Area integral estimates for elliptic differential
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In this note we shall prove inequalities comparing the area integral and nontan-
gential maximal functions for solutions to second order elliptic equations in a domain
in R”, in which both the coefficients of the equation and the domain satisfy very weak
regularity conditions to be formulated later (cf. [7]). Such inequalities have been
proved by many authors in increasing generality. (See [1, 6, 9, 11], where further refe-
rences can be found.) The most general setting up to now is that of harmonic functions
in Lipschitz domains [6]. There the key additional point is the fact that harmonic
measure for the standard Laplace operator satisfies 4., (a scale-invariant form of
mutual absolute continuity) with respect to surface measure on the boundary of
the domain. By contrast, surface measure need not exist in our more general context.
Moreover, even if the domain is smooth (and hence has a surface measure), L-har-
monic measure and surface measure are mutually singular for some choices of the
elliptic operator L [2}. This is the main new difficulty.

We shall first state and prove the theorem in a special case that retains the main
difficulty. Recall that a bounded domain DcR" is called a Lipschitz domain if
0D can be covered by finitely many open right circular cylinders whose bases have
positive distance from 0D and corresponding to each cylinder [ there is a coordinate
system (x, y) with x€R"~%, y¢R with y axis parallel to the axis of I, and a function
¢: R"'->R satisfying a Lipschitz condition (J¢(x)—¢(z)]=M|x—z|) such that
InD={(x,y): y=p(x)}nI and IndD={(x,y): y=¢(x)}nl. Denote by L=
Zi, Jj=1 79:\;:
coefficients, that is, a;;6€ L=(R") and for some c¢=0, =1 a;;(X)¢&;=c ¢ for

7
a; (X )W a uniformly elliptic operator with bounded, measurable
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0
all £¢R" We say that u is L-harmonic in D or Lu=0 in D if é uc L2 (D) and

a i
[ 30 (8‘97” ) a X5 p (X)X = 0

for all pcC; (D). The theorem of de Giorgi and Nash [14] says that u has a Holder
continuous representative (which we also denote by u). Let DCR" be a (connected)
Lipschitz domain. Fix for all time a point X €D. For each continuous function f
on 9D there is a unique L-harmonic function  in D continuous in D such that u=j
on 0D. The L-harmonic measure at X, is the representing measure of the linear
functional f>u(Xy)= [,, f(P)dw(P).

For P€AD, o=0, a nontangential approach region to P in D is given by
I'(a, P,D)={X€D: |X—P|<(14+«) dist (X, d0D)}. The area integral is defined for
PcoD by

Aw o, P)=([ X = PP |Vu (X)) dX)"*.

I'(a, P,D)
The nontangential maximal function is defined by
N(u, a, P) = sup {|u(X)|: X€I'(a, P, D)}.
Denote B(X,r)={Y<R": [X—Y|<r} and
A(P,r) = B(P,r)ndD for PecID.

A positive measure u on 9D satisfies 4., with respect to w if there exist positive
constants 8, ¢y, ¢, such that for any A=A(P,r) and any EcCA4,

. [w(E))”"S wE _, (w(E)]e
No@)) = uw@ =~ o))’

Theorem. Let o, &y, &3 be positive real numbers. Let D be a bounded Lipschiiz
domain in R”, n=2. Let u be a positive measure satisfying A.. with respect fo w. Let
@: [0, «)--[0, ) be an unbounded, nondecreasing, continuous function satisfying
B®(0)=0 and D2tY=C®(t). There are positive constants ¢; and ¢, such that if u
is an L-harmonic function in D and u vanishes at X, then

clfCD(N(ocl, u,.))dp = f@(A (g, u,.)) dp = CQf D(N (o, u,.)) dp.

The constants ¢, and ¢y are independent of u, but depend on oy, oy, 03, D, @, and X,.

We shall begin the proof by recalling some well-known facts about harmonic
measure. We shall use the notation wy(F, Z) for the L-harmonic function of Z in D
with boundary values 1 on F and 0 elsewhere on 0D. Thus w(F)=wp(F, X,) for
FCoD. Let Z¢D and choose PEQD so that |Z—P|=s=dist(Z, #D). Then

) 1= wp(4(P,5), Z) >c >0 (cf.[3)).
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The constant ¢ depends only on the Lipschitz constant of D, provided s is sufficiently
small that Z and A (P, s) are contained in a single coordinate cylinder.

Throughout the remainder of the proof we shall use the notation 4, <4, to
mean that there is a constant ¢=0 such that c4,=4,, and the constant ¢ depends
only on the Lipschitz constant of D and X,. We shall assume that any sets on which
A; and A, depend are in a single coordinate cylinder of D. A;~A, means A4, S A4,
and 4, <4,. In this notation (1) can be written

(1’) wD(A (P’ S)a Z) =~ 1.
Another important property of harmonic measure is the doubling property [3]
Q2 (4 (P, 25)) S w(4A(P, s)).

For P€dD and s suitably small, the Lipschitz character of D implies that there exists
YéD such that dist (Y, 0D)~|Y — P|~s. The lemma of Carleson, Hunt and Whee-
den, and Caffarelli et al. [3] says that for every FCA4(P, s),

3 wp(F,Y) == wp(F, XO)/wD(A (P, s), Xo)-

For Py¢dD, r=0, and a closed set ECA(P,, r) it is well-known that one can
construct a ‘“‘sawtooth” region Q=Q(FE, P,,r) over E. The properties of Q are
that it is a Lipschitz domain satisfying

(i) For suitable ¢y, oy, ¢1, Cy

U{T (o1, P, D)NB(P, ¢yr): PEE} < Q@ c\U{T (s, P, DYNB(P, cy1): PEE}.

(i) (02)n(OD)=E.

(iii) There exists X€Q such that dist (X, 0Q)=~r.

(iv) The Lipschitz constants of 2 depend only on D. (This somewhat cumber-
some description is designed to work equally well when Lipschitz domains are
replaced by NTA domains, defined below.)

The crucial step in the proof is to compare the L-harmonic measure of Q with
that of D:

Main lemma. Let v denote L-harmonic measure for Q at X. There exists 60=0
such that
w(E)o(d) =v(EY, for EcC A= A(P,,7).
Here 0 depends on the Lipschitz constant of D, but not on E or 4.

Proof. Let {Q;} denote a Whitney decomposition of R™\E, that is, a disjoint
family of cubes Q; whose union in R™\ £ and whose distances to E are comparable
to their respective diameters. Let §; be a cube centered at a point of dQ whose dia-

meter and whose distance from dD are comparable to the diameter of Q;. Let 0 ;
be a cube centered at a point of 9D whose distance from Q; and whose diameter are
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comparable to the diameter of Q;. Conditions (i) and (iv) imply that for every cube

Q; of diameter less than 10r the cubes §; and Q:J- exist and there is a cube Q7 con-
centric with Q; with diameter a fixed multiple of the diameter of Q; such that Q7

contains Quéj. Define a measure ¥ on 4(P,, 2r) by

o(FnQ;))

V(F) = v(FﬁE)-{-Zj—w—(Q,.f—ngl)—)

v(QFnoQ).
We want to prove the inequalities
For s=r, |P-P)l=r, A =4(P,5), FC 4,

O] V(F)[(4) = o(F)lw(d).

&) 7(4) ~ 1.

The real variable lemma of Coifman and C. Fefferman [4], says that (4) implies a
kind of converse to itself: There exists =0 such that if A’c 4,

o(F)lw(d) 5 (FE)/(A)).

Using (5), we see that our main lemma is the special case F=E, A’=A.
For the proof of (4), consider two cases. '

Case (a). The cubes Q; intersecting 4" all have diameter less than 100s.
We claim that in this case

6) v(4)~v(4”), where A” = B(P, cs)nif2.

The inequality v(4”) Sv(4”) is easy to see for suitably large c¢. For the converse,
observe that if Q;nA(P, s/2)#0, then Q;n4" is a large part of Q;ndD. Hence, by
the doubling property (2) w(Q7ndD)Sw(Q;n4’). Therefore,

V(4) 2 v(A'NE)+ Zg,nap, 3 9= V(@T002) R v(47)

by the doubling condition for v. This proves (6).
Choose Y€ Q such that dist (Y, 0Q)~dist (¥, dD)~|Y —P|=~s. Property (3)
implies that
o(FnQ]w(QndD) =~ wp(FNQ;, Y)/wp(Q;noD, Y).

Also, the analogue of (3) for v says that for any GcA4”,

wo (G, Y) = v(G)/v(4").
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These two facts and (6) imply that

n 1 O(FOQ) .
Ay (4% (V(FnE)-i-ZjWJD—)v(QjmaQ)]

a%g% 00 (@530, ).
Next, we claim that ©o(Qin0Q, Y)Swp(QFnaD, Y). Indeed the doubling pro-
perty (2) implies wo(Q7N02, Y)Swo(0;00R2, V). (Recall that §; was defined at
the beginning of the proof of the main lemma.) Moreover, (1) implies that
wp(QindD, Z)~1 for.Z¢ 0;. Hence, by the maximum principle, wo(0;n0Q,Y)<
op(QindD, ), and the claim follows. Applying the claim to the sum over j and the
maximum principle to the first term, we find that

%g% S 0p(EAF, Y)+ 3 0p(FnQ;, ¥) = wp(F, Y).

But by (3), wp(F, Y)~w(F)/w(4’), concluding the proof in case (a).
Case (b). Some cube Q; intersecting A" has diameter greater than 100s.

In this case 4” is contained in a union of cubes Q; of comparable diameter whose
distance apart is at most the diameter. Therefore, for any fixed / such that Q,n4"=0
and any FcA’,
w(FnQ;)

)= 2i%inaDy

v(QfnoD) .
with ¢;=v(QfnID)/w(QFnadD). Inequality (4) follows immediately.
We conclude the main lemma with the proof of (5). Assuming that E is non-
empty, the case 4’=4 falls under case (a). Therefore, by (6) and (1),

7(4) = v(B(Py, NNIQ) = wo(B(Py, 1)NQ, X) =~ 1.

Having proved the main lemma, we can now follow the lines of the proof given
in [6]. We shall first recall some facts from earlier work. Let g(X, Y) be the Green
function for a Lipschitz domain Q. If Lu=0 in @ and u(X)=0, then [12]

v(Q]noD)

D 2f Sl a0 e (V) e (V)X V) dY = [, u(PRdv(P)

where v is the harmonic measure at X for Q. The comparison lemma [3, 5] says that
if P€OD, YeQ, dist(Y,0Q2)=s=|Y—P| and |[X—P|>2s, then

(8) g(X,Y) =~ v(B(P, 5)ndQ)s*~".
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Denote B=B(Z,t), B*=B(Z,(1+n)t) for some 5=>0. If Lu=0 in B*, then
for all Z’, Z"¢B,

2 1f2
© (@)= u2) 5 (2207 (g, lu=bP)

9 12
S (2 =20y (s [, 19)

1
where b:_BT fsu. (Here, and elsewhere |- | denotes Eulidean volume in R". The

first inequality is due to de Giorgi, Nash, and Moser. The second is Poincaré’s
inequality, cf. [14].)

(10) jB Vul? < t‘2‘[B* u? [14]
There exists p>1 such that

1 » ) 1/2p 1 \ 1/2
(1 (g L) = (e S 9] (13

Let O<a'<a” and abbreviate A'(P)=A(y,a’, P); N'(P)=N(u,a”, P).

Lemma 1. Suppose that A'(P)=A for some P, €A=A(Py,r). Given a=>1
and B=1, there exists =0 depending only on the Lipschitz constant of D, &/, o” o, B,

and p such that
ap{Pel: A'(P) = Bi, N'(P)=el} = u(4).

Proof. Denote E={Pcd: A'(P)=fA, N'(P)=¢A}. Let

— 2y _ pl2—n 1/2
A4,(P) = (fm/,P,Dm(p,t) u(Y)R[Y— PP dy),
-1
We claim that for any t>0 there exists >0 such that for PCE, A,,(P)>£2— A.
Denote U=I'(«’, P, D)N\B(P, 7r). Then U=U, v U, v U; where U,=UnB(P, tr),
Uy=(UnI' (&, P, D))\B(P, tr) Us=U\T'(«, P;, D) and ¢ will be chosen later. To
- prove the claim it suffices to show that for any #>0 we can choose ¢ and &>0
so that
2 — 2 2
fUlUU31\7u(Y)} |Y—P|2dY < i
and
[ Vu@R Y= PR dY < (1 4+m) 22

The second inequality follows from the fact that A4’(P,)=A and the observation
that ¢ sufficiently large [Y—P|2"=(+#)|Y—P,|* " for all YeU,. Now fix ¢
sufficiently large. Denote R;=B(P,2'wr)NB(P,2/~"1r), j=1,2,.... Notice that
R,nUCQ;, where Q; is a finite union of balls of radius comparable to 2/r, whose
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distance to P and to 4D is also comparable to 2/r. Thus
Sy Vu@IEY~PFdY § Sonze [ [Vu(V)[2QIr)*" aY.

Let Q7 denote the union of slightly larger balls than those of Q;, but still satistying
QicI'(«”, P, D). This is possible because a”<o’. Hence, from (10),

[ Vu(MP@In"ay s (2fr)‘"fQ,f\u(Y)]2dY < ¢24%, and
[, Vu(@)P¥Y—PP—"dy 5 222 log tfx < ni*

for ¢ sufficiently small depending on ¢ Finally, for U;, observe that |R;nU;| <
r(2’ry"~1. Applying Hélder’s inequality, (11) and then (10) we find that for some
r=1,

Jo WuPY=PEray = 37, [ Vulr@

= 3@ Rn U e (fR.m U, lvulzp]llp
= 2@ "Rn U, 1_1/"( ! v 2p]1/p‘Q p
= ;@) IRN Uy o fQj[ ” y

S 3@ R U (o [ V) 10,17

o 3 (2 r)r-m2iair-y ./.Q’!‘ [Vup = 3 200/p-Dg2)2 < g2j2,

This concludes the proof of the claim.

Let Q=Q(E, Py, r) be a sawtooth region with the properties (i) to (iv) above,
and let X€Q be given by (iii). Suppose that o <oy <az<a” and that 1<¢/2, in
the notation of (i). As before, let v denote the L-harmonic measure for Q at X. Then
as in [6, Lemma 3] we can use (8) and (7) to obtain

[L;_l] 2v(E) = [ A (Prdv(P) s [, u(P)dv(P) s &A%

The main lemma now implies w(E)/w(4) S(e2/(f—1))"°. Hence, since u belongs
to A., with respect to @, au(E)<p(d) for sufficiently small ¢, concluding Lemma 1.
Reversing the roles of 4 and N, let

A"(P)=Au,a", P), N(P)= N(u, o', P), o =o' =0.

Lemma 2. Let q(t, P)=sup {u {Ped: A"(P)=t}/u(d): A=A(P,r), r>0}.
Suppose that N’ (P)=1 for some PcA=A(Py,r). Suppose also that «” is-a suffi-
ciently large multiple of o'. Given a>1 and f=1, there exist e>0 and 0<d6<1/2
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with the same dependence as in Lemma 1 such that
ap{PE€A: N'(P)= B2, q(ei, P) = 8} = u(4).

Proof. Denote E={PcA: N’'(P)=pl, q(eA, P)=0} and F={PcA: A"(P)=¢l}.
Clearly, ECF. Let Q=Q(E, P,,r) be a sawtooth region above E and let XcQ
be as in (iii) above, o’ <o <a,<a” where o, and o, are as in (i) above. There exist
oy and 7>0 such that for P€cE

I'(ay, P, Q) D B(P, tr)nl (&, P, D).
Provided «” is a suitably large multiple of «’, for any Y€I'(«/, P, DN\B(P, tr),
there exists a sequence Y., ..., ¥y=Y such that Y,&I'(«, P, D), B(Y;, nr)C
I'(a”, P,D) and |Y;—Y; ,|<1/2yqr. (Here n and N are independent of r.) Hence, by
() for Z', Z"¢ B(Y;, 1/2nr)
w(Z)—u2Z) =C(rf

B(Yj, nr

)[Vu12)1/2 = CA”(P) = Cel.

Therefore (u(¥,)—u(¥Y)|=CNek, and for sufficiently small & [u(¥)|=u(¥)|+
+CeNA=(1+CeN)Ai<pA. The same argument applied to X instead of Y yields

u(X)| = [1+—B—;—1] A

Suppose that PcE. The foregoing estimate implies that there exists
Yer(', P, DynB(P, tr) such that |[u(¥)=pA. Hence, [u(Y)—u(X)]zﬂ—;—l——. De-
note N(P)=sup {u(Y)—u(X)|: YeI (o, P, Q)}. We have just shown that
Ec {P: NP)= ﬁ—;ix}

Next, denote F(Y)={PcF: YeI'(«”, P, D)}. Let I(Y)=dist(Y,0D) and
f(Y)= [ dwp(., X). Then by Fubini’s theorem

gzzzszA”(P)Zdw,,(.,X) zfﬂf(Y)[Vu(Y)Pl(Y)z—" dy.

For each Y€Q there exists nY€F such that Y€I'(x,, nY, D) and Y —=Y|=I(Y).
1

Let 4’=4 [nY, T cx”l(Y)]. Clearly, A'nFcC F(Y), provided a” is a suitably large

multiple of a,. Therefore,

wp(4’nF, X)

S(Y)= wp(4'nF, X) = oy (@ X)

wp(4’, X).

By (3), wp(d’'nF, X)]wp(4’, X) is comparable to wp(4’nF, Xy)/wp(4’, X,). By
®), if [¥Y—X|=nr/2. Then wp(4’, X) is comparable to gp(X, Y)/(¥Y)"~2 Recall
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that because nY€E, p(4’\F)/u(4’)=05. Because p satisfies 4_ with respect to
wp(., Xy), for sufficiently small &,

op(4'NF, Xo)op(4', Xg) > (1-C8%) > §.
In all,

272 = 2
Ce?j? = SNBEorfE) gp (Yo, V) |du(Y)[2dY.

Next, for # small enough that B(X, 4nr)c Q,
2 2-n JY =< g2 )2
fB(X,2r,r) lAu(Y){ l(Y) dY = ¢ )s, .

Hence, by (9)

sup {|u(Z)—u(X)|: Ze B(X, nr)} = Cel.
Thus by (7)

St 144 ga0x,my (X, Y) dY =(Coi)?

It is easy to check using the maximum principle and interior inequalities for the Green
function in a region containing D [7, Theorem 4] that for Y¢B(X, nr/2),

(X, Y) = Cepixpn/(X, Y).
Hence,
[ & X, D Au(Y)PdY = Ce22.
By the maximum principle, go(X, Y)=g,(X, Y). Finally, using
@) J oo u(P)~u(P dog(., X) = Ce2A2

The weak L? estimate for the nontangential maximal function N says [3]

w,,[{PeaQ: NP = ng—lz} X] = Ce2

~1
Because EC{PE[)Q: N(P)z—/i—z—/l} and because of the main lemma and the

A, property for g,

w(E) _ (0p(B XY _ e
wd) = (w,‘iu, Xo)] = (Ce

This concludes Lemma 2.

The remainder of the proof of the theorem is well-known.

Except for the problem of interchanging o’ and «” it involves only a real variable
argument due to Burkholder and Gundy [1]. The only difference is that the supre-
mum of |Vu(Y")| need not exist in our case. However, with the help of (9) it is pos-
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sible to replace the supremum of |Vu(Y)| by a suitable difference quotient. For
instance, the auxiliary function of [1]

D(P) = sup{|\Vu(Y)||Y—P|: YeI(a, P, D)}
may be replaced by
D(P) = sup {lu(Z)—u(Z")|: Z’, Z"€ B(z, {) < (&, P, D)).
Notice that D(P)=A'(P) for o« =a because of (9).

Two generalizations

A) The theorem and its proof are valid with no change when the domain D is
nontangentially accessible (NTA) rather than Lipschitz. Following [12], we call a
domain D NTA if

(a) There exist constants A=1, r,>0 such that for every r, O<r<r,, and
every P€dD, there exists X€D such that |X—P|<Ar and B(X, r/A)CD.

(b) Property (a) holds for the complement of D.

(¢) For every C=0, there exists N such that if O=eg=<r,, X,Y€D,
dist (X, 9D)=¢, dist (¥, dD)>¢ and |X—Y|<Ce, then there is a sequence of N
points of D X=X, X,, ..., Xy=Y suchthat |X;—X;,,|<¢/4 and B(X;,2s/4)cD.
The analogues of (2), (3), (7), and (8) and the construction of  for NTA domains
can be found in [12].

B) The operator L need not be uniformly elliptic. It can satisfy a non-uniform
ellipticity condition

CmX)EP = 2 5o, ai(X) & = em(X) (¢

where m(X) satisfies either Muckenhoupt’s condition

1 1
A su [— ) [—— ‘1] <o
(A 55t U[B] fB AV me
or m(X)=|f(X)|'=*", where f is a global quasiconformal mapping of R" and
[f"(X)] denotes the modulus of the Jacobian determinant of f.
Denote 0(X, r)=r*m(B(X,r)), where m(B)=[gm. The area integral is
defined by

1/2
(fm.P,D)sz:l a;; (X) 7;9% (X)_a%_(u_. X)X, [X—P)) dX]
= (f Fe.P,D) Vu(X)Pm(X)0(X, | X—P)d X)l/Z_

The nontangential maximal function is defined as before. Once, again, the proof
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of the theorem is the same. The statements of (2), (3) and (7) are the same. Inequa-
lities (8) to (11) are replaced by

8 g(X, Y) =~ v(B(P, )ndQ)0 (P, s).
@) w(Z)—u(Z) 5 (Z' =2ty (02 0 [, 14ulm)™.
(10) fB [Vuzm = t‘2fB* utm

) 1 o 1/2p 1 . 1/2
(11 (—m(B) fB |Au) m) = [_m(B*)—fB* 14u) m)

For the proofs of these results, except for (11°), see [7] and [8]. In order to prove
(11"), observe that if Bc cB’c cB*, then for some g<2 and some constant ¢
depending on u, 8]

[m_zj;)"fB [Vuf? m]l/z = diam B (ﬁ/ ’ IU—Clzm]l/z

= [ﬁ /.. ]Vu]"m)llq.

Inequality (11”) now follows from the variant of Gehring’s lemma [10, Prop. 5.1]
that is applicable to the case in which the ball B* on the right hand side is the double
of the ball on the left, rather than the same ball.
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