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In this note we shall prove inequalities comparing the area integral and nontan- 
gential maximal functions for solutions to second order elliptic equations in a domain 
in R", in which both the coefficients of the equation and the domain satisfy very weak 
regularity conditions to be formulated later (cf. [7]). Such inequalities have been 
proved by many authors in increasing generality. (See [1, 6, 9, 11], where further refe- 
rences can be found.) The most general setting up to now is that of harmonic functions 
in Lipschitz domains [6]. There the key additional point is the fact that harmonic 
measure for the standard Laplace operator satisfies A o. (a scale-invariant form of 
mutual absolute continuity) with respect to surface measure on the boundary of 
the domain. By contrast, surface measure need not exist in our more general context. 
Moreover, even if the domain is smooth (and hence has a surface measure), L-har- 
monic measure and surface measure are mutually singular for some choices of the 
elliptic operator L [2]. This is the main new difficulty. 

We shall first state and prove the theorem in a special case that retains the main 
difficulty. Recall that a bounded domain D c R "  is called a Lipschitz domain if 
OD can be covered by finitely many open right circular cylinders whose bases have 
positive distance from 019 and corresponding to each cylinder I there is a coordinate 
system (x, y) with xER "-1, yER with y axis parallel to the axis o f / ,  and a function 
q~: R " - I ~ R  satisfying a Lipschitz condition (l~o(x)-~o(z)l<-mlx-zl) such that 
Ic~D={(x,y): y>rp(x)}nI and InOD={(x,y): y=q~(x)}nI. Denote by L =  

O 0 
i,j=l OXi a~y(X)--~, a uniformly elliptic operator with bounded, measurable 

d 

coefficients, that is, a~iEL*~(R ") and for some c>0 ,  Y,.",,j=xa~j(X)~i~j~=clr 2 for 
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0u 
all ~ER'. We say that u is L-harmonic in D or Lu=O in D if ~ uEL~oc(D ) and 

f~i",~=l (x) a , j ( X ) 5 - ~ ( X ) d ~  = 0 

for all ~oECo(D ). The theorem of de Giorgi and Nash [14] says that u has a H61der 
continuous representative (which we also denote by u). Let D c R "  be a (connected) 
Lipschitz domain. Fix for all time a point XoED. For each continuous function f 
on 0i) there is a unique L-harmonic function u in D continuous in /?  such that u - - j  
on 019. The L-harmonic measure at X0 is the representing measure of the linear 

functional f~-~u (Xo) =- f oo f (P )  dco (P). 

For  PEOD, e > 0 ,  a nontangential approach region to P in D is given by 
F(o~, P ,D)={XED: ] X - P I < ( I + e ) d i s t  (X, 019)}. The area integral is defined for 
PE 019 by 

A (u, ~, P) = [fr(~,,,~ IX--~I2-n IVu(X)I2 aX) 1I~ 

The nontangential maximal function is defined by 

N(u, c~, P) = sup {lu(X)I: XEF(~, P, D)}. 

Denote B(X, r ) =  {YER": I X - Y I < r }  and 

A(P, r) = B(P, r)nOD for PEOD. 

A positive measure # on OD satisfies A ~ with respect to co if there exist positive 
constants 0, c~, c2 such that for any A =A(P, r) and any E c A ,  

c~t--~-~) - /~(A) = c2tco(A)) " 

Theorem. Let e~, e2, oq be positive real numbers. Let D be a bounded Lipschitz 
domain in R", n>=2. Let # be a positive measure satisfying A= with respect to co. Let 
�9 : [0, ~)-~[0, ~)  be an unbounded, nondecreasing, continuous function satisfying 
�9 (0)=0 and ~)(2t)<=C~(t). There are positive constants c~ and cz such that i f  u 
is an L-harmonic function in D and u vanishes at Xo, then 

c~f e(N(~, u,.))dU <= f e(A (a~, u,.))d~ <= c~f e(N(c~ a, u,.))dlz. 

The constants Cl and c~ are independent of  u, but depend on al, a2, aa, D, ~, and Xo. 

We shall begin the proof  by recalling some well-known facts about harmonic 
measure. We shall use the notation coD(F, Z )  for the L-harmonic function of  Z in D 
with boundary values 1 on F and 0 elsewhere on 01). Thus co(F)=~o,(F,  X0) for 
FcOD. Let ZED and choose PEOD so that I Z - P I = s = d i s t ( Z ,  OD). Then 

(1) 1 => coo(A (P, s), Z )  :-- c > 0 (cf. [31). 
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The constant c depends only on the Lipschitz constant of D, provided s is sufficiently 
small that Z and A (P, s) are contained in a single coordinate cylinder. 

Throughout  the remainder of the proof  we shall use the notation A1 <A2 to 
mean that there is a constant c > 0  such that cAI<=A2, and the constant c depends 
only on the Lipschitz constant of D and X0. We shall assume that any sets on which 
A1 and A2 depend are in a single coordinate cylinder of D. AI-~A2 means AI<A2 
and A2<~AI. In this notation (1) can be written 

(I')  n(A (e, s), Z) i. 

Another important property of harmonic measure is the doubling property [3] 

(2) co(A (P, 2s)) < co(A (P, s)). 

For P~ 0D and s suitably small, the Lipschitz character of D implies that there exists 
YED such that dist (Y, ~D)~-[Y-PI~-s. The lemma of Carleson, Hunt and Whee- 
den, and Caffarelli et al. [3] says that for every Fc A (P, s), 

(3)  n(F, Y)  oo(F, Xo)/O ,(A (f ,  s), X0). 
For PoCOD, r > 0 ,  and a closed se tEcA(Po,  r) it is well-known that one can 

construct a "sawtooth" region f2=f2(E, P0, r) over E. The properties of  f2 are 
that it is a Lipschitz domain satisfying 

(i) For  suitable el,  a2, Cl, c2 

U{F(~I,  P,D)aB(P,  clr): PEE} c a cU { F (~2 ,  P,D)r~B(P, c2r): P(  E}. 

(ii) O~2)r~(0D) =E .  
(iii) There exists X(  f2 such that dist (X, 0~2)-~r. 
(iv) The Lipschitz constants of (2 depend only on D. (This somewhat cumber- 

some description is designed to work equally well when Lipschitz domains are 
replaced by NTA domains, defined below.) 

The crucial step in the proof  is to compare the L-harmonic measure of  • with 
that of D: 

Main lemma. Let v denote L-harmonic measure for f2 at X. There exists 0 > 0  
such that 

~(E)/co(A) <= v(E) ~ for E c  A = A(Po, r). 

Here 0 depends on the Lipschitz constant of  D, but not on E or A. 

Proof. Let {Qi} denote a Whitney decomposition of  R " \ E ,  that is, a disjoint 
family of cubes Qj whose union in R " \ E  and whose distances to E are comparable 
to their respective diameters. Let Qj be a cube centered at a point of 0f2 whose dia- 

z 

meter and whose distance from OD are comparable to the diameter of Qj. Let Q~ 
be a cube centered at a point of OD whose distance from Qj and whose diameter are 
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comparable to the diameter of Qi" Conditions (i) and (iv) imply that for every cube 

Qj of  diameter less than 10r the cubes Qj and Qj exist and there is a cube Q~. con- 
centric with Qi with diameter a fixed multiple of  the diameter of  Qj such that Q~. 

contains ~)u2 Qj. Define a measure 9 on A (P0, 2r) by 

co(FnQs.) 
9(F) = v (FnE)+  • j  co(Q~nOD) v(Q~nOf2). 

We want to prove the inequalities 

For s<=r, 1P-Po]<-r, A ' = A ( P , s ) ,  F c A ' ,  

( 4 )  9 (V)/9 (A') <-- co (r)/co (4 3. 

(5) 9(A) ~- 1. 

The real variable lemma of Coifman and C. Fefferman [4], says that (4) implies a 
kind of  converse to itself: There exists 0 > 0  such that i f  A" c A ,  

co (F)/co (A') ~ (9 (F)/9 (A'))~ 

Using (5), we see that our main lemma is the special case F=E, A'=A. 
For the proof  of  (4), consider two cases. 

Case (a). The cubes Qj intersecting A" all have diameter less than 100s. 
We claim that in this case 

(6) 9(A') ~- v(A"), where A" =- B(P, cs)nO(2. 

The inequality 9(A')<~v(A") is easy to see for suitably large c. For the converse, 
observe that if Qj~A(P, s /2)#0,  then Qf~A" is a large part of  Qfl~OD. Hence, by 
the doubling property (2) co(Q~.nOD)~co(Qs~A" ). Therefore, 

' *n ~(A') > v(A n E ) + ~ Q j n ~ e , ~ s ~  v(Qj 0 ) >~ v(A") 

by the doubling condition for v. This proves (6). 
Choose YE s such that dist (Y, 0s -~dist (Y, OD) ~- ]Y-P]  ~-s. 

implies that 
co (FnQj)/co (Q* n01)) ~ cod (Fn Q j, Y)/coo (Q* n019, Y). 

Property (3) 

Also, the analogue of(3)  for v says that for any GcA",  

co~ (G, Y )  ~- v (G)/v  (4") .  
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These two facts and (6) imply that 

~(F) 1 { v ( F n E ) + Z j  co(FnQj) v(Q*nOl2)} 
~(A') v(A") co(QTnOD) 

coo(FnQj, Y) coo(Q~nOf~, Y). ~- coo(FnE, Y)+ ~ j  coo(QTnOD, Y) 

Next, we claim that w~(Q*nOf2, Y)<~coD(Q~nOD, Y). Indeed the doubling pro- 
perty (2) implies coa(Q~.nOl2, Y)<~o~a(O]nOs , Y). (Recall that 0]  was defined at 
the beginning of the proof of the main lemma.) Moreover, (1) implies that 
coD(Q'nOD, Z)  ~-- 1 for ZE Q j- Hence, by the maximum principle, coz(O_jnOf2, Y) < 
coD(Q~.nOD, Y), and the claim follows. Applying the claim to the sum over j and the 
maximum principle to the first term, we find that 

9(F) 
~(A'--~ <~ c~ Y)+ ~J  c~176 Y) = co~ Y)" 

But by (3), coo(F, Y)~-co(F)/r concluding the proof in case (a). 

Case (b). Some cube Qj intersecting A' has diameter greater than 100s. 

In this case A" is contained in a union of cubes Qj of comparable diameter whose 
distance apart is at most the diameter. Therefore, for any fixed l such that QtnA'~O 
and any FcA',  

co ( r n  Q j) 
~(F) = Z j  co(Q~.nOD) v(Q~.nOD) 

v (Q~{ nOD) 
co(Q~n0D) Z J  co(FnQj) =- ctco(F), 

with cl=v(Q~nOD)/co(Q~{nOD). Inequality (4) follows immediately. 
We conclude the main lemma with the proof of (5). Assuming that E is non- 

empty, the case A'=A falls under case (a). Therefore, by (6) and (1), 

~(A) ~ v(B(Po, r)na(2) = co~(B(P0, r)n~2, X) ~- 1. 

Having proved the main lemma, we can now follow the lines of the proof given 
in [6]. We shall first recall some facts from earlier work. Let g(X, Y) be the Green 
function for a Lipschitz domain f2. If Lu=O in f2 and u(X)=0,  then [12] 

Ou Ou 
(7) 2 f~ l~ , j=a  au(Y ) ~ (Y) ~ (Y)g(X, Y) dY = faa u(P)2 dr(P) 

where v is the harmonic measure at X for O. The comparison lemma [3, 5] says that 
if PEOD, YEf2, dist(Y, OO)=s---IY-P[ and IX-P[>2s, then 

(8) g(X, r') ~_ v(B(P, s)naa)s~-". 
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Denote B=B(Z, t ) ,  B*=B(Z,(I+q)t)  for some ~/>0. If  Lu=O in B*, 
for all Z', Z'EB, 

( f t ~  lu-  b 12/112- (9) [ u ( Z ' ) - u ( Z " ) [  < ( [ Z ' - Z " [ / t ) ~  l ,---g-~ j l ) 

then 

tz ~1/2 
(I='-="l/,>" L, Ivul=; 

f= u. (Here, and elsewhere I" I denotes Eulidean volume in R". The 

and f i > l ,  there exists 8>0  depending only on the Lipschitz constant of D, ~', ~" ~, fi, 
and # such that 

a#{PEF: A'(P) >= f12, N"(P)~e2}  ~ #(A). 

Proof. Denote E= {PE A : A'(P)>=fl2, N"(P)<-e2}. Let 

A,(e) = (f~(~,p,~ I r -PI  ~-" aY) ~j=. 
/ 3 -1  

We claimthat  for any z > 0  there exists e > 0  suchthat  for PEE, A,r (P)>  Z. 
2 

Denote U=F(a', P, D)\B(P,  zr). Then U =  Ui • U2 u U3 where UI= UnB(P, tr), 
U2=(Uc~F(a', P1, D))\B(P, tr) (/3= U\F(a',  P1, D) and t will be chosen later. To 

p r o v e  the claim it suffices to show that for any t />0  we can choose t and e > 0  
so that 

f uluv, IVu(Y)l= l r -  el= dY < ~= 
and 

f ~= IVu(Y)I2IY-P[ =-" dY < (I +q)2  =. 

The second inequality follows from the fact that A ' (P1) I2  and the observation 
that t sufficiently large IY-Pl2-"<=(l+q)lY-P~12-"for all YEU2. Now fix t 
sufficiently large. Denote Rj=B(P, 2Jzr)\B(P, 2J-azr),  .]= 1, 2 . . . . .  Notice that 
R j n U c Q j ,  where Qj. is a finite union of  balls of radius comparable to 2Jr, whose 

1 ~112p 1 (--~ fB ]VII2pJ ~ (-~-[- fB* IVul2) 1/2 [13] 

Let 0 < a ' < a "  and abbreviate A'(P):A(y,  a', P);  N'(P):N(u,  a ' ,  P). 

L e m m a l .  Suppose that A'(P1)~2 for some P1EA:A(Po, r). Given a > l  

(11) 

1 
where b = 

IB1 
first inequality is due to de Giorgi, Nash, and Moser. The second is Poincar6's 
inequality, cf. [14].) 

(lO) f ,  LVu] = ~< t-~ f = ,  u ~ [14] 
There exists p > 1 such that 
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distance to P and to 01) is also comparable to 2Jr. Thus 

f~, lw(r ) l  ~ l r -e l~-"dz  z Z,~_,, fa ' lVu(Y)12(ZJr) 2-" dY. 

Let Q* denote the union of slightly larger balls than those of Q j, but still satisfying 
* H H QjcF(c~ , P, D). This is possible because ~ <c~. Hence, from (10), 

f~,  IVu(r)I"(2~r)~-" ar z (a~r)-"fo; }u(r)l~ ar z ~ ,  and 

f ~, [Vu(y)I2IY--PI 2-n dY ~,~ /32~210g t/T < .~2 
1 

for ~ sufficiently small depending on t. Finally, for U3, observe that iRsnUz] < 
r(2Jr) "-x. Applying H61der's inequality, (11) and then (10) we find that for some 
p > l ,  

f v31v"(Y)l~iY-PI ~-"dv ~- ~7=lf Rjnv3 IVul2(2J r)~-" 

~j(2Jr)2-nlRjf"~ U3[1-1/P ( [~jI L [VbI[2Pll/PIQjlI/P 
J 

~ j  (2Jr)Z-~2J(llP-1)fQ~. lW} ~< ~Y 2J~/~-1)~ ~ < ~ 

This concludes the proof of the claim. 
Let f2= f2(E, P0, r) be a sawtooth region with the properties (i) to (iv) above, 

and let XEf2 be given by (iii). Suppose that cd<e~<e~<~" and that z<c~/2, in 
the notation of (i). As before, let v denote the L-harmonic measure for f2 at X. Then 
as in [6, Lemma 3] we can use (8) and (7) to obtain 

L2v(E) <= A~r(p)2dv(P) < s u(P)2dv(P) < e~22. 

The main lemma now implies co(E)/co(A)<(e2/(fl-1))l/~ Hence, since/z belongs 
to A~ with respect to 6o, o~#(E)<#(A) for sufficiently small e, concluding Lemma 1. 

Reversing the roles of A and N, let 

A"(P) = A(u, ~", P), N'(P) = N(u, ~', P), ~" > ~" > O. 

Lemma 2. Let q(t, P ) = s u p  {#{P'6A: A"(P')>t}/#(A): A =A(P, r), r>0}. 
Suppose that N ' ( P 0 ~ 2  for some PaEA=A(Po, r). Suppose also that ~" is a suffi- 
ciently large multiple of ~'. Given ~>1 and f i > l ,  there exist e>0  and 0 < 6 < 1 / 2  
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with the same dependence as in Lemma 1 such that 

~I~{PEA: N'(P) ~/~2, q(e2, P) ~ 6} ~ p(A). 

Proof. Denote E =  {PEA : N'(P)>=~2, q@2, P)<=6} and F =  {PEA : A"(P)-<-e2}. 
Clearly, EcF.  Let P,=O(E,  P0, r) be a sawtooth region above E and let XEf2 
be as in (iii) above, ~'<cq<c~2<~" where ~1 and c~2 are as in (i) above. There exist 
c~ and z > 0  such that for PEE 

r(~2, P, f2) D B(P, zr)c~r(~', P, D). 

Provided c(' is a suitably large multiple of c(, for any YEF(~', P,D)\B(P,  zr), 
there exists a sequence Y1, -.., YN-- Y such that Y1EF(~', P1, D), B(Yj, ~lr)c 
/ '(~", P, D) and [Yj- Yj+I]< 1/2~lr. (Here q and N are independent of r.) Hence, by 
(9) for z ' ,  Z"CB(Yj, 1/2qr) 

t . ( z ' ) - . ( z ' 3 1  <-- iwl2},/  < ,,(p) = CA <= Ce2. (Y~,~r) 

Therefore Iu(Y1)-u(Y)I<=CN~2, and for sufficiently smalI 5, lu(Y)l<=Iu(Y1)[+ 
+C~N2_<-(1 +C~N)2</~2. The same argument applied to X instead of Y yields 

Suppose that PEE. The foregoing estimate implies that there exists 
B - 1  

YEF(e',P,D)c~B(P, wr) such that ]u(Y)_->/~L Hence, Iu(Y)-u(X)l>= . De- 
2 

note N(P)=sup  {Iu(Y)-u(X)l: YEF(%,P, t2)}. We have just shown that 

E c  {P: -N(P)~ ~--12} 

Next, denote F(Y)={PEF: YEF(e", P,D)}. Let l(Y)=dist(Y, 01)) and 
.f(Y)=fF(v) &o,(., X). Then by Fubini's theorem 

L >= ,, )2dogo(.,X)~ Y)lVu(Y)l~l(Y)Z-"dY. 

For each YE~2 there exists ~YEE such that YEF(c~2, roY, D) and tY-rcYI~I(Y). 

Let A'=A ~Y, ~ e"l(Y) . Clearly, A%FcF(Y) ,  provided e" is a suitably large 

multiple of c~. Therefore, 

f ( Y )  >-- ~oo(A'nF, X) = ~176 nF' X) ~oo(A', X). 
o~ (A', X) 

By (3), ro~(A'c~F, X)/coo(A', X) is comparable to rno(A%F, Xo)/O)~(A', Xo). By 
(8), if [Y-X!>n,r/2. Then O~D(A',X) is comparable to g~(X, Y)l(Y) "-~. Recall 
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that because ~zY~E, #(A'\F)/I~(A')<=6. Because p satisfies A~ with respect to 
oJo(., Xo), for sufficiently small J, 

Ogo(A" c~F, Xo)/a~o(A', Xo) > (1--C6 ~ > �89 
In all, 

>= f go(Yo, Y)fdu(Y)l 2 dY. ",,~(x, r/2) 

Next, for q small enough that B(X, 4tlr)c~, 

Hence, by (9) 

Thus by (7) 

f B [Au(Y)TZl(Y)2-"dY <- ez22" 
(X, 2rtr) 

sup {lu(Z)-u(X)l: z~B(x, r /r)} _<-- Ce2. 

Because 

A~ property for p, 

f a(x.,r) IAu(y)I2gB(x'"r)(X' Y) dY <= (Ce;0 2. 

It is easy to check using the maximum principle and interior inequalities for the Green 
function in a region containing D [7. Theorem 4] that for Y~B(X. rlr/2 ), 

go(X. r )  <= CgB(x.,,(x. r) .  
Hence, 

f . gD(X, Y) iAu( Y)I2 dY <= Ce22 ~. 

By the maximum principle, g~(X, Y)<=gD(X, Y). Finally, using 

(7) f oa tu(e ) -u(X) l  ~ dog~(., X) <= Ce~. ~. 

The weak L ~ estimate for the nontangential maximal function -$ says [3] 

Ec~PEO~: N(P)=> ~ 1 2 ~  and because of  the main lemma and the 
t 2 1  

tz(E) (coo(E, Xo)] ~ 
(A----7 ~ o~0(4, TS0) J ~ (c~)0.. 

This concludes Lemma 2. 
The remainder of the proof of the theorem is well-known. 
Except for the problem of interchanging 0( and c(' it involves only a real variable 

argument due to Burkholder and Gundy [1]. The only difference is that the supre- 
mum of 1Vu(Y)I need not exist in our case. However, with the help of (9) it is pos- 
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sible to replace the supremum of [Vu(Y)] by a suitable difference quotient. For 
instance, the auxiliary function of [1] 

D(P) -- sup {IVu(Y)l IY-PI:  r~r(~, P, D)} 

may be replaced by 

/3(p) = sup {lu(z ' )-u(z31: z' ,  z"~B(z, t) c r(~, P, D)}. 

Notice that h(P)~A'(P) for e '>~ because of (9). 

Two generalizations 

A) The theorem and its proof are valid with no change when the domain D is 
nontangentially accessible (NTA) rather than Lipschitz. Following [12], we call a 
domain D NTA if 

(a) There exist constants A > I ,  ro>0 such that for every r, 0<r<r0 ,  and 
every PEOD, there exists XCD such that ]X-PI<Ar and B(X, r/A)cD. 

(b) Property (a) holds for the complement of D. 
(c) For every C>0,  there exists N such that if 0<e<r0,  X, YED, 

dist(X, OD)>e, dist(Y, OD)>e and {X-Y{<Ce, then there is a sequence of N 
points olD X=X~, X2 .... , XN=Y suchthat IXi-Xj+al<e/A and B(Xj, 28/A)cD. 
The analogues of (2), (3), (7), and (8) and the construction of ~ for NTA domains 
can be found in [12]. 

B) The operator L need not be uniformly elliptic. It can satisfy a non-uniform 
eUipticity condition 

C-~m(X)[{[ 2 <-Z",,j=l aij(X)~i~j ~ cm(X)I~[ 2 

where m(X) satisfies either Muckenhoupt's condition 

or m(X)=]f'(X)l ~-~/~, where f is a global quasiconformal mapping of R" and 
]f'(X)] denotes the modulus of the Jacobian determinant off.  

Denote O(X, r)=r2/m(B(X, r)), where m(B)=fBm. The area integral is 
defined by 

i -Pi)dx) 
Ix-PI) dx) 

The nontangential maximal function is defined as before. Once, again, the proof 
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o f  the theorem is the same. The statements o f  (2), (3) and (7) are the same. Inequa- 
lities (8) to (11) are replaced by 

(83 g(x ,  r )  ~- v(~( , ' ,  s)nO~)o(P, st. 

( 9 ' )  l u ( Z ' ) - u ( Z " ) l  <~ ( I z ' - z " l / O  = (0(z, t) f B * IAu?m) *~. 

(10") f. [Vu[2m <- t - = f  B, u~m. 

1 f ~112, 1 <-- 4 
For  the proofs  o f  these results, except for (11'), see [7] and [8]. In order to prove 

(11'), observe that  if B E  c B ' c c B * ,  then for  some q < 2  and some constant  e 
depending on u, [8] 

1 f . 1 ~112 

Inequali ty (11') now follows f rom the variant  o f  Gehring 's  lemma [10, Prop.  5.1] 
tha t  is applicable to the case in which the ball B* on the right hand  side is the double 
o f  the ball on the left, rather than the same ball. 
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