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1. Introduction 

The letters N and C denote the set of non-negative integers and the set of com- 
plex numbers, respectively. 

We study the following interpolation problem: 

(1) "'Let E and F be two complex, locally convex spaces, f2 an open subset of E 
and (z.),c N a sequence of distinct points of 12. Given any sequence of polynomials 
(P,).eN (e.g, continuous polynomials)from E to F, under what conditions on E, F and 
(z.).~ N does there exist a holomorphic mapping f from f2 to F such that the partial 
Taylor series o f f  at z, up to order N(n)=>deg P, is equal to P.for each nCN?" 

If E and F are one-dimensional, then the answer is that (z,),e N shall have no 
accumulation points in f2. This follows from a combination of Mittag-Lefller's 
theorem and Weierstrass' theorem. 

Weaker versions of (1) have been solved by Y. Hervier [12] and M. Valdivia 
[24]: 

(2) (Y. Hervier [12, Prop. 1, p. 157]). "'Let E and F be two complex Banach 
spaces and let f2 be a domain of holomorphy in E. Suppose that (z,),~ N is a sequence 
of distinct elements of  f2 such that lim,~+~ I g ( z . ) [  = + ~ for some holomorphic 
function g on f2. Then, given any sequence of elements (u,),~ N ofF, there exists a holo- 
morphic mapping f from f2 to F such that f (z , )=u,  for all nEN". 

More generally: 

(3) (M. Valdivia [24, Thm. 10]). "Let E be a complex, locally convex space 
whose topology is given by a .family of continuous norms, f2 an open subset of E and 
F a complex Fr~chet space. Suppose that (z.).~ N is a sequence of distinct elements 
off2 such that lim,~+= [g(z.)!= +~o for some holomorphic function g on 12. Then, 
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given any sequence (u.)nc N of  elements of" F, there exists a holomorphic mapping f 
from ~2 to F such that f(z.)=u,, for all nEN." 

Of course, in both (2) and (3), the assumptions made on the sequence (z.).c N 
are necessary. 

Bearing (2) and (3) in mind, the following question arise: 

(4) "'Under what conditions on E and F does (1) have a solution, assuming that 
there is a holomorphic function g on s such that lira._+= lg(z.)l= + ~ ? "  

We remark here that it is not possible to apply (2) or (3) in order to solve (4) 
when deg P. >0.  E.g. if the topology on E is given by a family of continuous norms 
and if the strong dual E~ of E is a Fr6chet space, then (2) gives the existence of a holo- 
morphic mapping G from s to E~ such that G(z.)=~. for all nEN, where (z.).~ N 
satisfies the assumptions in (3) and ((.).~N is any given sequence in E~. But the proof 
of the existence of such a mapping G is not constructive and therefore it is not possible 
to decide if G is equal to the derivative of a holomorphic function on s 

In Section 2 we give the necessary definitions used in this paper. 
Section 3 contains an answer to (4) and also an answer to the corresponding 

questions for Silva- and hypo-holomorphic mappings. 
In Section 4 we prove that if E is a Fr~chet space then, in general, there is a 

big difference between interpolating with constant polynomials (as in (2) and (3)) 
and polynomials of higher orders. 

In Section 5 we apply the results of Section 3 and prove that any holomorphi- 
cally convex, open subset of a (DFC)-space is the domain of existence of a mero- 
morphic function. This generalizes a result of M. Valdivia [24, Thm. 8]. 
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2. Definition and notation 

In this section E and F denote two complex, locally convex spaces and f2 
an open subset of E. 

(a) 
Definition 2.1. A mapping f: ~ F  is said to be 
G~teaux-holomorphic (G-holomorphic Jot short) i f  the restriction o f f  to Ln(2  

is holomorphic for each complex line L in E. We denote the class of  G-holomorphic 
mappings from ~2 to F by H~(~2, F); 
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(b) holomorphic, iJfC HG(O, F) and f is continuous. We denote this class by Hc(f2, F), 
(c) hypo-holornorphic, if fCHG(f2, F) and the restriction o f f  to each compact subset 

of I2 is continuous. We denote this class by Hn(f2, F); 
(d) Silva-holornorphic, if for each absolutely convex, bounded subset B of E the res- 

triction o f f  to E#~f2 is an element of Hc(f2c~E~,F), where EB=U.~NnB 
algebraically and EB is norrned by the gauge of B. We denote this class by Hs ( f2, F); 

The corresponding classes of polynomials from E to F (i.e. G-holomorphic, 
holomorphic, hypo-holomorphic and Silva-holomorphic polynomials) are denoted 
by PG(E, F), Pc(E, F), P~I(E, F) and Ps(E, F)  respectively. 

If  J~HA(~?, F), A=G,C, H or S, then for any rn~N and any zEf2 the rn-th 
derivative of f at z, denoted by dmf(z), is an element of PA(E, -F). (CL S. Dineen 
[10]. P = the completion of F.) 

We now equip Hc(~?, F) and Hn(O, F)  with the topology % of uniform conver- 
gence on compact subsets of s and Hs(~?, F) with the topology %0 of uniform con- 
vergence on strictly compact subsets of O. (A subset K of ~2 is said to be strictly com- 
pact if K is contained and compact in ~?c~EB for some bounded, absolutely convex 
subset B of E, with EB as in Definition 2.1(d)). We have the following algebraic and 
topological inclusions : 

(Hc(f2, F), %) c (Hn(O , F), %) c (Hs(O, F), Zso). 

Furthermore, (Hc(O, F), r0)=(Hn(f2, F), z0) if E is a k-space, e.g. if E is metriz- 
able or if E is a (DFC)-space (the strong dual of a Fr~chet space with its compact- 
open topology. This follows from the Banach--Dieudonn6 theorem); 

(Hn(f2, F), %)=(Hs(~2, F), r~0) if each compact subset of E is strictly compact, 
e.g. if E is quasi-complete and E '  with its compact-open topology is a Schwartz' 
locally convex space. (This follows from polarity, cf. H. Hogb6-Nlend [13]); 

(Hc(f2, F), %)=(Hs(f2, F), zs0) if e.g. E is a (DFS)-space (the strong dual of 
a Fr6chet--Schwartz space. Since then E is a (DFC)-space, quasi-complete and the 
strong dual of E is a Fr6chet--Schwartz space). It is an open question whether or 
not this last equality is true for (DFM)-space also. (The strong dual of a 
Frdchet--Montel space, cf. S. Dineen [9].) 

Whenever we write Ha(Q, F) or PA(E, F) we mean that A~ {C, H, S}, if not 
otherwise is stated. If  F = C  then we write HA(O) and Pa(E) instead of Ha(Q, C) 
and PA(E, C), respectively. 

For more details about different classes of holomorphic mappings we refer 
to J. F. Colombeau [3, 5], D. Pisanelli [23] and S. Dineen [8, 10]: 

We shall now introduce an equivalence relation on Ha(O, F): 
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Definition 2.2. I f  f ,  gEHA(~2, F), NEN and zE ~2, then we say that f and g are 
equivalent up to order N at z, denoted by ( f ~ g ) ( N ,  z), i f  the first (N+ 1)-terms in the 
Taylor series of  f - g  at z all are equal to O. 

Remark. If fiEHa(g2, F ), i=1 , . . . , 4 ,  NEN, zE~2, and gEHA(g2 ), then 
(f~,--J2)(N, z) and (ja~J'4)(N, z) implies that ((f~+f~)~(f2+f4))(N, z) and 
(gf~ ~gf2) (N, z). 

Next we define the different sequences studied in Sections 3 and 4: 

Definition 2.3. Let (z,),c N be a sequence of  distinct elements of  ~2 and let F be 
a class of  complex, locally convex spaces such that CEF. We say that (z,),c N is 
(a) an A-Weierstrass sequence in ~, denoted (z,),ENE Wa(~2), i f  there exists fE H a(~2) 

such that lim,~+= [f(z,)[= + 0% 
(b) a strict A-Weierstrass sequence in ~2, denoted (Z,),ENEsWa(~), i f  there exists 

J~Ha(a)  such that (]f(z,)[),E N is strictly increasing and unbounded; 
(c) an FA-interpolation sequence of  order NEN in ~2, denoted (z,),~NE FlUa ( g2), if, given 

any FE F and any sequence (P,), c N in Pa (E, F), where 

Pn(Z) = C~ r- . . .  "q-CNn ( Z - - Z n )  

and el, are homogeneous of  degree i, there exists fE H a ( f2, F) such that ( f ~ P , ) .  
(iV, z,) for all hEN; 

(d) an FA-interpolation sequence in I2, denoted (z.),~NE FIA(f2), if, given any FE F 
and any sequence (P,),~N in Pa(E, F), where 

t' .  (z) o ~ + CUn ( " ) ( z -  Z.) = C.+C.(Z--Z . )+. . .  

i and c, are as in (c) above, there exists fEHa(f2, F) such that ( f~P , ) (N(n) ,  z,) 
for all nEN. 

Remark. It follows immediately that 

r la  (f2) c (-] r I ~  (f2) c U FI~ (f2) = FI  ~ (f2) c siva (f2) c Wa (f2) 
NEN NEN 

in general. 
Question (4), asked in the introduction, can now be formulated as follows: 

"Under what conditions on E and F is FIA(~2)=Wa(g2), A = C ,  H, S?'" 
The results of Y. Hervier and M. Valdivia ((2) and (3), respectively, in the intro- 

duction) get the following formulation: 

(2') " I f  E is a complex Banach space, [2 is a domain of  holomorphy and F = 
the class of  complex Banach spaces, then Fl~ '' 

(3') "'If the topology on E is given by a family of  continuous norms, f2 is an open 
subset of  E and F = the class of  complex Fr&het spaces, then FIO(f2)=Wc(I2). "" 



Holomorphic mappings with prescribed Taylor expansions 125 

And also, [24, Thm. 11] says that FIg(Q)=sW(Q) for any manifold (Q,p) 
spread over a complex, locally convex space E, where Q is a Hausdorff topological 
space and p is a local homeomorphism from Q into E. 

We remark also that, using the technique in M. Valdivia [24, w 3], it is not 
difficult to prove that Fig(m)= Wc(Q) if E is a (DFC)-space and F = the class of  
complex Fr6chet spaces. 

3. An interpolation theorem 

In this section we study (4) in the introduction for a certain class of complex, 
locally convex spaces containing all (DF)- and (DFC)-spaces. (A locally convex 
space E is called a (DF)-space if E has a countable, fundamental system of bounded 
subsets and if for each sequence (V,) ,~ of absolutely convex 0-neighbourhoods in E, 
such that V---(~,cN V, absorbs each bounded set, V is again a 0-neighbourhood. 
Strong duals of metrizable spaces and countable, strict inductive limits of normed 
spaces are (DF)-spaces.) We refer to A. Grothendieck [11] for the theory of (DF)- 
spaces and to R. Hollstein [15] for the theory of  (DFC)-spaces. Results concerning 
holomorphic mappings on (DFC)-spaces can be found in J. Mujica [21] and M. 
Valdivia [24]. 

Theorem 3.1. Let F denote the class of complex Frdchet spaces and let E be a 
locally convex space with a countable, fundamental system of bounded subsets. I f  0 
is an open subset of E, then 

w~ (Q) c FI,~ (Q) = Vr (Q) c H s  (Q) = ~ (Q). 

Remark. I f E  satisfies the assumptions in Theorem 3.1 and i r E  is also a k-space, 
e.g. if E is a (DFC)-space, then Theorem 3.1 yields that Wc(Q)=FIc(Q ) for any 
open subset ~ of  E. 

Before the proof  of Theorem 3.1 we need some lemmas. 

Lemma 3.2. Let E be a locally convex space with a countable, fundamental sys- 
tem (B,),~ N of absolutely convex bounded subsets. Let "c denote the finest locally con- 
vex topology on E.for which each B,, n~N, is bounded. Then (E, ~) is a bornolcgieal 
(DF)-space. 

Proo/~ We obviously have that (B,),c N is a fundamental system of  absolutely 
convex bounded subsets of  (E, z). If  (V,) n ~ N is a sequence of  absolutely convex 0-neigh- 
bourhoods in (E, z) such that V= 0,~N V~ absorbs each bounded subset of (E, ~) 
then, by the definition of  z, V is a 0-neighbourhood in (E, ~). Furthermore, (E, z) is 
bornological since we have taken as 0-neighbourhoods all absolutely convex sets 
which absorb each Bn, nEN. 
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The next lemma is used in order to reduce the proof of Theorem 3.1 to the case 
of Banach-valued mappings. 

Lemina 3.3. (J.-F. Colombeau and J. Mujica [7, Lemma 3.4]). Let E and F be 
two (complex) locally convex spaces such that F is metrizable and for each sequence 
(V,),E N of absolutely convex O-neighbourhoods in E, there exists a sequence (2,),E N 
of positive, real numbers, such that (-],~N 2,V, is again a O-neighbourhood in E. Then, 
given any sequence (P,),,~N of  continuous polynomials from E to F, there exists an 
absolutely convex O-neighbourhood V in E, an absolutely convex bounded subset B of  
F and a sequence (Q,), E N of continuous polynomials from Ev to FB, such that the follow- 
ing diagram is commutative for each nE N: 

E , F  

Ev ~ F8 
Q,, 

(Here Ev=(E/p~.l(O),pv), Pv = the gauge of V, Sv = the canonical projection, F B 
is as before and iB = the canonical injection.) 

The proof of the next lemma can be found in S. Dineen [10, Example 1.24, p. 17]. 

Lemma 3.4. Let E be a bornological (DF)-space and F a locally convex space. 
Then Pc(E, F)=Ps(E,  F) algebraically. 

Lemma 3.5. Let E be a complex, locally convex space and f2 an open subset 
of E. Let gEHa(f2) (A-~G, C, H, S)  and rER+ be gi'ven, lJ f2r={zEf2: Ig(z)I<-r} 
and zoEf2\Or, then given any e>0  and NEN, there exists hEHa(O) suchthat 
SUpz~ r Ih(z)l<e and (h~ l ) (N,  z0). 

Proof. Define HEHA(Y2) by H(z)=(g(z)/g(zo)) ~t, MEN. (Note that g(zo)r 
since z0~12r.) If  6 > 0  is given, then supz~rIH(z)l<6 if M = M ( 6 )  is chosen large 
enough. Put h(z )=l - (1 -H(z ) )N+lEHa( f2 ) .  We get that supz~r[h(z)l<e if 
6 >0  is chosen small enough, i.e. if M is chosen large enough. Furthermore, it 
follows immediately from the construction that (h~ 1)(N, z0). 

Proof of Theorem 3.1. The proof is divided into two steps. First we assume that E 
is a bornological (DF)-space. Then E satisfies the assumptions in Lemma 3.3 and 
Lemma 3.4, so the proof is (in all cases) reduced to the situation when F = the class 
of complex Banach spaces. The second step consists of an application of Lemma 3.2. 
The proof is then again reduced to the case of Banach-valued mappings, with the 
only reservation that we have changed the topology on E and therefore the classes 
Hc(f2, F) and Hn(f2, F) also have changed. (Note that Silva-holomorphicity has 
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nothing to do with the topology on E as long as the bounded subsets remain the 
same.) However, the construction of the mapping f (satisfying the assertion in Theo- 
rem 3.1) in Step 1 will allow us to draw the conclusion that Wc(f2)cW~(~?)= 
FIu(f2) with respect to the original topology on E. 

Step 1. E is a bornological (DF)-space. 

If  F is a complex Fr6chet space, then we can choose a basis B of absolutely con- 
vex, bounded subsets of F such that FR is a Banach space for each BEB. Hence, 
applying Lemma 3.3 and Lemma 3.4 we can, without loss of generality, assume that 
F = the class of complex Banach spaces. 

Let now (z.).~NEWa(f2), FEF and a sequence (P.).cN in PA(E, F) be given 
(A =C,  H or S). Renumbering the sequences (z.).c N and (P.).eN, if necessary, we can 
find a function gEHa(f2) such that (Ig(z.)l).~N is increasing and unbounded. (Re- 
numbering the sequences does not affect the generality as long as we renumber them 
in the same manner.) Put  ~?.={zE~?: [g(z)l<=[g(z.)]} and choose a sequence 
(p(n)).~Nin N such that z0 . . . .  , zu(.)E ~2., zv~ ~2. if v>#(n) .  Let (B.).c N be a funda- 
mental system of bounded subsets of  E and put  L.=B.nf2.. Then each (strictly) 
compact subset K of f2 is contained in L.  if n is large enough, since KcB .  if n is 
large enough and g is bounded on K. (Note that if gEHs(~?), then g is bounded 
on strictly compact subsets of  ~2, but not necessarily on compact subsets of  ~2.) 
Denote by [[ �9 1[ the norm defining the topology on F and define [If[[.= SUpz~L" [If(z)[] 
+o% i f f i s  a mapping from ~2 to F, and [f[.=sup~cL" [f(z)l <- + 0% i f f i s  a complex- 
valued function on g2, where ]. [ is the usual Euclidean norm on C. 

We shall now inductively construct a sequence (f.)nCi in HA(g2, F) with the 
following properties: 

[ ][f.ll.-x ~ 2-n 
(H.): {(f~ "~ O)(N(i), zi) if i <- p ( n - - l )  

n--1 i [ ( f ,  ( P , - ~ = 0 f k ) ) ( N ( ) ,  zi) if p(n--1)  < i~p(n) .  

For n--0  only the last of  these properties has a meaning and the construction 
of fo is just a simplification of the construction of f ,  below. So, we assume that 
fo, ...,f,-1EHA(~2, F) with properties (H0) . . . . .  (H,-1), respectively, have been 
constructed. 

Since t-vi=o (" ~u(,) is finite and zi#z j if i#j, an application of  the Hahn--Banach 
theorem gives the existence of a linear form ~,EE' such that ~,(zi-zi)#O if i# j  
and i,j~#(n). For  i=p(n-1)+l  . . . . .  p(n) we set 

/),,n (Z) = (//1~_ j~/~(n) ~n (Z-- zj))/(Hl~=j~_,(n ) ~n (zi-- z j)). 
j#i  j~:i 

Then obviously vi,.EPc(E), vi,.(z3=l and vi,.(zj)=O if i~ j  and l<=j<-p(n). 
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' e i - - Z k = O  r ~ ] l ) M n  For i as above we let Qi.~ be the Taylor expansion of .-x ~kj/ i,~ at 
zi up to order N(i), where M~=supl~_j~_u<.)N(j)+I. Now, Lemma 3.5 gives, for 
each i such that It(n-1)<i<:#(n), the existence of a function hi..EHa(f2) such 
that (hi,. T M  1)(N(i), z~) and 

sup th,,.(z)l < {2"(#(n)-I~(n-1))lIQ,,.fl.-llV,,,,[~-"l} -~. 
zEf]n-1 

(If IlQ~,.[I.-1 Iv/,.1.-1 =0 ,  then we just supress the inequality. Note that I[Qi..ll._a< 
+o~ since Qi,.EPa(E, F) and L._I  is a bounded subset orE) .  Put 

~u(n) fo(z) = ~=.~.-1)+1 Q'..(z)h',.(z)(v,,.(z)) M"" 

Then J~EHa((2, F)  and the supremum on L._I  of each term in the sum defining J.  
is less than {2"(# ( n ) - i t ( n -  1))} -z and the number of  terms is equal to I t (n)-I t (n-  1). 
Hence, we see that Ilf.II.-a~2-". Furthermore, if j=<It(n-1),  then vi,.(zi)=O. 
So (f..vO)(N(j),zj) if j ~ I t ( n - 1 ) .  If It(n-1)<i<=#(n), then 

A ( ~ , )  : Q, , . ( z , )h , , . (~ , ) (v , , . ( z , ) )  M", ~,,.(~,) = 1, (h,, .  ~ 1 ) (N(O,  z,) 
and 

n -- 1 M n �9 (Q~,n ~ {(P,-~'~=0 fk)/v,.. })(N(t), z~). 

From the remark following Definition 2.2 it foltows that 

(P.--~'"-~fk))(N(i), z,) if I t (n-- l)  < i ~ It(n). fn ~ k ~ ~.ak=0 

Henee, j~ satisfies property (H.) and the construction of the sequence (f.).eN is done. 
Now we define f ( z ) :~ .ENf . ( z ) ,  zEO. Since each (strictly) compact subset K 

of (2 is contained in L.  for n large enough, it follows that the series defining f con- 
verges uniformly on (strictly) compact subsets of ~2. Thus f~H~(O, F) (if (z.).eNE 
Wc(f2 ) or Wn(f2)) and fEHs(I2, F) (if (z,,),~r~EWs(12)). 

It remains to show that (f~Pi)(N(i),zr for all iEN. Let zEf2 and xEE be 
given. We have that 

df(z)(x) = (2*ci)-~ fl.~i=~ Z.~N f . ( z  + ,~x),~-2 d;. 

where ~ is any positive, real number such that {z+2x: 12 ]~x}cO.  But 
{z+Ax: 121_<-e.~} is strictly compact in ~2 for fixed z and x and since ~ . ~ f .  con- 
verges uniformly on (strictly) compact subsets of O, it follows that 

= (2 0 -1  f .  (z d2 = Z . e ~  df.(x). 

In the same manner we get that dmf=~.<N d"fn, m>=2. These equalities and the 
properties (H.) yields that (f~P~)(N(i), z~) for all iEN. 

Step 2. E is not a bornological (DF)-space. 
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In this case we equip E with the finest locally convex topology z as in Lemma 
3.2. Denote by f2, the set ~2 regarded as an open subset of (E, z). 

First we consider the case of Silva-holomorphic mappings. Since the identity 
mapping (E, z) -~E is continuous and has a bounded inverse, we get that Hs(~2 ~, F) = 
Hs(O, F) algebraically and topologically. 

From Step 1 it follows that 

Ws(f2) = Ws(f23 = rls(f2~) = FIs(f2). 

If  (Zn),eNEWA(Y2), A = C  or H, then obviously (Z,),eNEWA(f2,). Applying 
Step 1 we therefore get a sequence (f~),~N in HA(Y2 ~, FB) such that f=z~,c~f~E 
Hn(f2,, F~) has the desired properties. (Here F is a complex Fr~chet space and 
B c F  is bounded and absolutely convex.) But from the construction of the f~: s 
in Step 1 it is easily seen that they can be chosen such that z ~ f ,  converges uni- 
formly on compact subsets of f2 (i.e. not only on compact subsets of g2,). From this 
it follows that 

iaof = i ~ o Z ,  eNf, = Z ,  eN i ,~  EHn( (2, F). 

This ends the proof of Theorem 3.1. 
Corresponding results for mappings defined on manifolds spread over certain 

locally convex spaces are achieved analogously. (For notation and definitions of 
such mappings we refer to G. Coeur6 [2].) 

Theorem 3.6. Let E be a complex, locally convex space with a countable funda- 
mental system of  bounded subsets, (t?, p) a manifold spread over E and F = the class 
o f  complex Frdchet spaces. Then 

sWc ((2) c Fin (~) = sWtt (g2) 

(Here sWa(O) and FIa((2), A----C, H, S, 
Definition 2.3.) 

and sWs((2) = FIs((2). 

are defined in complete analogy with 

Proof. As before, we first assume that E is a bornological (DF)-space. Then we 
can apply the proof of Theorem 3.1 with the only difference that we do not use the 
Hahn--Banach theorem in the construction of the sequence (f,),cN- Instead we use 
the assumption that (z,),cNEsWa(~). 

If  E is not a bornological (DF)-space, then we apply Lemma 3.2 and equip E 
with the topology z. Define ~ ,  by taking inverse images of open subsets of (E, ~) 
under the projection p. We then get a commutative diagram 

I 
(E, ,) +E 
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where the horizontal arrows denote the identities. Proceeding as in Step 2 of the 
proof  of  Theorem 3.1 we then get the desired result. 

Remark. (1) Since Silva-holomorphicity of  a mapping only depends on the 
bornology on the space, and not on the topology, the proof  of Theorem 3.1 for 
Silva-holomorphic mappings also gives that Ws(O)=FIs(O) if O is a Mackey- 
open subset of a convex, regular bornological space E with a countable base for 
the bornology and F = the class of  complex Banach spaces. (For the definitions of 
these concepts concerning bornological vector spaces we refer to H. Hogb6-Nlend 
[13].) 

(2) If  we in Theorem 3.2 assume that E has a countable, fundamental system 
of compact sets, e.g. if E is a (DFC)-space, and that Hc(O) separates points in O, 
then we can replace the assumption that (z,),cNEsW~(O) by (z,),cNE WA(O ), A = C  
or H. The proof  of  Theorem 3.2 then applies. Note that each component in f2 of 
the inverse image underp  of a compact subset of E is a bounding subset for Hn(O, F). 

4. Examples and counterexamples 

We begin by proving that i f E  is a Fr6chet space, then E must satisfy some extra 
assumptions in order that FI~(E)r where F = any class of complex, locally 
convex spaces containing C. 

First we need a definition. 

Definition 4.1. Let E be a metrizable locally convex space and let (tl" [],)n~N 
denote an increasing system of  seminorms defining the topology on E. We say that E 
has property (DN) i f  there exists a continuous norm I1 II on E, such that for each mEN 
there exists k>:m and C > 0  such that [[z[1~m<=CJlzl[ �9 llz][ k for all zEE. 

This property of a metrizable locally convex space was first studied by 
D. Vogt [26]. 

Proposition 4.2. Let E be a complex Frdchet space and F any class of  complex, 
locally convex spaces containing C. I f  FI~(E)~O then E has property (DN). 

Proof. From the proof  of  D. Vogt [25, 3.5, p. 280] and from D. Vogt [26, 1.4, 
p. 110] it follows that E has property (DN) if, given any sequence ((,),oN in E ' ,  there 
exists hEHc(C, E'p) such that h (n )=( ,  for all hEN. (Cf. also R. Meise and D. Voigt 
[19].) 

Let (z,),cNEFI~(E) and (~,),EN in E" be given. Choose fEHc(E ) such that 
( f~ ( , ) (1 ,  z,) for all nEN. Now, df i s  an element of Hc(E, E'p) and furthermore, we 
can choose gEHc(C, E) such that g(n)=z, for all nEN. If  we define h=(df)og, 
then h (n )=( ,  for all nEN and thus we get that E has property (DN). 
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Remark. There are lots of examples of Fr~chet spaces that do not have property 
(DN). Of course, any Fr6chet space without continuous norm does not have pro- 
perty (DN). Furthermore, according to D. Vogt [26, 2.4, p. 115], any power series 
space of finite type does not have property (/3N), but nevertheless they all have a 
continuous norm. So, if E is a power series space of finite type, then Proposition 4.2 
implies that /~7~(E)=0, but M. Valdivia [24, Thm. 10] implies that FI~ 
Wc(E)~0, where F is any subclass of the class of complex Fr6chet spaces and 
CEF. Hence, there is, in general, a big difference between the classes FI~(E) and 
FIg(E). 

The following example illuminates, in a perhaps more clear way, the difference 
between FIg(E) and FI~(E) in some particular cases. 

Example 4.3. Let E=AI(c~) where Al(e) is the power series space (of finite 
type) {z~C N: /-/r(Z)=ZnEN Iz.lr=-< + 0% 0-~r<l}  endowed with the Fr6chet space 
topology induced by the norms {//,: 0 < r < l } .  (Cf  R. Meise and D. Vogt [18].) 
R. Meise and D. Vogt [17] have proved that if Al(g) is nuclear (which is equivalent 
with the condition lim,_~ +~ ln(n+ 1)/c~, --- 0), then any fEHc(E) factorizes through 
Ev for some 0-neighbourhood V in E. (Note that V can be chosen such that the gauge 
of V is a norm.) 

Let (V~),c N be a sequence of strictly decreasing 0-neighbourhoods in E and 
choose ~,EE" such that ~,+1 is bounded on V~+~ but not on V~. If  follows that there 
is nofEHc(E) such that (fN~,)(1, z,) for all nEN (where (z,),c N is any given sequence 
of points in E). We conclude once again that FI~(E)=O. 

Remark. (1) If  U is a strictly pseudo-convex domain in a k-dimensional Stein 
manifold then Hc(U) is isomorphic to Hc(Dk), where D denotes the open unit disc 

k 

in C, which in turn is isomorphic to A1 (I/n). (V. S. Mityagin and G. M. Henkin 
[20].) So, if U is as above, then Proposition 4.2 (or Example 4.3) implies that 
FI~(Hc(U))=O. 

If U = C  k for some k ~ l ,  then we do not know if FI~(Hc(C~)) is empty or 
not. (In connection with this, see also a counterexample on factorization by L. 
Nachbin [22].) 

(2) If  E is a (DFM)-space (the strong dual of a Fr~chet--Montel space), then E 
satisfies all the assumptions in Theorem 3.1 and E is also a k-space, so FIc(Y2)= 
VVc(~2) for any open subset ~ of E. 

It is known that any entire function on E factorizes through a normed linear 
space (as a function of uniform bounded type; J. F. Colombeau and J. Mujica [6]). 
So, any (DFM)-space E has the same factorization property for entire functions as 
the space A~(~) in Example 4.3 but nevertheless FIc(E)=Wc(E)~O. 

The next Proposition gives a sufficient condition on a Fr6chet space E in order 
that FIc(E)~O. 
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Proposition 4.4. Let E be a complex Frdchet space for which each closed, C% (0, 1)- 
form is exact. Then FIc(E)r  where F={C}. 

Proof. The proof uses an idea of R. Meise and D. Vogt [19, Lemma 3.1]. 
Let (z,),c N be given by zn=(n,y,)ECXF, where F is a closed subspace of E 

of codimension 1. Let (P,),EN be a sequence of continuous complex-valued polyno- 
mials on E, 

Pn (z) = c o +~'ff=(1 ) c~ ((x, y)-- (n, Yn)) 

where z=(x , y )EC•  and cin is homogeneous of degree i, O<-i<-N(n). As in [19] 

we now choose lPEC=(R) with s u p p l p c [ - + , - ~ l  a n d 0  identically equal to 1 

the interval [ _ 1 ,  1 ] .  Define Ipn: R--R and ~0n: C--R by 0n(~)=~P(~-n) on  
L ~ 

and % (x) = 0,  (Re x), respectively (nEN). Next we define g: (C\N)XF-~C 
by g(x,y)=~nCN%(X)P,(z)(x--n) -1. Then gEC=((C\N)•  and -Og(x,y). 
(Wl, w2)=~,e  N Pn(z)(x-n)-l~b~(Re x)ff~l, (Wl, w~)E(C\N)XF. The choice of 

0n shows that 0g can be extended to a closed C=(0, 1)-form ~o on E, by setting 
(_o(n, y)=O for all n~N, yEF. By our assumption on E, there exists a C = function 

u on E such that 0u=o). 
Now we choose a function vEHc(C) such that (v~(x-n) ) (N(n)+ 1, n) for all 

nEN. Define f :  E-+C by 

r(g(x, y ) - u ( x ,  x 
f (x ,  y) = / "  " L  P,, (n, y), x = n. 

It follows that fE Hc (E) and the k-th derivative dkf(zn) = d k P, (z,), 1 <=k <-_ N(n), 
for all nEN. Thus (f~Pn)(N(n), z,) for all nEN and we get that (z,),eNEFIc(E). 

Next we give an example of a space E such that Wc(E)~Wu(E)/Ws(E) 
and FI c (E) r Flu (E) r FIs (E). 

Example 4.5. Let E=lP(N), 1 < p <  + ~, (or any infinite-dimensional, reflexive 
Banach space) and F = the class of complex Fr6chet spaces. Denote by E~ the space 
E with its weak topology. By Mackey's theorem E~ has a countable, fundamental 
system of absolutely convex bounded sets, namely (nB),~ N where B is the unit ball 
in E. Thus E~ satisfies the assumptions in Theorem 3.1, so we get 

Wc(O) c FIn(O ) = Wn(g2) c FIs(g2) = VVs(f2) 

for any open subset ~ of E , .  
Now, B is compact in E ,  so each fEHu(E~) is bounded on B. Furthermore, 

Hc(E)~-Hs(E)=Hs(E,).  Since the unit ball is not a bounding set for Hc(E) it 
therefore follows that Ws(E,) ~ WH(E,). 
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In order to see that Wc(E,,)~WH(E~) we choose P~EPc(E) such that P~(z)= 
(q~n(z))"/(n!) lm, where (q~n)n~N are the unit vectors in lq(N)=lP(N) ', and define 
f ( z )=~ , cN  P,(z). The series defining f then converges uniformly on compact sub- 
sets ofE~, sofEHn(E~,). The sequence (z,)~c N defined by z~=nl/qe~, where q~g(en)= 
6~, k, nEN, is an element of Wn(E~) (lim,_~+~ [p~(z,)]=+oo) but since each 
hE Hc(E~,) factorizes through a finite-dimensional quotient space of E~, it is easy to 
check that there is no hEHc(E~) such that lim,,~+~ [h(z~)[=+~o (in fact, each 
hEHc(E~) is bounded on some infinite subsequence of (z~),~N). Hence, Wc(E~)# 
WH(E~). The fact that each hEHc(E~,) factorizes through a finite-dimensional space 
also implies that FIc(E~,)=O. 

Summing up we have the following inclusions and equalities: 

0 = FIc(E~) ~ Wc(E~) ~ Wn(E~) = FIn(E~) ~ Ws(E~)---- FIs(E~). 

Next we give an example of a space satisfying the assumptions in Theorem 3.1 
and in Lemma 3.3, but E is not a (DF)- or (DFC)-space. 

Example 4.6. Let E be a complex, reflexive, infinite dimensional Banach space. 
Denote by s(E'p) the nuclear bornology on the strong dual E~ of E, i.e. a subset of 
s(E~) is bounded if and only if it is contained in the convex, balanced hull of a sequence 
(z,),c N in E~ such that lim,~+~ nkz,=O for each kEN. Now equip E with the topo- 
logy obtained by taking polars of bounded subsets in s(E'p). We denote E with this 
topology by (E, s(E, E'~)). It follows by polarity from [4, Lemma 1, p. 97] that for 
each sequence (V,),c N of 0-neighbourhoods in (E, s(E, E'p)) there exists a sequence 
(2,),cN of positive real numbers such that ~,cN 2,V, is again a 0-neighbourhood. 
Furthermore, since E is reflexive and 

a (E, E') ~ s (E, E~) ~ fl (E, E'), 

it follows from Mackey's theorem that (E, s(E, E'~)) has a countable fundamental 
system of bounded subsets. In fact, (E, s(E, E'p)) is hemicompact. (The fact that 
a(E,E')~s(E,E'p) follows from [14, Prop. 2, p. 218].) 

In order to prove that (E, s(E, E'~)) is not a (OFC)-space, we assume the contrary 
and try to obtain a contradiction. So, assume that (E, s(E, E~))=(F',  %) for some 
Fr~chet space F. Then the bornological dual (E, s(E, E'p)) x of (E, s(E, E'p)) is equal 
to (F', zo) x which in turn equals the space F with its compact bornology (H. Hogb6- 
Nlend [131). But (E, s(E, E;))X=the space E~ with its nuclear bornology. Hence, 
the nuclear and compact bornologies on E~ coincide. But this is only possible if E 
has finite dimension (H. Hogb&Nlend and V. B. Moscatelli [14, Cor. 2, p. 161]). 
So, we have a contradiction and conclude that (E, s(E, E'~)) is not a (DFC)-space. 

It remains to be shown that (E, s(E, E'~)) is not a (DF)-space. Choose zk=Z-"/ke,, 
where (e,),c N are the unit vectors in E'=/q(N). Then (z k) is a rapidly decreasing se- 
quence for each fixed kEN, i.e. lim,~+= n"zk=O for each mEN. Suppose now that 
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p (E, s(E, Ea)) is a (DF)-space in order to get a contradiction. Since F({Z,k},EN) is an 
equicontinuous subset of  lq(N) for each kEN (F = the closed, convex, balanced hull) 
this implies that 

B = r (  u 
k ~ N  

is compact in P(N), since it is bounded. But B = the unit ball in P(N)  
and thus we get a contradiction. Hence, (E, s(E, E'p)) is not a (DF)-space. 

Remark. Example 4.6 shows that for some spaces E, other than (DF)- and (DFC)- 
spaces, it is not necessary to apply Lemma 3.2 in the proof  of  Theorem 3.1, i.e. the 
conditions in Lemma 3.3 are already fulfilled. 

In view of  M. Valdivia's result [24, Thm. 10] quoted in the introduction, the 
following example has a certain interest. (We wish to thank V. B. Moscatelli for 
pointing out this example.) 

Example 4.7. There are (DF)-spaces without continuous norms. 
An example of  such a space is obtained by taking the strong dual of  a Fr6chet 

space constructed by I. Amemiya [1]. (This example can also be found in G. KSthe 
[16, p. 408].) 

Let R be the set of all strictly increasing sequences q=(qn)nCN, qn >0" Define 
on R the linear space E of  complex-valued functions f such that 

P,,(f) = (Z,~cR lf(q)12q,,) ~/2 < + ~,  hEN, 

and equip E with the topology given by the norms (P,),~N- Then E becomes a 
Fr6chet space. Let B e E  be a bounded subset, i.e. suplcBp,,(f)=M,,< + ~, nEN. 
Choose q=(q,),~N such that lim,,~+=M~/q,,=O. Since If(q)leq,,<=M~, nEN, 
we get that f ( t / ) = 0  for each fEB. This implies that the polar of B, an open subset 

g 
of the strong dual Ee of E, contains a straight line. Since B was arbitrarily chosen, 
this proves that E~ lacks continuous norms. 

5. An application 

In this section we apply Theorem 3.1 and prove that a holomorphically convex, 
open subset of  a (DFC)-space is a domain of existence of  a meromorphic function. 

In M. Valdivia [24, Cor. 1.8] it is proved that a holomorphically convex, open 
subset ~2 of  a (DFC)-space is a domain of  existence of  a holomorphic function. 
(See also J. Mujica [21].) The proof  of  this consists in constructing a functionfE Hc(f2) 
such that, for each open, connected subset U of  E with Uc~f2~0 and U~z f2, . / is  
unbounded on each component of  Unf2. (Note that the existence of  such a function 
f d o e s  not  apriori imply that f2 is a domain of existence of  a meromorphic function.) 
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Before stating the theorem we need some definitions. 

Definition 5.1. Let E be a complex, locally convex space and s an open subset 
of  E. A meromorphic function on g2 is a collection (Vi,g i, hi)iE ~ where (Vi)i~i is an 
open covering of  f2, gi, hiE Hc(VO for each iE I, gi is not identically equal to 0 on any 
component of  Vi and gihj=gjh i on V~c~V i. We denote the class of  meromorphic 
functions on f2 by M(g2). 

It follows from Definition 5.1 that each (Vii, g,, h,)iciEM(O ) is represented 
by .f=hi/g i on Vi, iEI, so we write f=(Vi,  gl, hi)ici. 

Definition 5.2. Let E be a complex, locally convex space and f2 an open subset 
of  E. We say that ~ is a domain of  existence of  a meromorphic function i f  there exists 
fEM(f2) such that for any open subsets U1 and Uz of  E, with U2r Ulcer2 and 
U2c Ulcer2, there are no mer omorphi c functions flEM(U1) and f 2E M ( U2) such that 

f and f l  are both equal to f2 on U2. 

Theorem 5.3. Let E be a complex (DFC)-space and f2 a holomorphically con- 
vex, open subset of  E. Then f2 is a domain of  existence of  a meromorphic function. 

Proof. In M. Valdivia [24, Thm. 8] a double sequence (z,m), ,,. E N is constructed 
satisfying the following conditions: 

(1) (Z,m), ' m C N is a sequence of  distinct elements of Z (f2) without accumulation 
points in X(O), where )~ is the canonical projection from E onto a quotient space 
of  E and )~(f~) is a hemicompact kR-space , i.e. )~(~) has a countable, fundam ntal 
system of compact subsets and a function f :  Z(f2)-~R is continuous whenever 
its restriction to each compact subset of  Z (~) is continuous; 

(2) lim,~+~Z,m=Zm for each mEN, where (Zm)~ N is a dense subset of OZ(f2); 
(3) if W is a connected component of U~f l ,  where U is open and connected 

in E, Uc~Qr and U ~ O ,  then there exists XoEOWc~Of2, m~O and a sequence 
(X,m) in W such that lira,_+= x ,m=x o and (X(X,m)),~ N is a subsequence of (Z.,),eN; 

(4) there exists GEHc(Z(f2)) such that G(z,m)=n+m for all n, mEN. 
Applying Theorem 3,1 with Lk=KkC~{zEz(fl): IG(z)l<=k}, kEN, where 

(Kk)kC N is a fundamental system of  compact subsets of  Z(O), we obtain a function 
fEHcO~(O)) such that f is not identically equal to 0 on any component )~(~) and 
( f~O)(n+m,  z,,,) for all n, mEN. (Note that f is continuous since Z(Q) is a k R- 
space.) 

Now we definefEHc(O) by f = f o  x. We claim that O is the domain of mero- 
morphy for f .  We assume that this is false, in order to obtain a contradiction. I.e. 
we assume that there exists open subsets U1 and U2 of E and two meromorphic func- 
tions flEM(U1) and f~EM(U2) such that U2r U~V_f2, U2CUlO~'~ a n d f a n d f ~  
are both equal to f~ on U2. 

We make some observations in order to shorten the notation. First we observe 
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that  by choosing U1 smaller if necessary, we can obtain that  Ulqzf2, U l n f 2 r  

and there exists g, hEHc(U1) such that  gf~ = h  on U1, w h e r e g  is no t  identically equal 
to 0 on any componen t  o f  Ui. Secondly, if W is any componen t  o f  Uln f2  and if 

U2nW#O,  then f2 has a unique meromorph ic  extension to W, so we can assume 
that  W c  0"2. (Note  tha t f~  is in fact ho lomorphic  on Us sincefEHc(I2)). 

I t  is easy to see that  these assumptions on Uz and U~ do no t  affect the generality. 

Let  W be a componen t  o f  Uln f2  contained in U2 and choose xoEOWnOf2 and a 

sequence (X,m),cN in W such that  lim,,~+= x , , , = x  o and (•(Xnm))nE N is a subsequence 

o f  (Z,m),EN for some mEN. Since g f l=h  on U1 and f = f 2 = f l  on W, we get that  
g f = h  on W. F r o m  this and the fact that  ( f~O) (n+m,  x,,,) for  all nEN, it follows 

that (h N 0)(n + m ,  Xnm) for  all n E N. Assuming for a momen t  that  l im,~ + = d~h (X,m)= 
dkh(xo) for all kEN,  we get that  h has a zero o f  infinite order  at  Xo and f rom the 
uniqueness o f  analytic cont inuat ion it then follows that  h is identically equal to 0 

on W. But  neither f nor  g is identically equal to 0 on W and thus we get a contra-  
diction. So, it remains to prove e.g. tha t  d~h: UI-,-Lk(E)= the space o f  symmetric 
k-linear, cont inuous forms on E k, with the topology  of  uni form convergence on 

compac t  subsets o f  E k, is continuous.  We prove this when k =  1. (The case k = 0  

is obviously true and the case k > 1 is treated in analogy with k = 1.) 
Let  K be a compac t  subset o f  U~. Since h is cont inuous there exists a neigh- 

b o u r h o o d  V of  K in U~ such that  sup~ c v ]h (x) l < + co. The fact that  K is compac t  im- 
plies that  we can choose an absolutely convex 0-ne ighbourhood W in E such that  

K + W c V .  Let now B be an absolutely convex, bounded  subset o f  E and choose 
~ > 0  such that  o B c W .  Using Cauchy-inequalities we get 

Idf~( )(  )1 [h( )1/~ Ih( )1 < suplh(z)l~ < §  sup x z _--< sup z =< sup z , =  
z6B,  x 6 K  z~K+QB z E K + W  zEV  

This ends the p r o o f  o f  Theorem 5.3. 
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