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Introduction 

In this paper we consider a very particular problem. We study the postulation of  
a general smooth curve C in PZ with 0c(1) ~Kc, when C has genus 7, 8, 9 or 11. 

We call canonical curve in P" a smooth, connected curve C = P "  with Oc(1)~-Kc. 

Definition. We say that a subscheme Z o f P  3 has maximal rank iffol  every integer 
t the restriction map ~z( t ) :H(P 3, Op(t))~H~ 0z(t)) is either injective or sur- 
jeetive. 

It is useful to know that a curve C in pa has maximal rank since in this case for 
every k we know completely the dimension of the vector space of  surfaces of degree k 
containing C. For  example if  C is a canonical curve of  genus g with maximal rank, it 

is contained in a surface of degree k if and only if (k ~ 3)>(2k-1)( g--1). 

We prove the following theorem: 

Theorem 1. The general canonical curve of  genus g =7 ,  8, 9 or 11 in p3 has 
maximal rank. 

The proof  is really an existence proof. We construct a reducible curve Z with the 
expected postulation, i.e. with maximal rank. Then we show that Z is a limit of  a 
flat family of  canonical curves in p3. By semicontinuity a general canonical curve of  
that genus has maximal rank. The existence of the flat family follows from 2 theorems 
about degeneration of curves; we will state them in section 1. One of them is due to 
Hartshorne and Hirschowitz [13]; the other one is contained in [1]. We use often very 
particular cases of  the Brill Noether theory proved by Griffiths and Harris in [6]. 
However it seems that sometimes the use of this deep theory could be avoided by ad 
hoe argument. Theorem 1 is proved separately for each genus g = 7 ,  8, 9, 11. 

In [7] Gruson and Peskine gave a striking counterexample to a conjecture by 
Hartshorne [11], showing that no canonical curve of  genus 5 or 6 has maximal rank. 
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It remained open the problem for canonical curves of  higher genera. We hope that 
the existence theorem given here will clarify the situation. We tried invain to extend 
the result to other genera. 

In the last section we consider a strange example of  non-smoothability of  re- 
ducible curves. Let C be a smooth curve of genus 5 and degree 7 in p3. We have 
O c ( 1 ) ~ K c ( - P )  for a unique point P of  C. Think of p3 as a hyperplane of  p4. Fix 
a point x of C and let D be a general line in p4 through x, D not contained in pa. Then 
C w D can be deformed to a smooth curve in p4 if and only if x =P .  

w 

In this section we consider the tools for the proof  of  Theorem 1. The proof  will 
be a case by case check. The cases g = 7 ,  8, 9, 11 will be considered respectively in 
sections 3, 4, 5, 6. 

The notations below were introduced in [3]. 

Definition 1. Define Z(d,  g; n) as the closure in the Hilbert scheme Hilb pn o f  the 
set o f  smooth non-degenerate, irreducible curves o f  degree d and genus g. Then define 
Z"  (d, g; n) as the closure in Z(d ,  g; n) o f  the set o f  smooth, irreducible, non degenerate 
curves C o f  genus g and degree d with h 1 ( C , (fl c (1)) = 1. 

It is well-known that Z '  (d, g; n) is irreducible (eventually empty). It follows from 
the irreducibility of the moduli scheme of curves of genus f and the fact that a line 
bundle L of  degree dwith  hi(C, L ) =  1 corresponds to a non-zero section of Kc| 
i.e. to 2 g - - 2 - d  general points of C. 

The following result is due to Hartshorne and Hirschowitz [13]. It is one of  the 
2 main tools we use. 

Theorem 2. Let C be a curve in Z(d,  g; n) with HI(C,  N c ) = 0  and let D be a line 
intersecting C in k ( k = l  or k = 2 )  distinct points, the interseCtion being quasi- 
transversal. Then C w D is in Z (d + 1, g + k -  1 ; n). 

Note that by a Mayer--Vietoris type exact sequence, H i ( C u D ,  NcuD)=0. 
Thus we may apply several times Theorem 2. We are interested only in the case k = 2, 
which we assume during this discussion. By a Mayer--Vietoris type exact sequence, 
ha(C, tPc(1))=hI(CuD, tPcuD(1)). Assume n = d - g + l .  A general element C of 
Z ' (d ,  g; d - g +  1) has H~(C, Nc)=0 ;  this is a well-known consequence of  [4]. Since 
every smooth, non degenerate curve of genus g +  1 and degree d +  1 = g + n  in P" is 
special, for a general secant D t o C, C w D E Z" (d+  1, g + 1 ; d - g  + 1). Now assume 
n < d - g + l  and C a smooth curve in Z' (d ,  g; n). Then C is the projection of C '~  
CZ' (d ,g ;  d - g + 1 )  and there exists a unique secant D'  to C '  such that C u D  is 
a projection of  C" u D ' .  Thus C" u D ' C Z ' ( d +  1, g+  1 ; d - g +  1) and, by projecting 
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the deformation to P", we obtain C w D C Z ' ( d + I , g + I ;  n). We will use always 
Theorem 2 in this form. 

The other degeneration theorem we need was proved, but unfortunately not 
stated un full generality, in [1] Prop. II. 1. 

Let C be a smooth curve of degree d in P" and consider pk, k<n, as a linear 
subspace of P". Denote by Prd(C, pk) the closure in Hilb pk of the set of general 
projections of C in pk. We need many reducible elements in Pra(C, pk). The proofs of 
[1] do not use in an essential way the assumption "0c(1) not special". 

Let X be a smooth curve and L a very ample line bundle on X. We write ~pL for 
the embedding of X given by the sections of L. Note that for a point P of X, L(P) := 
L| ~)x (P) is very ample if and only if h ~ (X, L (P)) = h ~ (X, L) + 1. 

Theorem 3. ([1] Prop. II. 1) Let X be a nonsingular, non degenerate curve embedded 
in P", de gX = d .  Let P1 . . . . .  Pk be distinct points oJ X. Put L:=(gx(1) and M:= 
L(PI+...+Pk). Assume h~176 Let D~,i=l . . . . .  k, be a line 
intersecting X only at Pi and quasi-transversally; assume that the Di's are disjoint. Then 
XwDlw...  wD k E Prd +k(~OM (X), P"). 

We will use Theorem 3 also to control the postulation of the intersection of a gene- 
ral element of Z'(d, g; n) with a hyperplane not in general position. We recall that 
the proof of Theorem 3 in [1] used a family of projections from P~, s=h~ M ) - 1 ,  
into P". In the proof of [1] Prop. II. 1, it was constructed an affine smooth curve 
U, 0~ U, and a closed subset V of P" • U such that the restriction to V of the projec- 
tion on the second factor has the following property: p: V~ U is a flat family of 
curves with, for tr p - l ( t )  a general projection of ~0M(X), p-I(O)=XwDIu. . .uD.  

Thus the proof gave a family of isomorphism ht:p-l(t)~q~M(X) for t ~ 0  
and h0: X~-qOM(X). Here is a typical example of the use of Theorem 3 to control 
an intersection. Consider C smooth, C E Z ' ( 2 g - 5 ,  g; 3) with 0c(1) 
K c ( - P 1 - P 2 - P 3 )  with the Pi distinct and not collinear. These condition are 
satisfied for general C. Take the plane H spanned by the Pi's. Suppose we 
want to control the intersection of C with H, if C is general. We consider a 
degeneration of C to the union of XCZ'(g+2,  g; 3), X smooth, and g - 7  
lines Di intersecting X (Theorem 3) at the point R~. We use the notations 
U, V, p, ht for this degeneration. There exists uniquely determined points P[, P~, P~ 
on p-~(t) such that Op-l(t)(1)~Kp-l(t)(-e~-P~-P~). Restricting possibly U, 
we may assume that for every t, the points pt span a plane Ht; here we choose 
a good X, with general choice of the Rfs. By semicontinuity the postulation 
of  p- l ( t )nHt  for general t is bounded by the postulation of (XwlJDj)c~H o. 
In (XwODj)c~Ho the points (UDj)c~Ho can be choosen in general position. 
Thus we have only to control Xc~Ho. 

Notations: If  x is a point of p3, g(x) means its first infinitesimal neigh- 
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borhood in p3. Let Z be a subscheme of p3 and H a plane. Res t (Z)  is its 
residual scheme with respect to H. For example if Z is reduced, Res t (Z)  is 
the union of the irreducible components of Z not contained in H; if xEH, 
Res~ 0~(x))=x. Similar notation are used in any projective space, with H a hyper- 
plane. For a subscheme Z of P~, J z  is its ideal sheaf; for any integer t we have 
the restriction map Oz(t): H~ 3, (gp3(t))-~H~ ~)z(t)). We put h'(Z, L):= 
dim HZ(Z, L). Nz is the normal bundle or the normal sheaf. 

w 

In this section we give some preliminary results about curves of genus 
g and degree g + 2  in p3. Every such curve is special. We will need to know 
that for 4<=g<=ll, a general element of Z ' ( g + 2 ,  g; 3) has maximal rank. 

Lemma 1. For 4 <- g <- 11 a general element o f  Z '  ( g + 2, g; 3) has maximal rank 

Proof: For g = 4  and g=5  every smooth element in Z'(g+2,  g; 3) is 
projectively normal and in particular has maximal rank. In fact, the canonical 
curves of genus 4 are complete intersection of a quadric and a cubic. By the gene- 
ralized Halphen's bound of the genus proved in [7], every smooth element of Z'(7, 5; 3) 
is linked by 2 cubic surfaces to a plane conic and thus it is projectively normal. 
By [4] a general element C in Z'(7, 5; 3) has Hi(C, Nc)=0. Consider the follow- 
ing assertions: 

U3: there exists in p8 a curve C of genus 6 and degree 8 with h~ a, ,fc(3))--- 1. 
U4: there exists a triple (Y, D, S) where Y is the union of a smooth C in 

Z ' (8 ,6 ;3 )  and 2 lines Di, i = l , 2 ,  with D1 secant to C, D2 inter- 
sects D1 and C, D is a secant line to Y and S=D, card(S)=2,  with 
Ho(p 3, J rus(4))=0.  

Un: there exists a curve YEZ'(13, 11; 3) with Y union of a smooth curve 
C &genus  8 and degree 10 and 3 lines D,, i - - l ,  2, 3, with D1 secant 
to C, D2 and D3 intersecting C and D1, with h~(p3, J r ( 5 ) ) = l .  

It is easy to show that U3, U4 and U5 imply Lemma 1. In fact U4 implies 
that YuD is not contained in any surface of degree 4 and by semicontinuity the 
same happens for a general curve of genus 10 and degree 12 (or genus 11 and degree 
13). For the proof of the assertions U, we use the method of [12] and [14]. 

a) Proof of  U3: We take a smooth curve Z in p8 of genus 5 and degree 7, 
hence not contained in any quadric. We consider a general plane H intersecting 
Z at 7 distinct points in uniform position [9], hence in particular no 3 of them 
collinear. Let D be a line in H containing 2 points of Z;  let P be a general point 
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of H. By Theorem 2 it is sufficient to prove that no cubic surface contains Z, D 
and P. Take fCH~ 3, Jzuou/p}(3)) and call g its restriction to H. We want 
to prove that g vanishes. Indeed g vanishes on a line, on 5 points no 4 of them 
collinear and at P;  the 5 points determine a unique conic A and we may assume 
P not contained in A. Thus f is divided by the equation of H and Z is contained 
in a quadric, unless f = 0 .  

b) The implications U3~Ua and U4=*.U5 are similar. We sketch only the 
second one. By Theorem 2, semicontinuity and U4 there is a smooth curve Z in 
Z'(10, 8; 3) and 2 points A, B such that H~ 3, JZU{A,B}(4))=0. We take a gene- 
ral plane H;  we may assume that B is a general point of H. Call Pi, i=1  . . . . .  10, 
the points in Zc~H. Let L, D, R be lines in H with L spanned by P1 and P2, 
D by B and Ps, R by B and P4. For general B we may assume that B CL 
and that L,D, R, contain no P~ with i=>5. Put Y=ZuLwDuRw)~(B). Y can 
be deformed to the union of Z, a secant line L '  to Z, and lines D', R' intersecting 
Z and L '  (see [10] fig. 11 p. 260 or the pictures in [14]). Thus YEZ'(13, 11; 3) 
and by semicontinuity it is sufficient to show that YuA is not contained in any 
surface of degree 5. Since ReSH(Y)=ZuB, this follows from U4 and the fact 
that the Pi, i = 5  . . . . .  10, are not contained in a conic because Y is not contained 
in a quadric and the Pi, for general H, are in uniform position. 

w 

In this section we prove Theorem 1 for g = 7 .  We have simply to prove 
the existence of a canonical curve of genus 7 in p3 with maximal rank. The strategy 
of the proof is the same as in Lemma 1, [12], [14], [2], [3]. The same strategy will be 
used for g = 8 ,  9, 11. 

A4: there exists a nonsingular curve C in p3 of genus 7, degree 10 with 
hi(C, d)c(1))=l and h~ 3, J c ( 4 ) ) = l .  

As: there exists in p3 a canonical curve of genus 7 with h~ J c(5))=2. 

It is easy to show that a canonical curve C satisfying A 5 has maximal rank. 
In fact by A 5 HI (P  3, J c (5 ) )=0  and by [2] Lemma 5.1, H I ( p  3, oCc(t))--0 for t~5 .  
Furthermore C cannot be contained in a quartic surface, otherwise it would be 
contained in too many reducible quintic surfaces. 

First we will prove A4 and then that A4 implies A5. 

a) Proof of A4: Let D be a canonical curve of genus 5 and degree 8 in p3. 
By [7] D has not maximal rank but it is always [7] p. 55, with h~ z, JD(4))=7 i.e. 
hl(p 3, Jo(4)) =0.  

By the remarks after Theorem 2 for every 2 general secant A, B to D, DuAl3 
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BEZ'(10, 7; 3). Thus it is sufficient to prove that we may find 2 secants A, B with 
h~ 8, JDu A (4)) =4,  h~ 3, JDUAUB(4))= 1. 

The existence of A is easy. Assume we cannot choose such an A. Then for 
every secant line A to D, h~ a, JDUA(4))_>5. Let H be a general plane; in H we 
have 8 points P~, i =  1 . . . .  ,8,  of D in uniform position [9]. Take A=P1P2. Since 
J~(4) is generated by global sections, for every line PiPj, L j > 2 ,  PiPjnA gives 
a condition for V:=H~ JD(4)), while by assumption P~Pj gives at most 
2 conditions for V. Thus we may find f in V such that f vanishes on a point 
P contained neither in H nor in the unique cubic surface [7] containing D and 
on the lines A, PAP4, P3Ps, P3P6. This implies that f vanishes on H, contra- 
dicting the choice of P. 

The proof  of  the existence of B is similar but slightly more complicated. 
Assume that for a general secant A and for every secant B, h~ 3, JDUAUB(4))---->2, 
i.e. for every point P in p3, there exists FE V, F vanishing on A, B, P and F # 0 .  
We take a general plane H and put HnD = {P~}, i =  1 . . . . .  8, with the Pi in uniform 
position. We take as P a general point on the line L:=P~P 3. Put L'=P1P4, 
x=LnL'.  Since x can be choosen as a general points of pa (for a general point 
there are at least 2 secants to D by the genus formula on a plane), we have 
h~ ~, JDUAUx(4))=3 and by assumptions we can find such a F vanishing on D, 
A, P, L" and thus on L. If  PsP6 contains x, for example, then certainly PAP7, 
PaPs, P6PT, P6P8 do not contain x and thus at least 4 of the P~Pj, i,j>=5, inter- 
sect LuL" in 2 points. Note that by monodromy [9] we may assume that no 3 lines 
PiPj have a common point. Let I be one of the P~Pj not containing x. I f  the 2 
points in In(L'uL) give independent conditions for W : = H ~  3, JDUA(4)), then 
F would vanish on I and thus on H since if, say, I=P6PT, we may assume, 
for general A, that Ps, P8 and AnH are not collinear. This contradicts the gene- 
rality of A, since we may assume that DuA is not contained in any cubic surface. 

Thus for every such I, In(LuL') give at most one condition for W. We may 
assume that none of  the points of P~Pj\D is a base point of  W. In fact W has, 
outside DuA, a base locus S contained strictly in the unique cubic surface T 
containing D, since W contains irreducible quartics. Thus from a general point 
of  T passes a secant to D no~ intersecting S, i.e. the general secant to D inter- 
sect the base locus of  W only at D. Thus every quartic surface G containing 
D, A, L contains also every point of  L'nI for at least 2 such lines I;  thus it con- 
tains 5 points of  L" and hence L'. But in this statement P does not appear. It 
means that every quartic surface containing D, A, L contains the other secant 
lines PiPj and thus H. This is a contradiction, since we may assume A not 
contained in the unique cubic surface containing D. 

b) A4 implies As. Proof: Let C be given by A4. Thus ~)c(1)~Kc(-B1-B~) 
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for some B1, B2 in C. By semicontinuity and irreducibility we may assume that 
C has general moduli and BIr 

Claim: We may assume that HnC is reduced (except eventually a double 
point at Bi) and that Hc~C\{B~, B2} give 8 conditions for the cubic in H. 

First we show that the claim implies A5 by the general method of [12], [14]. 
Let Li, i=1 ,2 ,  be a general line in H containing B i and put y---L~c~L2. Con- 
sider Y =CWLlWL2~z(y), where Z(Y) means the first infinitesimal neighborhood 
of y in pz. Let P, P '  be general points in H. Y can be deformed to a curve 
Y" union of C and of 2 disjoint lines through B~, B2 (see the pictures in [14] 
and [10] fig. 11 p. 260). By Theorem 2 Y'6Z" (12, 7; 3). By semicontinuity it is 
sufficient to prove that V:=H~ 3, Jru~,up,(5)) vanishes. Take f in 11. Then 
the restriction g of f to H vanishes on L~, L2, 8 points of HnC and 2 general 
points P, P' ,  By the claim g vanishes on H. Since the residual scheme of Y to 
H is Cuy and y can be any general point of pz, by A4 f = 0 .  Now we prove 
the claim. First we want to use that C has general moduli to apply some very 
special case of the Brill--Noether theory proved by Griffiths and Harris [6] and 
show (in a silly way) that we may assume that the residual scheme T in H of 
CnH with respect to L1, L2 is reduced. Equivalently we want to show that for 
H general, HnC has no triple point and no double point, except possibly 
B1 or B2. Consider the embedding h of C in p4 given by the complete linear 
system H~ 0c(1)). For a general hyperplane R through h(B~) and h(B~),h(C)c~R 
has at most double points at h(B~). Otherwise by Bertini's theorem the linear 
series ]Kc(--BI-B2)[, which is a g~, would have at least 2 base points, while by 
Brill--Noether theory [6] C has no g~, since it has general moduli. Then we 
want to use Theorem 3 and the discussion after it to control, outside the B~'s, the 
postulation of Cc~H. By Theorem 3 we can degenerate C in Prl0 (h(W), PZ) to 
C'uL, where there is an isomorphism s from C to C', d e g C ' = 9  and L is 
a line. Thus it is sufficient to control C'~U where U is a general plane through 
s(B1) and s(B2). Again we may assume C'nU reduced. We have to prove that the 
7 points in C'nU\{s(B~), s(B2)} give independent conditions for cubic. By [5], 
p. 714, it is sufficient to prove that C" has no 5-secant. But a 5-secant to C'  gives 
a gl on C', contradicting the fact that C '  has general moduli. 

w 

The case g = 8 is easy. We consider the following assertions: 

B4: the general element C of Z'(10, 8; 3) has h~ 3, Jc(4))=2; 
Bs: the general element C in Z'(12, 8; 3) has h~ 3, Jc(5))=3; 
Bn: there exists a canonical curve C in pz with h~ z, Jc(6))=7. 
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/?4 is a particular case of Lemma 1. By [2] Lemma 5.1, B6 implies Oc(t) surjective 
for t~6.  Thus such a canonical curve C has maximal rank if and only if it is 
contained in no quintic surface. This follows very easily from the proof that B4 
implies B5 below (or see part c) in the next section). 

a) B4 implies Bg. Proof." Let C be given by B~ with Kc(--P1-Pa-P3-P4). 
By irreducibility and semicontinuity we may assume C of general moduli and 
the Pi's different. Consider a general plane H through P1 and P2- Let L i, i=  1,2, 
general lines in H with Pi~Li and put x=LlnL2. Put Y=CuL1uL2uz(x); 
it is sufficient to show that h~ 3, J r (5))=3.  First x, moving H, can be arbitrary 
and thus we may choose a point A not in H such that H~ 3, JCU~A, xI(4))=O. 
Since Resu(Y)=Ctzx, to prove Bs it is sufficient to show that if f~H~ r 
vanishes on CnH, LI, L2 and 2 fixed points P, P" (choosen in general position) 
then f = 0 .  Equivalently we show that the residual scheme Z of CnH to LtwL2 
in H gives 8 conditions for the cubic passing through it. First we may assume 
Z reduced (8 distinct points, possibly one of the Pi). By Bertini's theorem it is 
sufficient to show that Kc(--2P~-2P2-P3-P4 ) has at most one base point. 
If not, there exists a 3-dimensional family of g~ on C, contradicting Brill--Noether 
theory [6]. Now we have to show that the 8 points in Z give independent conditions 
for the cubic passing through them. This fails if and only if 5 of the points in Z are 
collinear or all the points are in a conic. The first case implies easily the existence 
of infinite ~ on C, contradicting [6]. If  for every such plane H, Z is contained 
in a conic S, this happens in particular, if H is a plane containing P~, P2 and /3. 
Interchanging the role of P2 and P3 we obtain that S contains Cc~H. By the 
exact sequence 

(1) 0 Jc(1) &'c (2) ~- (2) - - "  ~ ~ J C N ~ , H  ~ O, 

and the linear normality of C, C is contained in a quadric surface, contradicting B4. 
b) The proof of Bs=*B6 is similar, easier and omitted. 

w 

Here we prove Theorem 1 for g=9.  Consider the following assertions: 

/?6: there exists CEZ'(15,9;  3) with h~ Jc(6))=2. 
ET: there exists Y~Z'(16, 9; 3) with h~ 3, Jr(7))=16.  

a) A5 implies En. Proof." Let Z be given by As; take a general secant line 
L to Z. Considera flat map p: V-~U, where V is closed in p3XU, p is the 
restriction of the projection on the second factor, U is an affine smooth curve 
with OCU, p-I(O)=ZuL and Ct:=p-l(t) a smooth element of Z ' (13 ,8 ;3 )  
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for t r  For every t r  there is a unique point Pt on Ct such that tPc,(1)~ 
Kc,(--Pt). Since p is proper and U a smooth curve, the morphism u from 
U\{0}  into V with u(t):=Pt can be extended to a section s of p. 

Claim: s(0)EL. 
Assuming the claim, we will prove En. We consider a plane H containing the 

general secant L. We may assume Hn Z reduced and in uniform position [9]. 
We consider in H a line L" through s(0) and not intersecting, outside possibly 
s(0), Z. We want to prove that ZuLuL'EZ'(14, 8; 3). Indeed consider a general 
point xEL" and let L~ be the line spanned by x and s(t); in P 3 •  consider 
the union J of V and the L~ (with L0:=L') ;  the restriction to J of the projection 
on U is flat [10]. 

Now consider a line L"  in H not intersecting Z. Put Y=ZuLuL 'uL" .  
We have FEZ'(15,  9; 3) by theorem 2. The usual game will show h~ z, J r (6) )=2 .  
Indeed in H for He(H, On(6)) we have 3 lines and 10 points of ZnH. Since 
the points in ZnH, are in uniform position, the only problem arise if Z n H  is 
contained in a cubic for general H. By [8], since d e g Z  =12, this implies Z 
contained in a cubic surface, contradiction. 

Now we prove the claim. The relative dualizing sheaf Ov/v is locally free and 
for every tEUh~ ~c~(-1)=1 (with Co:=ZuL ). By changing basis, restricting 
possibly U, P.(Ov/v(- I)) is free of rank 1 and a non-zero section of it induces 
a non-zero section ut on every fiber. Since ut, t r  vanishes exactly at s(t) 
while u0 vanishes on L, we have proved the claim. 

b) E 6 implies E 7. Proof: Let C be given by E 6, with Oc(1)-~Kc(--P). Take 
a general plane H through P and a line L in H intersecting C only at P. 
Then it is easy to show h~ 3, JCUL(7))=16, using the remark after Theorem 3 
to control CnH. Indeed degenerating C to the union of 4 lines and C '  of degree 
11, we have only to control 10 points for On(6); no 8 of the points can be collinear 
since C" has no g~. 

c) Now we can prove Theorem 1 for g = 9. E 7 implies that for a general cano- 
nical curve of genus 9 Is, 0r(n) is surjective for n=>7. Thus it is sufficient to show 
that a general canonical curve of genus 9 in not contained in a sestic surface. This 
will follows easily from E6. Let C be given by E6 with r We have 
to prove that for a general line D through P, C~D is not contained in any sestic 
surface. Let x be a general point of p3, not in the base locus of F :=H~ 3, Jc(6)). 
Let S be the only sestic surface containing C and x. In a neighborhood G of  x, 
every yEGnS is not a base point of F and for general yEGnS, the line Px 
is not contained in S, unless S is a cone with vertex P. Thus it is sufficient to 
show that that a general SEF is not a cone with vertex P. Let C '  be the projec- 
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tion of C from P into a plane. I f  deg C'=>6, then C cannot be contained in 
2 sestic cones with vertex P. I f  deg C ' = 2 ,  C is contained in too many sestic 
surfaces. 

w 

For g =  11 we consider the following assertions: 

D6: There exists in p3 a nonsingular curve CCZ'(15,11;3)  with 
h o (ps, J c  (6)) = 4. 

DT: There exists a nonsingular CCZ'(17, 11 ; 3) with ~Pc(1) "~Kc(-P1-P~-/3), 
with the P~ distinct, a plane H containing P1, P2, P~, 3 lines Li, i =  1, 2, 3, 
P~CLi, with A:=LInL2, B:=L~c~L3, I:=L2c~L3 and 

h o (p3, ~'c u {A, ~.,} (7)) = 8. 

Ds: There exists in P~ a canonical curve of genus 1l with h~ 3, Jc(8))=15.  

a) B5 implies D 0. Proof." Let C be a smooth curve of genus 8 and degree 12 
satisfying Bs. Take a general plane H intersecting C at 12 distinct points in 
uniform position [9]. Consider the union Y of C and of 3 lines D, R, L in H 
with D secant to C, R intersecting C at a point and L disjoint from C. By 
Theorem 2 it is sufficient to show that the 9 points of C~H not in D•R give 
independent conditions for 0~/(3). This happen if and only if  either 5 are collinear 
or 8 in a conic or all are contained in 2 irreducible cubics. By definition of uniform 
position the last case contradicts Bezout's theorem while the first 2 cases imply 
that C is contained in a plane or a quadric, by the exact sequence (I) in Section 4. 

C) D O implies D7. Proof." Let X be given by D 6 with Ox(1)~Kx(-P~-P~-- 
P3--P4-Ps). As usual we may assume X of general moduli and the Pi distinct. 
First we want to show that we may assume no 4 of the P~ coplanar. Let g be the 
embedding of C in p5 by the complete linear system Kx(-Px-P2-P3-P4-Ps). 
It is sufficient to show, for instance, that g(PO, g(P2), g(P~), g(P4) are not coplanar. 
I f  this happen, h~ Kx(-2P1-2P~-2P3-2P4-Ps))=O for every P5 i.e. 
h~ (gx(2Pl+2P2+2P3+2P4))=2. Since the general element of a base point-free 
g~ is reduced, we obtain a 4-dimensional family of gt s on C, contradicting Brill-- 
Noether theory. Furthermore We may assume that for every plane R spanned 
by 3P~, say P1, P~, Ps, Rc~X is reduced. By Bertini's theorem, it is sufficient 
to show that IK(-P4-Ps-2P~-2P2-2P3)] has at most a base point, not at 
P~, i=1 ,  2 or 3. The first part follows from Brill--Noether theory for g~0; if the 
linear system considered has P1 as base point for general P~, interchanging Pt  
and P2 (or P3) along a path, we obtain P~ and P3 as base points, contradiction. 
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Now consider the plane U spanned by Pa, P4, P5 and take in U 2 general fines 
L i, i=4 ,5 ,  with PiELi; put x:=L4nL 5. Consider Z=XwL4wLswg(x). We 
have ZEZ'(17, 11; 3). First we want to prove h~ Jz (7 ) )= l l .  By the dis- 
cussion after Theorem 3 we can degenerate X to the union of 2 lines and of Y ~X, 
deg Y-=13; thus we have only to prove that 11 distinct points in Y n U  give in- 
dependent conditions for H~ 0u(5)). No 7 of them are collinear since Y has 
no gl. Let S be an irreducible conic containing n=>5 of them and such that 
among the remaining l l - n  of them, no 5 are collinear. By adding l l - n  points 
on S, we win easily since the remaining 11 -n  points give independent conditions 
for cubits [5], p. 714. 

Consider the plane R spanned by P1, P2, P3 and take in R 2 general lines 
L i, i=l ,  2, P~6L i. Put L3= Uc~R, A=LlcaL2, B=Llc~Lz, I=L~c~L3. We have 
to prove that A, B, I give 3 independent conditions for H~ 3, Jz(7)). We want 
to repeat the omitted proof with the residual scheme to a plane. A gives a condition 
since it is a general point of R and Z is not contained in a quintic. B and I are 
general points on L3; as in the first part of the proof, we have to control 10 points 
of lec~R, A and 2 general points on L3. The only problem now arises if on L 3, 
apart from P3, there are 5 more points of Y, If this happens, we change in the last 
construction L3 with La and take as plane R' spanned by P~, P2, P4 or L3 
with L 5 and a plane R" containing PI, P2, P 5. It is impossible that Yc~U 
contains 5 points on R, 5 points on R' and 5 points on R" outside P1, P2, P3. 

d) D7 implies D 8. Proof: Let (C, P1, P2, P3, H, L1, L2, L3, A, B, I) be given 
by DT. Put Z =CwLlwL2wLawz(A)wx(B)w)~(I). We have Resn(Z)=Cw{A,B,I} 
and we apply D7 and the usual game. We have only to control as in c) 10 of the 
points of Y, Y~-C, deg Y=-13, with respect to (9n(5). 

e) D8 implies that for a general canonical curve T in p3, QT(t ) is surjective 
for t => 8. By irreducibility it is sufficient to show that a general T is not contained 
in a surface of degree 7. We use the notations of e). Let D3 be a general line in 
U with PaCDa and put M=D~c~L3, N=D~nL 5 and T=XuD3uL4wLaw)~(M)w 
x(N)wx(x). We want to show that for a general choice of the Pi h~ P3, iT(7)) <-4. 
For this it is sufficient to show 

1) h~ 3, Sxu{~,M ) (6))=2; 

2) at least 9 of the 10 points in Un(X\{Pa,  P~, Ps}) give independent con- 
ditions for 0v(4). 

Assume 1) is false and take any point x in U such that h~ 3, Jxu{x}(6))=3. 
Then every f~H~ vanishes on the line xP4, thus f vanishes on 
a cone in U with vertex P~; De gives the contradiction. 
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Now we prove 2). If  10 of the points considered are on an irreducible conic 
or cubic, or 5 or 6 (but not  7) of  them are collinear, 2) holds. The only problem 
arise if 7 of  them are collinear, but this contradicts the generality of  X. By smoothing 
T we obtain a nonsingular curve V6Z'(18, 11; 3) with h~ Jv(7))<=4. Then 
we conclude as in part c) of  Section 4. 

w 

The following example shows why the constructions used for the proof  of 
Theorem 1 are so long and baroque. Let C be a smooth curve of  genus 5 and 
degree 7 in p3. We have seen in the proof  of  Lemma 1 that it is projectively normal; 
here it is sufficient that it is not contained in a quadric. We have tPc(1)~Kc(-P) 
for a unique point P in C. Let  x be a point of C. Consider p4 as a hyper- 
plane H of P~. Let D be a line in P~ through x, D not contained in H. Then 
CuD is in an irreducible component of  Hi lbP  4 containing a smooth curve if  
and only if  x=P. 

Indeed if x=P, CuD can be deformed to a smooth canonical curve X=C, 
by a straightforward extension of the proof  of Theorem 3 ([1], Prop. II. 1). Think 
of  p4 as a hyperplane R in p5 and let U be another hyperplane. Let X c U  
be a linearly normal canonical curve isomorphic to C, h: C ~ X  be a hysomorphism. 
We may assume that C is the projection of  X from h(P). With a family of pro- 
jections of  X into R which tends to the projection from h(P) (see [1]) we obtain 
CuDEZ'(8,  5; 4). 

Now assume xCP. Assume that CuD can be smoothed, necessarly to a family 
of  canonical curves of genus 5. By projecting the deformation into H, we see that 
for a general line L through x, CuLEZ'(8,  5; 3): any C u L  is a projection of  
CuD. 

Claim: C u L  is not contained in any cubic surface. 
By semicontinuity and [1] the claim will give a contradiction. By the usual 

game the claim will follow if  there exists a plane F through x such that for a general 
line E in F containing x, Rese, F ( C n F )  is not contained in a conic. In particular, 
since, for x=P, CuD can be smoothed, this never occurs for a plane containing 
P. Let  T be a general plane containing x and P. In T there exists a conic 
Q containing ResE, T ( C n T  ) and a conic Q' containing ResE,,7.(CnT ) for 
general lines E, E" through x, P respectively. Since C is not hyperelliptic and 
cannot have infinite g~, Q=Q'; indeed C has no 5-secant and the only 4-secant 
contained possibly in a general plane F is Px. Thus C n F  is contained in a conic. 
The exact sequence (1) in Section 4 gives the contradiction. 
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