( -N)  is concentrated in degrees i O<=i<=N and V is defined 
on it we see that p V is defined on Homw (M, W)( -N)  and is a mapping of double 
complexes. It is clear that Hom~ (M, J~) ( - N )  ~Hom w (M, W)(--N) commutes 
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with the action of p_V. By the observation made above V on Homw(M, W)(-N) 
is simply pF*a, 1 so by the definition of V on Horn w (s(M), W)[--N] s(Hom;v. 
(M, W)(-N))=Homw(s(M), W)[-N]  takes s(p_V) to pV. This evidently proves 
the assertion. 

Proposition 5.6. The canonical morphism in D(F-crys-N) 

(5.6.1) s (D (M) (-- N)) ~ D (s (M)) (-- N) [ -  N] 

induced from (5.5) is an isomorphism for MED-(R-mod-N) and takes (2.9.1) to 
(the limit of) the crystalline duality isomorphism [15, VII, 2.1.3]. 

To show that we get an isomorphism we may, by Lemma 5.2, assume that M is 
Rq) or W[F, F-l]. As s(HomR(M,/~))=!im {Homw(s(R,| ), W~)} and 
similarly for s(Homw(M, W)) it suffices to show, by Lemma 5.2 ii), that s(M/p'M)~ 
s(R, QRM ) is an isomorphism for M equal to R(i) or W[F, F-l]. For W[F,F -1] 
it is clear as p"W[F, F-1]=VnFnW[F, F-1]=V'W[F, F-a]=VnW[F, F-~]+  
dV"W[F, F -1] so that already W[F, F-I]/p"~R,| W[F, F -~] is an isomorphism. 
The case of R(i) is an explicit computation using (0.3.1) which I leave to the reader. 
That this isomorphism takes (2.9.1) to the crystalline duality isomorphism follows 
from I: 5. 

Let us also note that in the course of the proof we proved the following 
lemma: 

Lemma 5.6.1. I f  MED-(R) then the projection R/p"~R, induces an iso- 
morphism 
(5.6.2) W/p"| s(M) = s(R/p"R| L M ) - ~  s(R,| 

Indeed, we reduce to M =R(i) and this is proved in (5.6). 

IV. Coherent complexes and duality 

O. Having proved the duality formula (III: Thin. 2.9) we would like to be able 
to use it. In order to do that we must compute Dr(M):=Hi(D(M)) for a coherent 
module M after which we can analyze D(M) for M a coherent complex with 
the aid of the spectral sequence D*(H-i(M))=,Di+J(M). This will be done in this 
chapter. It will begin by showing that D(M) is coherent if M is and that in that 
case we have a biduality isomorphism M "~, D(D(M)). We will then cairy out 
the computation of D*(M) for M a coherent module and spell out the consequences 
for the calculation of D(M) for M a coherent complex. 

The commutativity of the multiplication in WO" implies that (Ill: 2.9.1) is 
selfdual. We will point out some implications of this as well as the calculation of 
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the evaluation mapping M--,-D(D(M)) in terms of the explicit computation of 
Di(M), M coherent, already given. This will be applied to supersingular K3- 
surfaces in the next chapter. 

Finally we will compute the dual of a modified complex, in the sense of 
Nygaard ([13]). 

. 

Proposition 1.1. i) D ( - )  maps Dbc(R) to itself. 
ii) There & a natural transformation 

(1.1.1) ev: id-~D(D(-))  

which is an isomorphism on "every bounded coherent complex. 

Proof. By definition D(--)=R1]~m{Homw,(Rn| W~)} and by (0.4.3) 
and the fact that lira has cohomological dimension 1, D ( - )  has cohomological 
dimension at most 3 so it takes bounded complexes to bounded complexes. It 
therefore suffices to show that D(M) is coherent if M is bounded coherent. By 
(Ill:  Prop. 4.2) Rn|174 which is a coherent W,-complex, so 
the first condition for coherence is fulfilled. Furthermore, 

D(M) = R ~ {Uomw (R~| L M, W~)} =: Rli_m_m {D(R.| = Rlj_m_m {R~| 

also the second condition is fulfilled. This proves i). 
To prove ii) let us first note that if  we put J~ the R-bimodule whose underlying 

set is R but the two bimodule structures are interchanged we have the usual evalua- 
tion mapping 

(1.1.2) ev: id ~ Horn R (HomR (--, /D, J~) 

where, as usual, the first structure for a bimodule is used to compute the Horn- 
groups and the second to give the Horn-groups an R-module structure. 

n a Lemma 1.1.3. The mapping taking I/.>0 V _n+lL~_oa.F"+lI.~.odV"b-.+ 
a n lZ~=ob.F"d to ]In>oVnan+lZ~_o-nV q-I[n>odVnbnq-f[n>=ob-n Fnd gives an 

isomorphism q~ : ~ ~ ,  k of bimodules. 

This is clear. (Note that this isomorphism extends ~0 of  (III: Lemma 3.3).) 
Using this lemma we may define the evaluation mapping 

(1.1.4) ev: id ~ D(D(-))  

as the composite of (1.1.2) and (q~).. 
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Lemma 1.1.5. The following diagrams commute 

L Rn| R, QR (--)-- - +  R, QL D(D(--)) 

(1.1.5.1) D(R,@ L D(-))  

[I 
RnQL (__) ev D(D(RnQL (__))) 

s(--) s(ev) + s(D(D(-)(--N))(--N)) 

I] [I 
(1.1.5.2) D(s(D(-- )(-- N)))(-- N)[-- NI 

II 
s(--) r  D(D(s(-))(-N)[--NI)(-N)[-N] 

where the canonical isomorphisms are those of (III: 4,2.1) and (III: 5.6.1). 

Proof. Let us explicate the isomorphism R.|174 Let 
6: }~-+W~ be the composite of the projection / ~ R . |  the mapping R.|  R / ~  
R.|  (R.,W.) induced by the projection _R~Homw(R~,W.) and the 
mapping Rn| which is the adjoint of the identity 
H o m ~  (R., W.)--Homw (Rn, W.). We then have a commutative diagram; 

Hom~ (M, R) a , R. | Home (M, R) 
(1.1.5.3) 1~, lc 

Homw, (M, IV,) ~ Homw~ (R~ | M, IV,) 

for an R-module M, where a is the projection, b is induced by the projection 
M--R,| M and c is uniquely determined by the commutativity. The isomorphism 
Rn|174 is then the derivation of c. To show that (1.1.5.1) 
is commutative we therefore have to show that for MC R-rood the following diagram 
commutes: 

(1.1.5.4) 

M ~ , Hom~ (H0mR (M, 1~), 1~) 

R. | M Horn. (Homg (M,/~), ~) 

e v  ~ )* 

Homw. (Homw, (Rn | M, W,,), W,) ~ Homw. (Rn | HomR (M, ~), W,) 

It is clear, however, that this will be true if 5=6q~. From (III: 3) it follows that 
takes the product in (III: 3.5.1) to /~0EW,, which makes the equality 5 = 6 q ~  

obvious. Similarly, the commutativity of (I.I.5.2) boils down to 5"=5'(p, where 
5': _~-~W is the composite of ~-~Homw(R, W) of (111: 5) and Homw (R, W)~W, 
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the adjoint of the identity. As 6": I ~ W  takes the product in (III: 3.5.1) to b0 
the desired commutativity is clear. 

We can now prove ii) of Proposition 1.1. Indeed, as M=Rlhm {R,| 
if M is a coherent complex, any such complex is zero if R,| M =0 for all n, 
which shows that the functors R , |  on D~(R) form a conservative family. 
To show that (1.1.1) is an isomorphism on D~(R) it suffices to show that it becomes 
an isomorphism after applying R , |  so by Lemma 1.1.5 it suffices to show 
that ev: RnN~M~D(D(R~| is an isomorphism for M(D~(R), but R,|  
is a coherent W,-complex so this follows from the usual biduality. 

. 

D e f i n i t i o n  2.1. I f  MCDbc(R) put 

(2.1.1) DI(M) := Hi(D(M)). 

This is, by Prop. 1.1, a coherent R-module. 

Just as for lira: i n v - d r w - S ~ R - m o d  we may define a functor lim: d i r - d r w -  
S-~R-mod by giving the direct limit along Q a structure of R-module, using the 
mappings induced from F, d and V. 

Lemnla 2.2. We have, for M an R-module, an isomorphism 

(2.2.1) D~(M) = Homw (lim (Tor~ (Rn, M), ~, F, d, V), K]W) 
�9 H - i  L where (Tor~ (Rn, M), ~, F, d, V).= (R=.| M). The induced R-module structure 

on Horn w (lim (Tor~ (R,, M), O, F, d, V), K/W) 

is given by (F, d, V) = (V'a.,  d*, F*a.1). 

Indeed, we have for N a W.-module, Homw(N,W.)=Homw(N,K/W) 
and as 0: W.~W.+I and V: W.~o-.W.+I are the morphisms induced by p:K/W-* 
K/W resp. pa - l :  K/W~K/W, we see that if (N., 0, F, d, V ) E d i r - d r w - S  then 
(N., ~, t7, d, V) v =(Homw(Nn, K/W), 0", V'a.,  d*, f*o-.  1) and therefore DI(M)= 
HI(D(M))= Hi(R fim {Homw (R, | M, K/W)})= Hi(Homw (li_mm {R,| M},K/W))= 
Homw(lim{H-i(R, |  K/W)=Homw(lim {Tor~(R,, M)}, K/W) and it is 
clear that the R-module structure is as claimed. 

Corollary 2.2.2. I f  M is an R-module then Di(M)=0  for i#0 ,  1, 2. 

This follows from (2.2.1) and (0.4.3)�9 

D e f i n i t i o n  2.3. Let M be a coherent R-module. Define a filtration 

(2.3.1) 0 c= T2(M) c= TI(M) ~= TO(M) = M 
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as the filtration coming from the spectral sequence DI(DJ(M))=~H~-J(D(D(M))) 
and the isomorphism M - - ~  D(D(M)) o f  (1.1.l). (Note that by Cor. 2.2.2 this 
really is a 3-step filtration.) Put 

(2.3.2) A'(M) := T'(M)/Ti+I(M) i = O, 1, 2. 

Note that by Prop. 1.1 (2.3.1) is a filtration by coherent R-modules. 

Proposition 2.4. I f  M is a coherent R-module then 

i) D i(D ~ ( M ) ) = 0  if i # j ,  

ii) AJ(M) = DJ(DJ(M)) for j = 0, 1, 2. 

Proof. We will first need the following lemma: 

Lemma 2.4.1. Let M be a coherent R-module and M" its torsion submodule. 

i) D~ is torsion free. 
ii) The inclusion M" c__, M induces an isomorphism D 2 ( M ) ~  D2(M'). 

As D(M) = R Horn n (M, R) we have D~ = HOmR (M,)~) but by (Ill :  Prop. 
3.5) ~ is torsion flee and then so is Horn R (M,/~) which proves i). By (0.4.3) 
Tor R ( R n , M ) = K e r  FndnKer  F n and if F~x=O then pnx=V~F~x=O so 
Tor R (R~, M ' ) = T o r ~  (R~, M)  and ii) follows from Lemma 2.2. 

Let us now prove the proposition for j = 2. It is clear that p~M" = 0 for some n. 
(This is a condition stable under extension and true for the modules in Section 0 of 
which any coherent module is an extension.) Therefore, M ' = K e r p " :  M ~ M  and 
so is coherent. We have a morphism D2(D2(M))-+A2(M) coming from the spectral 
sequence 

(2.4.2) Di(DJ (M)) :=~ M 

of above and Cot. 2.2.2, which shows that (2.4.2) is concentrated in a 3 • 3 square. 
This morphism is by definition surjective. We therefore see from Lemma 2.4.1 ii) 
that we may assume that M ' = M .  In this case we have that pnD~ and 
Lemma 2.4.1 i) shows that D~ so (2.4.2) degenerates, giving 
D2(D'(M))=O if  i # 2  and A2(M)=D2(D2(M)). The fact that the proposition is 
true for j = 9_ implies that (2.4.2) degenerates which is equivalent to the proposition. 

. 

Lemma 3.1. I f  M is a coherent R-module then 

(3.1.1) D~(M) ---- Hom w (~J Ker F" dc~ Ker F", K/W) (1) 
n 

with (F, d, V)=(V* a , ,  d*, F* a,1). 
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By Lemma 2.2 it will suffice to show that (Torg (R,, M), ~o, ~, d, V)=(Ker  F" d n  
K e r F " ( - 1 ) , i d ,  F,d,  V) and that the W,-module structure on To rg (R , ,M)  is 
the natural one on Ker F " d n K e r  F"( -1) .  All this is provided by (0.4.3) and the 
following coverings: 

(3.1.2) 

0 ~ R(--1) (F-,-v-a) R ( - 1 ) |  av-+v. , 

I id l F 
0---~ R(--1) (r-+,,-r-+,n R(--1)GR dV"+l~-Vn+l' 

R---~ R .  , . . . .  0 

R---~ R.+l - - -*  0 

(3,1.3) 

0---~ R ( -  1) , (v-,-r-a) , R ( -  1)OR av.+v..- 

I V ,(gi O) 
0---~ R(--1) (F-+~,--F"+~) R ( - 1 ) G R  ~v.+~+v.+, 

R--~ R n -,- 0 

,V IV 

R--*" Rn+l ---~ 0 

(3.l.4) 

0---~ R(--1) (v-+~,-v"+'n) R(--1) |  av.+,+v.+l 

IF ,fg~ 
0--~ R(--1) (F-,--F"a) ~ R(--1) |  av,+v, , 

R.-+ Rn+ i.-.-,- 0 

l f 
R - - - ~ R n '  . . . .  0 

(3.1.5) 

0--~ R ( - 2 )  (v-,-v-a) R ( - 2 ) O R ( - 1 )  av"+v .  R(--1)----~ R.(--1)---~ 0 

1 1 1" 1" 
0 ~ R ( -  1) (V",--r"d) > R(--1) |  dV"+V" , R , R , , - - +  0 

0---* R(--1) (~-,-v-a), R ( - 1 ) O R  av .+w.  R---~ Rn----~O 
(3.1.6) ]a ]a an ]a la aE W. 

0--~ R(--1) (v-,-r-d) R ( - 1 ) O R  av.+v. R---~ Rn'-'~ 0 

Corollary 3.1.7. A~ and A i (M)  are finitely generated as W-modules and 
F is injective on them. 

By Prop. 2.4 D2(A~ so it will suffice to show that if 
D2(M)=0  for M a coherent R-module then M fulfills the conclusions of the 
corollary. But Homw(U,  Ker F " d n K e r  F',  K / W ) = D 2 ( M ) = O  implies that 
U ,  K e r F " d n K e r F " = O  and a fortiofi that Ker F d n K e r  F = 0 .  Let us therefore 
consider a coherent R-module M such that Ker Fdc~Ker F = 0 .  I claim that 
F=BM~=O for all i. If  this is false then the R-module M * - i / v - = Z M * - l a - - ~  
F = B M  ~ is non-zero for some i and by (0.8) F ~ B M  i contains some U} as a 
submodule, but Fd=O on F=BM*C= V - = Z M  ~ and F is certainly not injective 
on U}. As now F=BMi=O for all i d = 0 ,  so V - = Z M t = M *  for all i, which 
by (0.8) implies that M is finitely generated as a W-module and that Ker Fdn 
Ker F = K e r  F showing that F is indeed injective on M. 
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Definition 3.2. Let M be a coherent R-module. Put 

(3.2.1) A](M) := p-tors (AI(M)) Aln(m) := AI(M)/A](M) 

A•(M) i := Coeur A2(M) i A](M) i := dom A2(M) i. 

Theorem 3.3. Let M be a coherent R-module. 

i) A~ and D~ are torsion free, finitely generated W-modules with 
F bll/ective. 

(3.3.1) D~ = HOmw(A~ W)(F, d, V) = (F- l 'a . ,  O, pF-1). 

ii) AI,(M) and Dl(M)/p-tors are torsion free, finitely generated W-modules 
with F topologically nilpotent. A](M) and p-tors (DI(M)) are W-modules oJ finite 
length with F bijective. AI(M)=A~,(M)@A](M) as R-modules. 

(3.3.2) DI(M) = Homw (A,~(M), W)(I)@Homw(A](M), K/W) 

(F, d, V) = (V*a.@ F-X* a., O, F* a,a@pF-1). 

iii) A~(M) i and Coeur D2(M) ~ are W-modules o f finite length with F niIpotent. 

(3.3.3) D2(M) = Homw (U Ker rndc~ Ker Fn, K/W)(1) 
n 

(F, d, V) = (V'a.,  d*, r*a,  1) 

(3.3.4) A~ (D 2 (M))' = D ~ (A} (M) - ' -  1) (_  1) 

(3.3.5) A,~ (D~ (M)) = D~ (A,] (M)- ' -  ~) ( -  2) 

(3.3.6) H'(D=(M), d) = Homw (H-'-I(A2(M), d), K/W). 

iv) D ' ( M ) = 0  if i: ,-- '0,1,2. 

Proof." Let us first prove i) and ii). Prop. 2.4 shows that Di(M)=D~(Ai(M)) 
and D(A'(M))=D'(A'(M))[--i]. For i = 0 ,  1 A'(M) is a finitely generated 
W-module by Cor. 3.1.7 and the proof  of  this corollary shows that d = 0  on these 
R-modules (cf. [14, 2.5]). Therefore Ai(M)= Gj Ai(M)J(-j) as R-module ( i=0,  1) 
and we may confine ourselves to a particular degree and, by shifting of degree, to 
Ai(M) being concentrated in degree 0. In this case A~(M)CR-mod-1 and by 
(III: 5) D'(A'(M))(-1)CR-mod-1. Again by Prop. 2.4 D'(M)=A'(D'(M)) so 
here we also have d=0 .  Therefore, using (III: Prop. 5.6), for i=0 ,  1; 

(3.3.7) D'(M) j = HJ+I(s(D'(A'(M))(-1))) = HJ+i+I(s(D(Ai(M))(--1)) 

= / t J  +'(D (s (A i (M))) ( -  1)) = HJ +'(D (A ~ (M)) (-- 1)) 

in F-crys-1. As D(--)(--1)=RHomw(-,  W) we see that D~ is concentrated 
in degree 0 and that F is invertible on D~ as D~ This 
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implies, by Prop. 2.4, that F is invertible on A~ and, in view of  (III: 5.3) 
that D~176 W) with (F, V)=(F-I*~.,pF-I). Similarly we see 
that D~(M)-~=Homw(AI(M),W) and DI(M)~189 that F is 
invertible on DI(M) ~ and, as Homw(Aa(M),W) is torsion free, whereas 
Exl~v (A~(M), W) is torsion, that F is invertible on p-tors (DI(M)). Hence, in 
view of  Prop. 2.4, F is invertible on A](M). Finally, Homw(A~(M), W ) =  
Homw(A~(M ), W), E x t l ( A I ( M ) ,  W)mEXtlw(Als(M), W) and, as A](M) is of  

1 1 finite length, Ext w (A~ (M), W) = Horn w (A] (M), K/W). This, together with (II1:5.3), 
shows (3.3.2). (3.3.2) shows that DI(M)= A~(DI(M))| AI(D~(M)), which combined 
with P~op. 2.4 shows that A~(M)=AI(M)| To show i) and ii) it now only 
remains to show the first sentence of ii). Prop. 2.4 shows that we need only do it 
for D~(M)/p-tors=Homw(A~(M), W), but V is topologically nilpotent on A~(M) 
so F = V*o-, 1 on Homw (A~(M), W) is also topologically nilpotent. 

Let us now turn to iii). Conforming to notation in the theory of torsion theories 
we will say that a coherent R-module M is AS-torsion if A2(M)=M and A s- 
closed if AS(M)= 0. We will need the following lemma: 

Lemma 3.3.8. Let M be A2-torsion. Then r r ~<=iM, ~_iM and 
Coeur M ~ are AS-torsion. Furthermore, ~ <_z_ID2(M)=D~(~>iM), ?>_i_ lDZ(M)= 
D2('~<iM), f~_i_ID~(M)=D2(~eiM ) and ~__i_ID2(M)=D2('~<=zM). 

To see this note first that images of A2-torsion modules are AS-torsion so to 
show that Coeur M ~ is A2-tolsion we may, by factoring out by ?<iM, assume that 
MJ=Oj<i, in which case Coeur M i is a submodule of  M. As Coem M i is torsion, 
a glance at i) and ii) reveals that CoeurM~/A2(CoeurMi)=Al(CoeurM i) and 
that Dl(Coeur M ~) is concentrated in degree - i  and is non-zelo iff Coeur M ~ 
is not AS-torsion. The exact sequence O-+CoeurMf~M~{>~M-+O gives an 
exact sequence O-+Dl(CoeurMi)~D2({>iM ). (Note that D I ( M ) = 0  as M is 
AS-torsion.) However, as ~>iM is concentrated in degrees _->i, (3.1.1) shows that 
D2({>~M) is concentrated in degrees - < _ - i - l ,  which shows that C o e u r M  l is 
A2-torsion. Let N be an A2-torsion module which is finitely generated as W-module. 
As all AS-torsion modules are torsion (Lemma 2.4.1 ii)) N is actually of  finite length. 
Let F-tors (N) denote the submodule consisting of  the elements killed by some 
power of  F. Being a quotient of  an A2-torsion module N/F-tots (N) is A2-torsion 
but by definition F is injective on it, so (3.1.1) shows that it is also AS-closed and 
therefoie 0. As N is of  finite length F is actually nilpotent on N = F - t o r s  (N). 
Applying this to Coeur M ~ for an A2-torsion module M we see that Coeur M ~ 
in this case is of finite length as W-module with F nilpotent. 

Sublemma 3.3.9. Let M be a coherent R-module such that Coeur M i is of 
finite length with F nilpotent. Then M is A2-torsion. 
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If not then M has an Ae-closed non-trivial image N and by above an A s- 
closed module has d = 0  so it is the direct sum of its components in the different 
degrees, so by further factoring we may assume that N is concentrated in a particular 
degree i, say. We will show that Horn R (M, N) ~ =0  which will give the searched 
for contradiction. Fix therefore an R-homomorphism A: M-+N. Consider first 
its restriction B to g<iM. As ?<i'~<iM=g<iM and g<z(-)  is a functor B factors 
through ~<iN=0 and is therefore zero. A therefore factors to give C : "~_iM~N. 
However, by (0.8), Mi/v -=ZM i is a successive extension of U~:s and hence 
F is nilpotent on it. By assumption F is therefore nilpotent on g>=~M i and as, 
by Cor. 3.1.7,. F is injective on N, C, and thus A, is 0. 

We can now finish the proof of Lemma 3.3.8. As the heart of g<,M, g>~M 
etc. in a particular degree is either zero or equal to the heart of M in that degree, 
we see that, by what was proved above, if M is AS-closed then the hearts of g<~M 
etc. are of finite length with F nilpotent, so by the sublemma g<,M etc. are A s- 
closed. The exact sequence O~'~=,M~M~'~>zM-~O of Ae-torsion modules gives 
an exact sequence O~De(:i>~M)~De(M)~De(g~=~M)~O. By (3.1.1) De('~<=~M) 
is concentrated in degrees _-> - i -  1. Therefore g< _i_lDe(M)~D2(g>iM) and to show 
equality we need only show that g<_i_IDe(?>~M)=De("i>i M) or, as De(g>~M) 
is, by (3.1.1), concentrated in degrees N - - i - - l ,  that CoeurDZ(~>~M)-~-t=0. 
We have an epimorphism De("~>iM)~CoeurDe(g>iM) -I-1. Applying D e ( - )  
gives a morphism De(CoemDe("~>,M)-~-~)~D~(De('~>,M))='~>,M, as ~>,M 
is AS-torsion. By (3.1.1) ~,De(CoeurDe(?>,M)-*-~)=De(CoeurD2(~>,M) -*-~) 
and clearly ~ f i > , M = 0 .  Functoriality of ~ ( - )  shows that De(CoeurD ~ 
('~>iM)-~-~)~'?>,M is zero and applying again D~(- )  shows that the epimorphism 
De(~>,M)~Coeur De('~>iM) -*-~ is zero concluding the proof that ~<_~_~D~(M)= 
De(~>iM). This equality implies that ~>=_,_~De(M)=De("d<_~M), using the exact 
sequence O~De('~>,M)~De(M)~DZ("i<=,M)~O. The remaining two equalities 
of  the lemma are proved similarly or by applying D e ( - )  to the ones already 
obtained. 

We can now finish the proof of  part iii) of the theorem: 

Ay(Dg(M) )  i = ~<i~>=iDe(M)(i) = De(~> _i_1~=< _ i _ I A 2 ( M ) )  (i) 
= DZ(A}(M)-i-~(i+ 1))(i) = De(A}(M)-'-x)( - 1) 

and 
AI(DZ(M)) ' = {>,g<f+~D~(M) (i) = D~(g<_i_lg>_z_eAe(M))(i) 

= D e (A~ (M)- ' -3  (i + 2)) (i) = D 2 (A] (M)) ( -  2). 

As tor (3.3.6) we may assume that M is AS-torsion and by shifting of degree 
that M is an R-module of level N for some large N. Then, by (III: 5.6.1), 

H'(De(M), d) = n~+e+ ~ (s(D(M) (-N)))  = n'+e+ ~ (R Horn w (s(M), W)[ -N] )  

= Ext~v (H-'-X(M, d), W) = H o m  w (H-'-~(Ae(M), d), K/W). 
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(Note that H*(M, d) is torsion so that Homw(H*(M, d), W)=0  and 

Ext  (H*(M, d), W) = Homw (H*(M, d), K/W).) 

Finally, iv) is simply Cor. 2.2.2. 

Corollary 3.3.10. Let M be a coherent R-module. 

i) Suppose that there is a fltration O~Ssc_Slc_S~ by coherent sub- 
modules, such that Coeur ($2) i is of  finite length as W-module with F nilpotent, 
that p-tors (S1/S s) is of  finite length as W-module with F bijective, that (SI/SS)/ 
p-tors(S1/S ~) has F topologically nilpotent, that S~ ~ is without p-torsion with 
F bijective. Then Si=Ti(M) for i=0 ,  1, 2. 

ii) I f  A~(M)=M then the same is true for every coherent quotient of  M. 
iii) I f  AI (M)=M,  then the same is true for every (coherent) submodule of  M. 
iv) I f  A~ = M  then the same is true for every (coherent) submodule of  M. 

Proof. By Sublemma 3.3.9 S s is AS-torsion, but F is visibly injective on 
M/S s, so (3.1.1) shows that M/S s is A2-closed, which implies that SS=T2(M). 
To show i) it therefore suffices to show that S1/S s has no torsion free quotient 
with F bijective and that S~ ~ has no submodule with F bijective on the torsion 
and F topologically nilpotent on the submodule modulo the torsion. (Note that 
as F is injective on S~ ~ and Sa/S s, they are both AS-closed.) Let S~/S2~N 
be a torsion free quotient with F bijective. As it is torsion free the projection factors 
over (S~/S2)/p-tors, where by assumption F is topologically nilpotent and therefore 
so is F on N, which implies that N is zero. Let N ~ S ~  ~ be a submodule with 
F bijective on the torsion of N and F topologically nilpotent on N modulo 
torsion. As F is bijective on S~ ~ it is surjective on (S~ and because 
(S~ is a noetherian W-module F is bijective on it (cf. [3, IV: 5.2]). Therefore 
F is bijective on N which, by the assumption made, implies that N is torsion, 
but it is a submodule of a torsion free module so it is zero. 

It has already been noted that ii) is true. In iii) and iv) note that if A i (M)= M 
i = 0 ,  1 then M is finitely generated as W-module, so all its submodules are 
coherent (ef. [10, I: Thin. 3.8]). iv) is proved as ii): A~ iff the projection 
M~A~ is injective, a property certainly preserved under submodules. Assume 
that NC=M=Ai(M), As a submodule of an AS-closed module it is A2-closed, 
so to prove iii) it suffices to show that D~ As d = 0  on M we may argue 
degree by degree and assume that M is concentrated in a particular degree, which 
we may assume to be 0. As D~ D~ injects into DZ(M/N). By Thin. 
3.3 i) D~ is torsion free and concentrated in degree 0 and by Thm. 3.3 ii) 
D~(M]N) is of finite length in all degrees but - 1 .  This implies that D~ 
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Corollary 3.3.11. Let M be a coherent R-module. Then T2(M) is the closure, 
in the standard topology, of  U,  Ker Fndc~Ker F ~ =: T~(M). 

To see this note first that as T2(M) is a coherent submodule it is closed ([10, I: 
Prop. 2.3]). Furthermore as F is injeclive on M/T2(M), ~ , K e r  F " d n K e r  F"c= 
T2(M). As the closure of T~(M) in M contains the closure oI T~(M) in T2(M) 
we may assume that M =  T2(M). Clearly the inclusion T~(M)c---~M induces an 
isomorphism D2(M)-~-~D2(T~(M)) and by assumption D(M)=D2(M)[-2]. 
(III: Prop. 4.2) therefore gives us a commutative diagram: 

HEom w (R, | K/W) = Tor0 R (R., D(T~ (M))) ~ Tor~ (R,, D~(T~(M))) 

(3.3.11) ~ l~ 
Horn y (R. | M, K/W) = Tor0 R (R., D (M)) ~ , Torg (R., D 2 (M)) 

(Note that Cot. 2.2.2 shows that we have a morphism D(N)~D~(N)[-2] for any N.) 
This shows that Homw(R,| K/W)~Homw(R,| K/W) is injective 
for all n and therefore that R~|174 is surjective, which implies 
that T~(M) is dense in M. 

Remark. It may help the reader to visualize the results obtained in the following 
0 _ S  _ S  _ S  _ S - M  by way. Every coherent R-module has a filtration c ~c  2c  1= 0_ 

coherent submodules, such that M]S 3 is a finitely generated W-module, the hearts 
of S a are of  finite length as W-modules with F nilpotent, S ~ is the closure of  the 
F-torsion of M (this is seen by an argument as in Cor. 3.3.9), S ~ is the p-torsion 
of M, $2/S 8 is of finite length with F bijeetive, M / S  ~ is a (torsion free)F-crystal 
in tile usual sense, alternatively the covariant Dieudonn6-module of a connected 
p-divisible group, S~ 1 is the part of slope zero of M/S 2 (the toroidal part of 
the Dieudonn6-modnle), S1/S ~ is the part of positive slope of M / S  2 (the bi- 
connected part), by the decomposition theorem for F-crystals M/S ~ = S~ ~ @ S~/S ~ 
This also motivates the following definition: 

Definition 3.3.13. Let M be a coherent R-module. 

i) A~ is the slope zero part o f  M and N is of  slope zero i f  A~ 
it) AI,(M) is the positive slope part o f  M and M is o f  positive slope 

i f  AI,(M)= M. 
iii) A](M) is the semi-simple torsion of  M and M is semi-simple torsion i f  

A ] ( M ) = M .  

iv )  ~ " @,Af(M)(-z) is the nilpotent torsion of  M and M is o f  nilpotent torsion 
i f  ~31A~(M)[--i]=M. 

v) A~(M) ~ is the domino part in degree i of  M and M is a domino (in 
degree i) i f  A](M)I=M. 
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(Note that the last part of  v) is [10, I: D6f. 2.16].) 

Remark: Another reasonable definition of  the different parts would be to take 
for instance the positive slope part of  M to be the positive slope parts of CoeurM~: s 
etc. and the domino part of  M to be dom M ~. These two definitions do not in 
general coincide, e.g. the inclusion A2(M) c---*M will induce a morphism between 
the two different definitions of  the domino part which in general is not an isomorphism. 
(The two definitions will always coincide up to modules of  finite length however.) 

Example. Let M be a domino in degree zero. Thm. 3.3 then shows that 
D~(M)(--2) is again a domino (in degree 0). Recall ([10, Prop. 2.18]) that dimkM:= 
dimkM~ ~ that the dimension is additive on exact sequences of  dominoes 
(in degree 0) and that the dominoes (in degree zero) of  dimension 1 are exactly 
the Uj:  s. Furthermore, Cor. 3.3.8 and Prop. 2.4 show that D 2 ( - ) ( - 2 )  is exact 
on the category of dominoes (in degree 0), where a short sequence of dominoes is 
said to be exact if it is exact in R-rood, and that D2(M)#O if M # 0 .  I claim that 
dimkDZ(M)(--2)=dimk M. Indeed, as D 2 ( - ) ( - 2 )  is exact and every domino 
(in degree 0) i s  a successive extension of  Uj:  s and D2(Uj)#0,  we see that 
dimkD2(M)(-2)>=dimk M for all dominoes (in degree 0) M. Therefore d imkM= 
dimkD2(DZ(M)(--2))(--2)>=dimkD2(M)(--2)>=dimkM so we must have equality. 
Therefore D2(Uj)(-2)=Uj, for some j ' .  However among the dominoes of dimen- 
sion 1 Uk is characterized by dimkH*(S(Uk))=k (cf. [10, I: 2.14.4]). (III: Prop. 5.6) 
therefore shows that D~(Uj)( - -2)=U_j .  In [5] it is shown that M possesses a unique 
filtration M=MjD=Mj+I~= ... ~=Mi_l~=Mi=O by cohelent submodules such that 
for all kE[j, i[, Mk/Mk+I is a successive extension of  Uk: S. The function ~: z ~ N ,  
cr(k):=dimMk/Mk+ 1 is called the type of M. The results just shown imply that 
the type of D2(M)(--2) is the function k~,-cr(-k). 

Theorem 3.4. Let MCD~(R). 

i) A l ( f f  (M)) -- D 1 (H 1-' (M)). 

it) There is a natural exact sequence o f  R-modules; 

0 ~ A~ ~D~ ~ D2(HI-i(M)) ~ A~(DI+a(M)) ~ O, 

where Im d2 is semi-simple torsion. 

iii) There is natural monomorphism; 

AO(D'(M))J -,- D~ 

whose cokernel is Im dd. 

iv) 
A 1 (D' (M)) ~ = D 1 (A 1 (H 1-i (M) -~-1)) (__ i) A 1 ( f f  (M)) j = D 1 (A~ (H 1-i (M)-J)). 

v) A~r (n i ( i ) )  j = n 2(A} (U s - i ( i )  - j - l ) )  (_  1). 
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vi) There is a natural epimorphism; 

D~(A~(H2- ' (M))-J-2)(--2)  -, A~(D'(M)) j 

whose kernel is Im d~(-  1). 

Proof. We will, of  course, use the spectral sequence: 

(3.4.1) D~(H-J(M)) =~ Di+J(M). 

Let Oc_S~C_SlC=S~ be the abutment filtration, which by Cor. 2.2.2 
is a 3-step filtration. I claim that it coincides with the T-filtration. Indeed, (3.4.1) 
shows that S ~ is a quotient of  D2(H*+2(M)), that S1/S~=DI(H*+I(M)) and 
that S~ 1 is a submodule of  D~ We then conclude by Prop. 2.4 and 
Cor. 3.3.10 i), ii) and iv). This immediately shows i) and ii) where dz is the differential 
of  (3.4.1), except for the fact that Im d2 is semi-simple torsion. As Im dz~ 
D2(HI-I(M)) it is torsion and as it is an image of D~ which, by Thin. 3.3, 
is of slope zero, it is of finite length over W with F surjective and therefore bijective, 
so Imd~ is semi-simple torsion. Now D2(HI-i(M))J/F~B has F nilpotent, 
as shown in the proof of  Sublemma 3.3.9. This implies that Imd2C=F=BD2. 
(HI-i(M)) and this together with (3.3.5) shows v). i) and (3.3.2) resp. ii) and 
(3.3.1) show iv ) resp ,  iii). As Imd2C=F=BD2(HI-i(M))the induced morphism 
~>jD2(HI-*(M))~>jA2(D*+~(M)) is surjective and injective in degree j. To 
finish the proof  of  the theorem we use (3.3.5) and the following lemma: 

Lemma 3.4.2. ~ < , ( - )  preserves surjections. 

Let f :  N ~ N 2  be a surjeetion of  R-modules and put N =coker  ~<,f. Clearly 
N is concentrated in degree i, so ~<,N=0.  On the other hand, as ~<,~<,=~<~ 
and ~<i(id/f<i)=O, ~<,N=N. Combining Thin. 3.4 and III: Thin. 2.9 we get: 

Theorem 3.5. Let X be a smooth and proper variety o f  dimension N. 

i) A I(R i 7 (m~~')) = 0 I(R N +1-i [- (m~'~')) ( -  U). 

ii) There is a natural exact sequence of  R-modules; 

0 ~ A ~ (R ~ r (w~')) -~ D o (R N-' r (w~..)) ( -  N) 

D2(RN+I-i[  - (m~' ) )  ( - -N) ~ A2(R '+~ r (W~2")) ~ 0 

where Im d2 is semi-simple torsion. 

iii) There is a natural monomorphism; 

AO(R'r 
whose cokernel is Im d~. 
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iv) A~,(R~F(Wf2")) j = D1(A~,(RN+I-'V (W~2"))N-J-1)(--1) 

(R r (Wa')y = (R N r 
v) A} (R* V (Wf2"))J = D 2 (A} (R N +3-, V (Wf2")) N - j - l )  (_  1). 

vi) There is a natural epimorphism," 

r (--2) A (R' r (WO'))J 

whose kernel is Im d~+1( - 1). 

Corollary 3.5.1. Put Ti'J :=dimk dom RJ V(W f2") i. Then 

(3.5.1.1) T i ' j  = T N - i - 2 , N - j + 2 .  

Indeed, as observed above dom R j r(Wf2") ~ is, up to finite length, equal to 
A](RJV(wf2"))  i and so has the same dimension. One then concludes by vi). 

Remark. One could paraphrase Thm. 3.5 by saying that the part of RV(Wf2")  
in degree ( i , j )  is, as it should under duality, dual to the part almost in degree 
( N - i ,  N - j ) .  One has to modify the degree by (0, 0) for the slope zero part, by 
(1, 0) for the semisimple torsion, by (1, - 1 )  for the positive slope part, by (2, - 1 )  
for the nilpotent torsion and by (2, - 2 )  for the domino part. In particular, as 
RtV(WI2")=O fo~ i > N  and in negative degrees, one obtains the result, ~elated 
to [9, II: Cor. 3.11] and [9, II: Col. 2.17--18], that F(Wf2") is ot slope zero, that 
Rt[-(Wg2 ") is AS-closed and that Ri[-(WI2") N is of slope zelo and semi-simple 
torsion. 

The following definition will allow us to avoid some cumbersome notation: 

Definition 3.6. Let M be a coherent R-module. 

i) I f  A ~  M we will write M i" := D~ -i. 

ii) I f  A I , ( M ) =  M we will write M i" := DI(M)  -i-1. 

iii) I f  A I ( M ) =  M we will write M i" := DI(M)  -i. 

iv) I f  A2(M) = M we will write ...a-C~ M iv ~ M i-iv ... := D2(M). 

(Exactly where the different degrees will be put will depend on the cilcumstances.) 

. 

Definition 4.1. Let N be an R-module. Define new R-modules as follows 
(cf. [10, III: 3.2.1--2.]) for n>0;  

(4.1.1) N(i, n) := ( . . .N  '-~ a_~ N,_  1 ~ a , " N '  a.~ a ,  nN,+~ a_~ ...) 

(4.1.2) N ( i , - n )  := ( . . .N  '-~ n.~ Ni_ l  r,d aT, N '  a_~ a~Ni+l a.L ...) 

where F and V are unchanged. 
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Evidently, the functors ( - ) ( i ,  n) and (--)(l",-n) are inverses of each other 
and theretore adjoints. This gives 

Proposition 4.2. There exists a natural isomorphism 

(4.2.1) HomR (M(i, n), N) -- Horn R (M, N(i, -n)) 

for all integers i and n and all R-modules M and N. 

Proposition 4.3. There are isomorphisms of  R-bimodules 

(4.3.1) /~(i, n)~ " ,  /~(i, n)~, 

where the subscript i means changing the i:th structure. 

Proof." Using (III: 3.5.l) one sees that the mapping /~--/~ which is the identity 
in degree - 1  and multiplication by F" fiom the fi~st structure in degree 0 is 
bijective and it is trivially verified that it gives the required isomorphism. 

Combining Props. 4.2 and 4.3 with the obvious fact that ( - ) ( i ,  n)(1)= 
( - (1) ) ( i -  1, n) we get UomR (M(i, n),/~)=HOmR (M,/~)(--i, --n) for all R-modules 
N. As (-)( i ,  n) derives trivially we get: 

Proposition 4.4. D((--)(i, n))-~ D ( -  )(--i, -n ) .  

. 

Lemma5.1. Let M be an R-module. The isomorphism R,| D(M )= 
D(R,| M) and the Jact that TolR(R,, - - ) : D i ( - - ) : 0 ,  i # 0 ,  1, 2, on R-modules, 
give us morphisms: 

(5.1..1) D2(M) ~ Ro| ~ Homw (Tor ~ (R,,, M), K/W) 

(5.1.2) Somw (Rn| M, K/W) ~ Tor~ (R,, D2(M)). 

These are, through (0.4.3) and (3.1.1), equal to the translate o f  (resp. - 1  times) 
the evident morphisms: 

(5.1.3) Hom w ((j Ker F" dc~ Ker F", K/W) ~ Hom w (Ker F" dc~ Ker F", K/W) 
n 

(5.1.4) Homw(Rn| M, K/W) ~ Homw (R,| To2(m), K/W) 

= Ker F n den Ker F": Homw (Tg (m), K/W) (1) ( -  1) = Ker F" dcn Ker F ~: 3 2 (M) (-- 1). 

Proof. Recall that the isomorphism R,Q~D(--)=D(Rn| is defined 
as follows. We have HOmR(M,f{)=Homw(li_m(Roo.| so that the 
mapping Rn| ~ (Roo. | M) induces Hom• (M, R)~Homw(R,| K/W)---- 
D(R, QRM) and the searched foI isomolphism is the de~'ivation of the induced 
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mapping Rn@RHOmR(M , •)--,-D(Rn•RM ). Using (0.4.3) and (3.1.2--6) we may 
accomplish this derivation by resolving Rn and R_. rather than M in the following 
way. Note that the coverings (3.1.2--6) actually give us a complex R~o. of R- 
module objects in di r - -dlw--S (a priori we would only expect e.g. FV to be homotopic 
to p but we have an actual equality). We therefore get, lot F a complex of R- 
modules, a bicomplex R~. | F in d i l - -d lw--S  together with an augmentation 
R~.@RF~R_. | F making the associated simple complex of R~. |  R F a repre- 
sentative of R_. | F. Hom~v(limm (R'~. | F), K]W) will therefore be a bicomplex 
of R-modules whose associated simple complex computes D(F). Similarly, we get 
a double complex R;,| F of W-complexes together with an augmentation 
R', | F~R,| F making the associated simple complex a representative of R,| F. 
Thus the triple complex R',| Homw(li__imm (R~. @RF), K/W) has an associated 
simple complex computing R,| What we want to do is to find a morphism 
of double complexes s(R~ | Homw(li-mm (R'~. | F), K/W))-"D(R', @R F), where 
s means taking the associated simple complex in the two directions not involving 
the degrees of F, such that the following diagram commutes: 

Rn | Homiv (lira (R..  | F), K/W) - ~ D (R, | F) 

(5.1.5) R, @a Homey (!i__~m (R'~. | F), K/W) 

t 
s(R;,| Hom;v (li_mm (RL.| F), K/W) --+ D(R~| F) 

Once this has been done, the induced morphism on simple complexes will certainly 
compute the isomorphism R.|174 The desired morphism will be 
Homw(l im{-} ,K/W ) applied to the following morphism of double complexes 
of ind-objects: 

F(--2) (-~"d) * F(--2) |  

(Era--, 0 )  
1 id ,Fro-hi 

i d  Era [ 0 , - - i d  I 

F(+__2) t F"aJ_L~ F(--2)@ F ( -  1)~@ F ( -  2) | F( - 1) 

F ( -  1) 

I/o]/ 
F ( -  1)| F(--2) |  I.)@F(1)@F@F(- 1) 

F(--1)(~F@F(--I)@F (dv"'v'av'~'v'~, F. 

( d r %  V " )  

d V  m, V m ,  oo: /-. : ,.~176 
0 , - - F m - n d ,  0 
0 , i d  , 0 , F m - n  
0 , 0 ,  0 , - - F r o - - r i d  
0 , 0 , - - d V  n , " 

F rt , d V  m - n ,  V n t - n ,  0 , 0 , ) 
- - F a d ,  0 , 0 , d V  m - n ,  V m - n ,  O0 

0 0 , t 0 ; 0 , - - i d , - - p "  , 0 , F m J 0 , 0 , - - i d  , - -Fred  -~ 
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Here all matrices act on the left and d always denotes the morphism of degree 0. 
From this the lemma clearly follows. 

Corollary 5.1.1. Let M be AS-torsion. Then the following diagram commutes: 

T~ (M) ev , Homw (Homw (T~ (M), K/W), K/W) 

(5.1.1.2) M Homw (T~(Homw (To2(M), K/W)), K/W) 

D 2(D 2 (M)) = Homw (Tg (Horn w (Tg (M), K/W)) (1), K/W) (1) 

Indeed, according to Lemma 1.1.5 ev: M~D2(D2(M)) induces the usual 
evaluation mapping ev: R.|174 whereas it is clear that 
ev: T~(M)~Homw (Homw(T~(M), K/W), K/W) induces the evaluation mapping 
ev: R.| R T~(M))). As M - - ~ l i m  (R.(DR M) to prove the 
corollary it suffices to show that the following diagram commutes: 

Homw (Homw (Tg(M), K/W), K/W) �9 D(D(R,| R T~(M))) 
(5.1.1.3) ~a 

Homw (To 2 (Homw (To 2 (M) ( -  1), K/W)), K/W) (1) b ~ D (D (R, | M)) 

where a is the composite of the canonical isomorphism 

Homw (Homw (T2o (M), K/W), K/W) ~ Horn w (Homw(T~(M)(- 1), K/W), K/W)(1) 

and the morphism induced by 

T~(Homw (T~(M)(- 1), K/W)) c__+ Homw (T~(M)(- 1), K/W) 

and b is obtained from (5.1.1--4). Our sign-conventions imply that c = - i d  and 
the lemma now shows that (5.1.1.3) does indeed commute. 

Proposition 5.2. Let M be AS-torsion. 

i) The standard topology on D~(M)=Homw(T~(M),K/W)(I) coincides 
with the Pontryagin topology as the dual of the discrete W-module T~(M). 

ii) The composite Homey(M, K/W) c--~Homw(M, K/W)~ Homw( T~(M ), K/W) 
where HOm~v(M,K/W ) denotes the continuous W-morphisms, M having the 
standard topology, factors to give an isomorphism: 

Homey (M, K/W) ~ T~ (D 2 (M)) ( -  1) = To 2 (Horn w (7"2o (M), K/W)). 

To see i) note that the Pontryagin topology on Homw(N, K/W), N a discrete 
W-module, has as neighbourhoods of 0 the homomorphisms that vanish on finitely 
generated submodules, whereas the neighbourhoods of 0 in the standard topology 
of Horn w (T~(M), K/W) ale N,, :---- V ~ Homw(T~(M), K/W)+dV" Homw 
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(Tg(M), K/W) for all n. Thin. 3.3 shows that N, consists of the homomorphisms 
that vanish on Ker F"dc~Ker F", which, as M is coherent, are finitely generated 
W-modules and by definition ot T~(M) they are cofinal in the set of finitely gene- 
rated submodules. This shows i). As for ii) let us first note that as a 
~0EHom~v(M, K/W) is continuous it will vanish on V"M+dV"M for some n and 
therefore belong to KerF"dc~KerF": Homw(M,K/W). We thus see that the 
image of  Homey (M, K/W) in Horn w (M, K/W) lies in To2(Homw (M, K/W)) 
so we get a morphism HOm~v(M,K/W)~T~(Homw(T2(M),K/W)). As 
H o m w ( - ,  K/W) reflects isomorphisms to show that this is an isomolphism it 
will suffice to show that D2(D~(M))=Homw(T](Homw(T2(M),K/W),K/W))-- 
Horn w (Homey (M, K/W)) is an isomorphism. Cot. 5.1.1 shows that the composite 
M ev D~(D~(M))~Homw(Hom~v(M, K/W), K/W) is the evaluation map of 
Pontryagin duality. By Prop. 2.4 and Pontryagin duality for the linearly compact 
module M (it is profinite and therefore linearly compact) both evaluation 
mappings are isomorphisms and therefore so is 

D2(D2(M)) ~ Hom w (Homer (M, K/W), K/W). 

M be a coherent R-module. Through Thm. 3.3 ev: M ~  Proposition 5.3. Let 
D(D(M)) is identified. 

i) i f  M=A~ 

ii) i f  M=A~,(M), 

iii) i f  M=A](M), 

to cv: M-+Homw(Homw(M, W), W), 

to ev: M~Homw(Homw(M, W), W), 

to ev: M~Homw(Homw(M, K/W), K/W), 

iv) if M=A2(M), through Prop. 5.2, to ev: M-+Homw(Hom~(M,K/W),K/W ). 

Proof i)--iii) follows from (1.1.5.2) and iv) from Cor. 5.1.I. 

Definition 5.4. Let M, N~ Dbc(R) and f :  D(N)~M be a morphism, f v  : D(M) ~ N  
is defined to be the unique morphism making the following diagram commute: 

D(M) :" , N 
(5.4.1) II 

D(M) D(f) D (D (N)) 

Proposition 5.5. Let M, NEDbc(R) and f : D(N)~M be a morphism. Then 
the following diagrams (-1)J-commute for i=0 ,  1, 2: 

Ai(tfj(N)) ,HJ(f ") Ai(DJ(M)) a.?._ Di(Hi_J(M) ) 
(5.5.a) II \ 

Di(D,(HJ(N))) b b_Di(Di_J(N)), o,(H,-Jf:)) Di(H~_J(M)) 

Here a (resp. b) is (resp. D ( - )  applied to) the morphism coming from the spectral 
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sequence Di(Hi-S(M))=~DJ(M) (resp. Di(HI-S(N))=~DS(N)). A slight abuse 

o f  notation is used in case i=0 ,  as a and c then are defined only on a submodule 
o f  finite index. 

Proof. We start by explicating the canonical isomorphism Ai(HJ(N))= 
D'(Di(HJ(N))) and by inserting two morphisms: 

A i (H j (N)) ~ Ai (29 j (M)) * - - D  i (H i-s (M)) 

lov 
(5.5.2) A'(D (D (/-/s (N)))) ~s(DW(N))) 

tc 
D ~(/9'(~j(N))) ~ - - D  i(D'-s(N)) ~--D'(/t'-J(M)) 

where c (resp. d) comes from the spectral sequence Di(Di-k(HJ(N)))=, H i ( N )  
(resp. Di(Di-J(N))~HS(D(D(N)))) .  As the evaluation maps are isomorphisms 
it is sufficient to show that the two rectangles commute. The right one commutes 
by definition of f ~ .  The left rectangle is natural in N. As the morphism N~z~_jN 
induces an isomorphism on H j we are reduced to z~=jN. Finally, the natmality 
of the spectral sequence Di(Di-J(--))=,~HS(--), shows that the morphism 
HJ(N)[ - j ] -~z~ jN  induces an epimorphism on the domain of definition of d and b. 
We are therefore reduced to HJ(N)[ - j ]  which is obvious, using the sign con- 
ventions. 

Proposition 5.6. Assume the hypotheses o f  5.5. Put 

F j := Im d2: D~ ~ D2(HI-J(N)) 

G j := Im d2: D O (H-J (M)) ~ D ~ (H ~-j (M)) 

so that by Thm. 3.4 we have exact sequences: 

(5.6.1) 0 -~ A~ ~ D~ ~ F s ~ 0 

0 ~ F j ~ D2(HI-S(N)) "-~ A2(DS+I(N)) -~ 0 

(5.6.2) 0 -*- A ~ (D i (M)) -~ D o (H -s (M)) ~ G s -~ 0 

o -~ a s  -~ D 2 f f I ~ - J ( M ) )  -~ A ~ ( D S + ~ ( M ) )  -~ 0 

Proposition. 5.5. (and the fact that DI(FJ)-~-D2(A2(DS+I(N)) is injective as 
DI(D2(HI-S(N)))=O) show that DO(./") (resp. DZ(f)) and the long exact sequences 
o f  D*: s applied to (5.6.1) induce morphisms: 

(5.6.3) G - j  ~ DI(F j) 

(5.6.4) G -s -~ DI(F s) 

a) The morphisms of  (5.6.3) and (5.6.4) coincide. 
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b) The morphism of  (5.6.3) may be described as follows." Take g~G - j  and 
lift it to g'ED~ Choose n such that p"g'CA~ Then 
f v  (png,)C AO(H_J(N)) and gives, through the evaluation map and Thin. 3.3 rise to 
a homomorphism D~ The composite D~ 
vanishes on the image of  A~ and so induces a map FJ~K/W and by Thin. 3.3 
an element o f  DI(FJ). 

c) The morphism of(5.6.4) may be described as follows: Take gCG - j  and hC F j. 
For n large there is a h'ED2(HI-J(N)) such that F"h=F"dh" and a(h')E 
T~(A2(DJ+I(N))). Hence U(a(h'))ET~(HJ+I(M)) and we may through Thin. 3.3 
evaluate g on f(a(h')). For fixed g this gives a W-homomorphism FJ~K/W and 
through Thin. 3.3 an element in DI(FJ). 

Proof. Let us first considel a). As D~ - j  is surjective and DI(FJ)~ 
D2(A~(D j+ I(N))) injective it suffices to show that the two composites 6, 7: D~ 
D~(A2(DJ+I(N))) coincide. By definition this amounts to showing that the large 
rectangle of the following diagram commutes: 

DO(Hi(M) ) d.. , D2(HI+J(M) ) 

(5.6.5) DO(Dj(g)) d2 , D2(DI+J(N)) 

lx I x 
D O (A ~ (D i (N))) 0,~'. D2 (A 2 (0  i +I(N))) 

(6 is the left hand composite o~ the diagram and ? is the right hand composite.) 
Here 6 r is the second connecting homomorphism coming from applying {D*} 
to the exact sequence 

(5.6.6) 0 -~ A~ -+ D~ a~-~ D2(HI+J(N)) ~ A2(DJ+I(N)) ~ O. 

By naturality the upper square commutes so it suffices to show that the lower square 
commutes. Recall that d2: D~ is induced from the morphism 
obtained by applying D(--)  to the triangle: 

(5.6.7) --, DJ(N)[-j] ~ z<_j+lZ>__jD(N) ~ DJ+~(N)[--j-- 1] ~ DJ(N)[--j+ 1] 

whereas 6 (~) is induced from the morphism obtained by applying D ( - )  to the 
morphism A2(DJ+I(N))[-2]~A~ coming from (5.6.6). The desired com- 
mutativity now follows from the following lemma, which also has some independent 
interest: 

Lemma 5.6.8. Assume the notations o f  5.6. Then the composite 

(5.6.9) A2(DJ+~(N))[--2] --, DJ+I(N)[-2] ~ DJ(N) ~ A~ 

where the second morphism comes from (5.6.7), equals the morphism coming from 
(5.6.6). 
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Proof (5.6.6), naturality and Prop. 2.4 show that we first, by truncation and 
shifting, may assume that N is concentrated in degrees 0 and l and then, by taking 
push-out along H~176176 and pullback along A~(HI(N))-~H~(N), 
we may assume that A~176176 and A~(H~(N))=HI(N). Put Y equal 
to the mapping cone of d2: D~176 Then the morphism coming 
from (5.6.6) fits into a distinguished triangle: 

(5.6.10) ~ D~ ~ Y -+ D~(N) [ -  1] ~ D~ [1]. 

On the other hand the assumptions imply that (5.6.7) becomes 

(5.6.11) ~ D~ --. D(N) ~ O 1 (N)[-- 1] ~ D~ 

so we want to prove that Y is isomorphic to D(N) under an isomorphism inducing 
the identity on D~ and DI(N). Applying D(--)  to the triangle: ~ H~ 
N-~ H 1 ( N ) [ -  1] ~ H~ 1 ] gives us a distinguished triangle: 

(5.6.12) D(N) -~ D~176 ~ D~(Ha(N)) --,- D(N)[11. 

By definition the morphisms D~176176 resp. D2(HI(N))~DI(N) equals 
the composite D~176176 resp. D~(HI(N))~D(N)[1]--,-DI(N), 
which together with (5.6.12) show that Y is isomorphic to D(N) undei an iso- 
morphism inducing the identity on D~ and DI(N). 

b) is a simple diagram chase which I leave to the reader. As for c) suppose 
that F is semi-simple torsion. (3.1.2)shows that T o ~ ( R . ,  F ) = ( % F ,  F,p,O, id) 
(except for small n) which as indsystem is canonically isommphic to the constant 
system F. Therefore D I ( F ) = H o m w ( F ,  K/W) and I claim that this canonical iso- 
morphism coincides with the one of  Thin. 3.3. For this it suffices to compute the 
morphism Tor~ (Rip n, F)-~Tor~ (R,, F)  and this is done by the following covering: 

(5.6.13) 
O ~  R-  P" ~ R ~  R/p'R-~O 

l t id 1 
0 ~ R(--1) (F-,-v-a) R ( - 1 ) O R  av,+v.____._._~ R ~ R, ~ 0 

The proof  of  c) is now another diagram chase, using (3.1.2), which again I leave 
to the reader. 

Lemma 5.7. Let M be A2-torsion. Then the following diagram 

(5.7.1) 

D=(M)(1) = Homw (T~(M), K/W)(2) 
II II 

D~(M( - 1)) = Hom w (T~(M(-- 1)), K/W) 

commutes: 
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Everything clearly boils down to computing the morphisrn Tor~ (R., M(-- I)) = 
Tor~ (R., M)(1). This is done through the following covering: 

0 ~ R(--2) (F-,-r-d) R(--2)@R(--1) dV-+V, R(--1)--~ R,( -1)- -*  0 

0--+ R( -1)  (r",--F"d) -~ R(--1)|  dVnWVn " R . . . .  R, ~ 0 

Here z is the canonical isomorphism of degree -1 .  

Definition 5.8. Let M be a coherent module such that M=A~ (resp. AI(M), 
A~,(M), A2(M)). I f  mEM and goED~ (resp. DI(M), Da(M), Tg(D2(M)) we may, 
through Thin. 3.3 and Prop. 5.2, evaluate go on m and obtain an element in W 
(resp. K/W, IV, K/W). We will denote this element (go, m}. Similarly i f  mET2o(M) 
and goED2(M). 

Theorem 5.9. Let X be smooth and proper of  dimension N. 

i) Let mEA~ (WI2")) ~, nEA~ (W~2")) N-J and let 

go: A~ * r (Wa'))" 

be the morphism of Thin. 3.5 iii). Then 

<go(m), n} = (--1)i+JQp (n), m}; Qp(em), n} = a((p(m), F-l(n)}. 

ii) Let mEA~.(RiD(wo'))J, nEAa.(RN+~-iD(Wf2"))N-i-1 and let 

go: A~(R* [- (WO'))" -~ Da(A~(R N + I-* V (W(2")) N-'-*) 

be the morphism of Thin. 3.5 iv). Then 

(go(m), n) = (-lf+J(go(n), m); (go(Fro), n} = a(go(m), Vn); 

(q~ (Vm), n) = o'-l(go (m), rn}. 

iii) Let mEA](R'[-(W~'))J, nEA](RN+I-i[-(14/Q')) N-J and let 

(p: A](R* D (W~'))" ~ DI(R N+I-* D (W~')) N-') 

be the morphism of Thin. 3.5 iv). Then 

(go(n0, n) = (--1)'+J+x(go(n), m); (go(Fro), n) = a(go(m), F-~(n)). 

iv) Le t  N - j - I  and let 

q~ : D e (Ae (RN+ 2-, [- (Wa'))) ~ Ae(R * +a V (W~2")) 
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be the morphism induced from Thin. 3.5 ii). Then 

(n, ~o(m)> = (-1) '+J(m, ~o(n)>; (m, ~0(n)> = (--1)i(dm, ~0(n')> 

(n, q~(rm)) = a(Vn, ~o(m)>; (n, q~(Vm)) = a-i(Fn, ~o(m)) 

where n" is such that dn'=n. Similarly for mET~(D2(A21(RN+2-iF(W(2")))), 
n E D 2 (A 2 (R' F (WO'))) N- j -  ~. 

Proof. Except for the symmetry this is just a reformulation of Thin. 3.3, using 
the fact that ~o is an R-homomorphism. It is clear that the commutativity of mul' 
tiplication in WO" implies that the following diagram commutes: 

D (R V (W~')) - R r (W~') (N) U 

(5.9.1) l[ 1 ~ 
D (R F (WD')) - -  D (D (R F (HID') (N) [N])) 

where the horizontal isomorphisms are the duality isomorphism resp. D ( - )  and 
shifting applied to the duality isomorphism. We may therefore apply Props. 5.3 
and 5.5, Lemma 5.7 and the DO(-) and D I ( - )  analogues of Lemma 5.7, which 
are obvious. The rest is just a caIeful application of the sign conventions. I will 
do this for iv) and leave the rest of the cases to the reader. Indeed, 5.3, 5.5 and 5.7 
show that (5.9.1) implies that the following diagram (-1)-N+i-commutes: 

Horn w (Tg (R ~ + ~ -i F (WO')), K/W) 

(5.9.2) II 
Homw (Tg(RN+2-'V (Wa')), K]W) 

~' , A2(R~F(W~'))(N-1) 
]ov 

~---~* Horny (Homey (A 2 (R' F(WO')) (N-l ) ,  K/W), K/W) 

As the sign conventions imply that the evaluation mapping is given the sign ( -1)  ~ 
in degree j, iv) follows. 

V. Examples: Supersingular K3-surfaces and abelian fourfolds 

0, In this chapter we will look at two examples. We will redo some of the 
results of [1], [16], [13] and [17] using the duality for the Hodge--Witt cohomology 
in the first section and then we will show that for a supersingular abelian fourfold 

13 13 E 2' r 1 6 3  in the second section. (Hele E ~'i is the first s.s. of the de Rham--Witt 
complex.) 
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1. In this section X will denote a supersingular K3-surface. Recall that for 
any K3-surface Hl((9)=torsNS=O and b2=22 and that, by definition, for a super- 
singulal K3-surface H2(W(9) is isomorphic to k , [ [V]] .  

Proposition 1.1 

i) [-" (Wf2") = W. 1.  

ii) R 1F(Wf2") is a rank 22 module of  slope zero concentrated in degree 1. 

iii) R 2 F- (Wf2") ~ -  U% @ W ( -  2), where W ( -  2) is o f  slope zero and 0 <- ao <- 11. 

Indeed, HI(WO) and H~ aie zero because Hl(d~) is zero, which implies 
that ( P i c X ) ~  but Hi(W(9) is the typical curves of  (P icX)  rea'~ and 
H~ (at least after we extend the base to ~), (cf. [9, II: 
5.8.2--3]). HI(Wf2 l) is torsionfree as its torsion is semi-simple by duality, so its 
torsion comes from the torsion in NS ([9, II: 5.22.1]) which is zero. H~ 2) 
is zero because it is of  slope zero and its slope zero part is dual to the slope zero 
part of  H2(WO) which is zero by assumption. 

Hl(Wt22) is zero because it consists of slope zero and semi-simple torsion and 
the slope zero part is dual to the slope zero part of  Hi(W(9) and its semi-simple 
torsion is dual to the semi-simple torsion of H 2 (Wd~) and they are both zero. 

H2(Wf21) is torsion by duality as HI(WO)=H~ Its semi-simple 
(nilpotent) torsion is dual to the semi-simple (nilpotent) torsion of  H 1 (Wf2~)(H2(W(9)) 
and is theletore zero. We now see that ni(wd)) ~ H2(W~'2 l) is a domino and 
as H~(Wf22) is always equal to W and H~(W(9) equals k,[[V]], the above men- 
tioned domino is one-dimensional. 

Thus it only remains to show that a0 lies in the claimed range. Consider the 
exact sequence: 

0 ~ H ~ ( W ~ I ) ~  H2(W~V) ~ 0 
(1.1.1) ld" la 

0 ~ H i ( W a  1) ~--+ H1(W(21) ~ d ,+  H2(W(9)~ ~ H~(WO~ ) -,. 0 

Snake lemma gives us an exact sequence 

0 ~ Ker  d v --- Ker  d -,- H 1 (Wf2 l) ~/H 1 (WI21) ~ Coker d ~ -~ Coker d ~ O. 

I f  0% is negative then Ker d v ~ 0  and Ker d=0 ,  which is a contradiction. There- 
fore tr0=>0 an we get 2. dim Ker d = d i m  HI(WO1)V/HI(W01) which is less than 
23 as HI(W~2 i) is of  rank 22. Now dim ker d=t r  0. 

Let us continue the study of  (1.1.1). It is clear that Ker  F'o+ldV is one- 
dimensional over k. Pick, provisionally, a non-zero element in this space, 1, say. 
As F~od ~ is an isomorphism d~:=F%d~V'l, i>-O form a base for T~(H~(W(9)v). 
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As H2(W•) is the dual of T~(H2(W(9) v) (IV: Prop. 5.2) we may find a unique 
element 1' in H2(WO) such that (di, 1")=60i. 

Now 1", VI', .... V2*ol ' is a base for K e r F % + l d  and qg(1)~KerF%+ad 
as q~ is an R-homomorphism. We may therefore write 9(1)=aol'+alVl'+.. .+ 
a2,oV~*ot/' and as 1 generates H 2 ( W Q 1 )  v as  a k,  [[ V]]-module and ~o is an iso- 
morphism in degree 0 we have that ao#0, If  we change 1 by a non-zero scalar, 
starting with i=21 ,  we will get the following changes: di:=F'odVVii=2P'~~ 
i" which is characterized by (i',di)--fio i will then clearly be 2 -p'~ 1". The new 
base for KerF"o+ld will be 

2 -p% 1', . . . .  ,~_p%-1V2% 1' 
so therefore we will have 

(p(T) : 2~o(1) = }~l+P'r~ ... +21+P-%a~,~V2%T'. 

Note that (F%d~V~I, VJl')=a-J(FJF%dV~I, l ')=a-J(F%dVi-Jl,  l ' )=5~j. We 
therefore get, i f  

i ~ ao, ai = (F*Od~V i, q~(1)) = (1, 9F%d~Vfl) =-a%-'(Fid~V%l,  rp(l')) 

= -a%-i(F%dV2%-il, 9(1')) p%--i - - a 2 % - i  , 

so that ~o(1) will have the form: 

(1.1.2) q~(1) = (a o +a~V+... +a%V%-a~o_lV %+x-. . .  -aoV~%) �9 1" 

and a '~  if  p # 2 .  Of course, if k = k  we may choose 1=21 such that ~0=1. 
It is clear that 9(1) determines the square of (1.1.1). In particular it determines 
the pairing of (IV: 5.6.4), which, by (IV: Prop. 5.6 a)) coincides with the pairing 
on H~(Wf2~)V/H~(WI2~) o1 (IV: 5.6.3). This is the pairing that Ogus considers 
in ([16]), so we find the relation with this approach. (It is clear from (IV: 4) that 
our approach is more or less equivalent to the one o1 ([13]).) One can show that, 
tor k =  ~, Artin's period map is obtained by taking the fixed points of F on the 

diagram (1.1.1) and hence that this map is the morphism ao+a~F+...-aP'~~ 
Gp,*rr--,-G~ (Details on this will appear elsewhere.) Finally, as duality provides us 
with a Gysin map we can calculate ao for a Kummer surface (cf. [16]). Let A be 
a supersingular abelian surface (p #2),  put A' the blow up of A at the kernel 
of  multiplication by 2, put X=A'/(--1) the associated Kummer surface and 
q: A'-,-X the projection. By definition dom (R ~ [-(WO~)) ~ -~* U,o for some 
1 <--ao~2 and as it is easily seen that blowing ups of surfaces only affect nl(l/V~C21) 

we see that dom (R2V(Wf2"a,))~ ~ Now as in ([15, VII: Prop. 
3.2.4]) one sees that q,q*:degq=2, so that q* is a split injection, but as 
H2(W(Ox) #0 and U% clearly is indecomposable we see that dom (R 2 7(Wf2x))~ - ~  
U,o. In particular a0(X) = a0(A). 
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2. Let  A be a supersingular abelian fourfold.  Recall that  this means that  Ha(A~ W) 
is o f  slope 1/2. As H*(A/W)= A*HI(A/W) (el. [4, Cor. 2.5.5]) we see that  H4(A/W) 
is o f  slope 2 and  therefore R i [- (Wf~') 4-i is tors ion except for i =  2 where the torsion 

free par t  is of slope zero. I f  M is a W-lattice with a non-degenerate  pairing put  
discr M : = l e n g t h  MV/M. We will compute  discr A~ 2 [- (WF2")) 2 in two ways 

using crystalline duality and the duality for the H o d g e - - W i t t  cohomology.  Put ,  
for  simplicity, N:=A~ As H4(A/W) is wi thout  torsion we see 
that  length H 4 (A/W)/N=length E~24 + length E~23, where E i' j = R j V (Wf2") i =-* 

H*(A/W) is the first spectral sequence. By duality for H4(A/W) the pairing for 
H4(A/W) is perfect so discr N = 2  (length E ~ 4 + l e n g t h  E~23). On  the other hand,  

Ha(w~))  and Ha(W~? 1) are torsion (by the slope conditions f rom above) and there 
is no  semi-simple torsion in them because it would  be dual to the semi-simple torsion 
o f  H2(WF23) resp. H2(WO 4) and as HI(WO 4) is torsion and by "survie du coeur"  

it would  give rise to torsion in HS(A/W) resp. He(A/W). Therefore E~ ' a =  
HI(A2(R3V(Wg?')), d), so by (IV:  Thin. 3.5 ii, 3.3.6) and snake lemma we get an 

E~' -+N / N ~ E  2 . exact  sequence 1 3 v 1,3- 

Hence d i sc rN_-<2 .1eng thE 1"3 and combining we obtain lengthE~ ' 3 -  

length E~3->-length E ~  4. I f  we can show that  E ~ 4 # 0  we conclude that  E~'Z#E~ z. 
However  as HS(A/W) is wi thout  torsion and the Hodge  to de R h a m  spectral 
sequence degenerates we see that  H4(A/W)-+H~R(A/k) and H~R(A/k)~H4(d)) 
both  are surjective and therefore their composi te  is non  zero, bu t  this composi te  

factors th rough  E ~  4. 
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