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Abstract: In this paper, we explore the multiple testing problem of paired
null hypotheses, for which the data are collected on pairs of entities and
tests have to be performed for each pair. Typically, for each pair (i, j), we
observe some interaction/association score between i and j and the aim
is to detect the pairs with a significant score. In this setting, it is natural
to assume that the true/false null constellation is structured according to
an unobserved graph, where present edges correspond to a significant as-
sociation score. The point of this work is to build an improved multiple
testing decision by learning the graph structure. Our approach is in line
with the seminal work of Sun and Cai [46], that uses the hidden Markov
model to structure the dependencies between null hypotheses. Here, we
adapt this strategy by considering the stochastic block model for the la-
tent graph. Under appropriate assumptions, the new proposed procedure is
shown to control the false discovery rate, up to remainder terms that vanish
when the size of the number of hypotheses increases. The procedure is also
shown to be nearly optimal in the sense that it is close to the procedure
maximizing the true discovery rate. Numerical experiments reveal that our
method outperforms state-of-the-art methods and is robust to model mis-
specification. Finally, the applicability of the new method is demonstrated
on data concerning the usage of self-service bicycles in London.

Keywords and phrases: Multiple hypothesis testing, stochastic block
model, false discovery rate, q-values, variational expectation-maximization
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1. Introduction

1.1. Context

Multiple testing is a prominent research area of contemporary statistics, which
is extensively used in various fields of applications, where multiple yes/no de-
cisions have to be taken simultaneously. This methodology has essentially been
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developed for data collected per entity (e.g., genes or SNP in molecular biology
or voxels in neuroimaging), that is, when data is structured in vectors. However,
in a large variety of domains such as social, biological or information sciences,
data are association/interaction scores collected on pairs of entities, and thus
have a matrix form, potentially with large dimension. To mention only a few
examples, these data can be proximity measurements based on mobile phones
for contact tracing during an epidemic or studying social ties between humans
[21]. They can also represent interactions between animals [28] in ecology, or
any pairwise measurements according to one or two categorical variables, as the
number of international migrants by country of origin and country of destination
[34], or the journey counts between pairs of bicycle stations (the latter being
our specific worked-out application).

While the case of vector-based multiple testing inference is ubiquitous, matrix-
based datasets are far less understood in the statistical literature. To the best
of our knowledge, it has only been studied when the matrix is built upon pair-
wise comparisons between coordinates of the same observed vector, as it is the
case with marginal or partial correlations, see [20, 27, 12] among others. In
particular, the works [27, 12] focus on applying a variation of the well-known
Benjamini-Hochberg procedure in this context [4], and provide the control of
the false discovery rate under a sparsity assumption. However, it does not take
into account the structural information in the data.

In this paper, we depart from this setting by assuming that the data are
directly collected in a matrix-wise fashion and we incorporate the structural in-
formation in our inference. For this, we follow the line of research based on the
classical two-group mixture model introduced in [23]. The seminal works [22, 45]
show how to control the false discovery rate while improving on Benjamini-
Hochberg by consistently estimating the signal proportion, the null and alter-
native distributions. Further significant power enhancement can be obtained by
incorporating some latent structure in the model, see [46] for group structure
and [13, 26] for Markov structure. Here, we adapt these methods for the case of
a latent graph model.

More precisely, the aim is to perform tests simultaneously for all entries
of the data matrix, say X, and thus to infer the binary matrix, say A, for
which Ai,j = 1 when the null hypothesis on pair (i, j) is false. The point of our
work is to consider this binary matrix A as the adjacency matrix of a latent
graph, where nodes correspond to the entities and present edges to false null
hypotheses. Now, our approach consists in learning a statistical model for the
latent graph and incorporate this information in the testing procedure. For this,
we should model the connecting behaviors of the nodes, that is, the way a null
hypothesis is likely to be true or not. This is done with the popular stochastic
block model [24, 37, 40]. In a nutshell, given a clustering of the nodes, it assumes
that the connection probability between two nodes depends on their respective
cluster memberships. We refer the reader to [32] for an introduction to the
stochastic block model and an overview of its numerous variants. Once A is
determined, the observation X, containing the paired observations, is modeled
as a perturbation or noisy version of A. With this graph modeling, our paired
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Fig 1. (a) Real-valued observation matrix X with block structure. (b) Adjacency matrix A
coding for the true (white) and false (black) null hypotheses. (c) Rejections of the Benjamini-
Hochberg procedure. (d) Rejections of our new procedure based on a latent graph.

multiple testing problem is coupled with a dimension reduction of the true/false
null constellation, that is, in the network, individuals are clustered according
to their ability to be connected. Doing so, the detection performance of our
procedure is drastically increased.

1.2. Intuition of the new method

To illustrate our approach, consider the toy example in Figure 1. The observed
symmetric matrix X in (a) results from a perturbation of the binary matrix A
in (b), where black entries represent false null hypotheses. Nodes are ordered
according to a partition of the nodes into two groups such that the underlying
block structure appears. We observe that true null hypotheses give rise to pure
noise in X (light-green points in (a)) and false null hypotheses result in signal
(green to dark-green points). We note that the signal strength depends on the
group memberships of the nodes, that is, intermediate (green) signal is observed
for intra-group edges, whereas the strongest signals occur for the few inter-group
edges. The classical Benjamini-Hochberg procedure [4] (at level 5%), that works
with a common threshold for all observations, recovers only a small part of the
signal (134 rejections among 1793 false nulls in this simulated data) and thus is
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overly conservative, see (c). By contrast, with the new method, the threshold is
locally adapted to each pair of entities using information provided by the learned
graph topology. As one can see from (d), the new approach (at the same level
5%) recovers the signal almost perfectly (1793 correct rejections and 10 false
discoveries).

Extensive numerical experiments show that similar results are obtained in
numerous settings. In particular, it will be shown that our procedure is more
efficient and powerful than other state-of-the-art methods.

1.3. Contributions and organization of the paper

The contributions of this paper are as follows. First, we introduce a new setting
for multiple testing of paired null hypotheses via a random graph model, called
the noisy stochastic block model (Section 2). Second, model identifiability is es-
tablished and a variational expectation-maximization algorithm for parameter
estimation is developed (Section 3). Third, the estimation algorithm provides for
each pair estimates of the posterior probability that the null hypothesis is true,
also called �-values (or local fdr values [23]). Based on these �-values we propose
a new multiple testing procedure relying on the general q-value approach (Sec-
tion 4). Fourth, under mild model assumptions, the new procedure is shown to
control the false discovery rate, up to a small remainder term. Moreover, the
procedure is nearly optimal in the sense that it is close to the method maxi-
mizing the true discovery rate (Section 5). We underline that these theoretical
results are non-asymptotic with respect to the number of tests, which is new
to our knowledge compared to existing multiple testing literature in mixture
models. Next, numerical experiments support the validity of our approach and
demonstrate its robustness with respect to model assumptions (Section 6). The
applicability of the new method is illustrated on data on the usage of self-service
bikes in London (Section 7). Finally, detailed proofs and auxiliary results are
deferred to the Appendices. The R code is available on CRAN via the package
noisySBM.

1.4. Related works

As the goal is to infer A from its noisy version X, our multiple testing problem
can be seen as a network inference problem. There is a rich literature dealing
with network reconstruction, accounting for the uncertainty of available data in
network analysis. For instance, in [17, 35, 36, 25, 39, 50] the uncertainty comes
from a binary blurring mechanism of the underlying true network, that erro-
neously removes or adds edges according to some probabilities. In [30], uncer-
tainty of edge presence delivers data under the form of connection probabilities
and the authors use a modeling based on beta distributions. While these models
are similar in spirit, the derived methods are markedly different, because our
purpose is to control the false discovery rate (average proportion of erroneous
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discovered egdes), which has been ignored so far in this line of research to our
knowledge.

Next, the new noisy stochastic block model is related to the weighted stochas-
tic block model, first introduced in [29] (for which the weights come from a para-
metric exponential family) and also considered in [1, 38] (including a non-zero
value only between connecting nodes). Our model can be seen as an instance
of the weighted stochastic block model, with specific mixture distributions for
the distribution of the edge weights. However, it additionally incorporates the
modelling of true and false null hypotheses, which is not the case in the gen-
eral weighted stochastic block model. This is crucial here because our primary
interest is testing and not modelling.

2. Multiple testing framework for pairs

In this section, we present a new framework for multiple testing of paired null
hypotheses. For this, the observed data matrix is viewed as a perturbation of
a latent binary graph, where absent edges produce pure noise, while present
edges generate a “signal plus noise” measure. The latent graph codes for the
true/false constellation of null hypotheses and is assumed to follow a stochastic
block model. Together, these two layers define the full model, which we call the
noisy stochastic block model.

2.1. Setting

Let n ≥ 2 be the number of entities or individuals in the observed population.
We denote by A = {(i, j) : 1 ≤ i < j ≤ n} the set of all possible pairs
that we would like to test. We observe X = (Xi,j)(i,j)∈A a real-valued upper-
diagonal matrix, for which each Xi,j ∈ R corresponds to a measurement for
the pair (i, j) ∈ A, which typically is an association score between i and j. We
assume that a null hypothesis and an alternative is given for each pair, and we
record the trueness/falseness of these null hypotheses in an unobserved binary
upper-diagonal matrix A = (Ai,j)(i,j)∈A, for which Ai,j = 0 if and only if the
null hypothesis is true for the pair (i, j). Specifically, this corresponds to the
multiple testing setting where we test

H0,i,j : “Ai,j = 0” versus H1,i,j : “Ai,j = 1”,

simultaneously for all (i, j) ∈ A. To define a multiple testing model, we now
specify the distribution of X given A. Our modeling, to be presented in detail
in the next section, will assume that:

• A is structured according to a latent graph, itself built on a clustering
Z = (Zi)1≤i≤n of the entities. Here, the Zi’s are categorical variables
representing cluster memberships of the individuals;

• (Xi,j)(i,j)∈A are independent conditionally on A,Z;
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• the distribution of Xi,j conditionally on A,Z is driven by some common
null density if Ai,j = 0, and by some specific alternative density depending
on Zi, Zj if Ai,j = 1.

Hence, while our multiple testing model is intrinsically based on an independence
assumption, the null hypotheses are dependent, which induce an (unconditional)
dependence between the measurements Xi,j . This is in line with the series of
works [46, 13, 26] for which a latent structure is given for the nulls. This im-
posed structure will be crucial to build an efficient multiple testing procedure
recovering A from X.

2.2. Noisy stochastic block model

Recall that the unobserved binary matrix A = (Ai,j)(i,j)∈A carries the true/false
null hypothesis constellation in that Ai,j = 0 if and only if the null hypothesis is
true for the pair (i, j). Here, we interpret the matrix A as the adjacency matrix
of an undirected graph without self-loops, where nodes correspond to entities
i ∈ {1, . . . , n} and where there is an edge between two nodes i and j if and only
if Ai,j = 1, that is, if the null hypothesis is false for the pair (i, j). Now, we can
borrow the classical, and widely used, stochastic block model to define a latent
structure on the matrix A.

Namely, we assume that the nodes are randomly partitioned into Q ≥ 2
groups. Let Z = (Z1, . . . , Zn) be the block memberships of the nodes and

π = (πq)1≤q≤Q ∈ (0, 1)Q with
∑Q

q=1 πq = 1 the group probabilities. That is,
(Zi)1≤i≤n are independent and P(Zi = q) = πq, 1 ≤ q ≤ Q, i = 1, . . . , n. Then,
conditionally on Z, the variables Ai,j , (i, j) ∈ A, are independent Bernoulli vari-
ables with parameter wZi,Zj , for a connectivity parameter w = (wq,�)1≤q,�≤Q ∈
(0, 1)Q×Q. As the graph is undirected, w is symmetric.

Now, for the distribution of the observations Xi,j we introduce two para-
metric distribution families, {g0,u, u ∈ V0} and {gu, u ∈ V}. Both families are
parametric with V0 ⊂ Rd0 and V ⊂ Rd1 , where d0 and d1 are the dimensions
of the parameter spaces. The relation between A and the observation X is that
missing edges (Ai,j = 0) are replaced by pure random noise, modeled by the
null density g0,ν0 for some ν0 ∈ V0, whereas in place of present edges (Ai,j = 1)
there is a signal, modeled by an alternative density gνZi,Zj

with parameters

νq,� ∈ V . The latter depends on the block membership of the interacting nodes
in the underlying stochastic block model, such that the signal strength can be
modulated locally.

The unknown global model parameter is θ = (π,w, ν0, ν), where π and w
come from the stochastic block model, ν0 denotes the null parameter and ν =
(νq,�)1≤q,�≤Q ∈ VQ×Q denotes the parameters of the signals. Again, since the
graph is undirected, ν is symmetric. The parameter space is denoted by Θ and
can be used to define further restrictions on θ. The distribution of (X,A,Z)
in the noisy stochastic block model is denoted by Pθ. This notation omits the
external parameters n and Q for the sake of simplicity.
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Algorithm 1: Data generation in the noisy stochastic block model

Input: Parameter θ = (π,w, ν0, ν), number n of entities.
1. Draw Zi ∼ M(1, π), 1 ≤ i ≤ n independently.
2. Conditionally on Z = (Z1, . . . , Zn), generate independently

Ai,j |Z ∼ B(wZi,Zj
), (i, j) ∈ A.

3. Conditionally on Z and A = (Ai,j)(i,j)∈A, generate independently

Xi,j | Z,A ∼ (1−Ai,j)g0,ν0 +Ai,jgνZi,Zj
, (i, j) ∈ A.

Output: Observation matrix X, latent graph A, latent block memberships Z.

Algorithm 1 summarizes the data generation process in the noisy stochastic
block model. Note that in case that X is a non-symmetric n × n matrix, the
noisy stochastic block model is easily adapted by using directed graphs, that is,
A is not symmetric and A = {(i, j) : 1 ≤ i, j ≤ n}. Also, non-zero diagonal
elements can be included by admitting self-loops in the stochastic block model.

An inspection of the noisy stochastic block model reveals that there are two
levels where the block memberships influence the distribution of the observed
graph X. First, the latent graph A may have block structure due to distinct
Bernoulli parameters wq,�. Second, the distribution of the observed values Xi,j

depends on the block memberships, see Figure 2 (a). However, it is possible to
consider settings where either all Bernoulli parameters wq,� are equal, see (b), or
all distributions under the alternative are equal, see (c). Then the latent block
structure has an impact only on one of the random layers. Therefore, the noisy
stochastic block model is a flexible model that can capture a large variety of
situations.

In this paper, the leading example is the Gaussian case. It is particularly suit-
able when the observations Xi,j correspond to real-valued test statistics that are
known to be approximately Gaussian (e.g., asymptotically in a given parame-
ter). The Gaussian noisy stochastic block model corresponds to the following
choice of the parametric density families:

{g0,u, u ∈ V0} = {N (0, σ2
0), σ0 > 0}, {gu, u ∈ V} = {N (μ, σ2), μ ∈ R, σ > 0}.

(1)

2.3. Multiple testing criteria

Let us recall the classical criteria used in multiple testing, that we will also use
in our paired framework. First, a multiple testing procedure is any measurable
function ϕ(X) ∈ {0, 1}A with the convention that ϕi,j(X) = 1 if and only if
the null-hypothesis on (i, j) is rejected. Then the false discovery rate (FDR) of
a given multiple testing procedure ϕ is the average proportion of errors among
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Fig 2. Dependency structure in the general noisy stochastic block model (a) and special cases
of the model with wq,� all equal (b) and νq,� all equal (c).

the discoveries, defined as

FDRθ(ϕ) = Eθ

⎡⎣∑
(i,j)∈A(1−Ai,j)ϕi,j(X)(∑

(i,j)∈A ϕi,j(X)
)
∨ 1

⎤⎦ , (2)

where Eθ refers to the expectation in our noisy stochastic block model with
parameter θ. Moreover, the power of ϕ is defined as the true discovery rate
(TDR), that is, the ratio of the average number of true discoveries to the average
total number of alternatives given by

TDRθ(ϕ) =
Eθ

[∑
(i,j)∈A Ai,jϕi,j(X)

]
Eθ

[∑
(i,j)∈A Ai,j

] . (3)

Finally, we also introduce the marginal false discovery rate (MFDR) defined as

MFDRθ(ϕ) =
Eθ

[∑
(i,j)∈A(1−Ai,j)ϕi,j(X)

]
Eθ

[∑
(i,j)∈A ϕi,j(X)

] , (4)

with the convention 0/0 = 0. The MFDR is a handy substitute for the FDR,
because it involves the ratio of the expectations rather than the expectation
of the ratio. Both quantities, the FDR and the MFDR, are close when the
numerator and denominator concentrate around their respective expectation.

3. Estimation in noisy stochastic block model

This section presents materials for inference in the noisy stochastic block model:
identifiability properties are given in Section 3.1 and parameter estimators are
derived in Section 3.2.

3.1. Identifiability

To make sure that the parametrization of our model is suitable, we show that
the model is identifiable under mild assumptions.
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Assumption 1. Any finite mixture of elements of {gu, u ∈ V} is identifiable
up to label swapping.

For instance, the family of Gaussian densities satisfies Assumption 1, see [48].
General conditions on the identifiability of mixtures of a one-parameter family
of distributions are provided in [47].

Theorem 2. Let n ≥ 3 and Q ≥ 2. Let Assumption 1 be satisfied. Let {g0,u, u ∈
V0} be a subset of {gu, u ∈ V}. Assume that parameters ν0 ∈ V0 ⊂ V and νq,� ∈ V
for q ≤ � are all distinct. Then all parameters of the associated noisy stochastic
block model are identifiable up to label swapping, that is, up to permutation of
the block membership labels {1, . . . , Q}.

Our result is a generalization of Theorem 12 in [2] that states identifiability
of the parametric random graph mixture model with weighted edges. Compared
to their model, the noisy stochastic block model replaces the point mass in 0
by the null distribution g0,ν0 with unknown parameter ν0. A detailed proof of
Theorem 2 is provided in Appendix A.1. As a corollary of the theorem, the
Gaussian noisy stochastic block model is identifiable under the constraint that
all elements of {(0, σ0), (μq,�, σq,�), 1 ≤ q ≤ � ≤ Q} are distinct.

In general, the constraint that all parameters ν0 and νq,� are pairwise distinct
is not a necessary condition. It is for instance possible to show identifiability
also in an affiliation-type configuration of the noisy stochastic block model, see
Appendix A.2 for details.

In the literature, different approaches exist to prove identifiability of stochas-
tic block models under different assumptions. In [16], for instance, it is only
required that the connectivity matrix w has distinct rows. However, the alge-
braic arguments used in the proof are not easily adapted to the noisy stochastic
block model. Hence, we have chosen to follow the approach by [2] as it adapts
to our model in a quite natural way.

3.2. Parameter estimation and node clustering

As in most latent variable models, parameter estimation is a difficult task in
the noisy stochastic block model. Indeed, the complete-data likelihood function
θ �→ L(X,A,Z; θ) has a simple expression, and the observed likelihood function
θ �→ L(X; θ) is then obtained by integrating over all possible configurations of
the latent variables (A,Z) ∈ {0, 1}A × {1, . . . , Q}n. This is prohibitive for any
reasonable values of n and Q due to the size of the latter set. As a consequence,
the maximum likelihood estimator cannot be computed by directly maximizing
the observed likelihood function, but an approximation can be obtained by an
EM-type algorithm.

We propose an estimation algorithm, that is similar to the variational EM
algorithm for the standard stochastic block model [19], which, in addition to
parameter estimates, provides estimates of the group memberships. In this sec-
tion, only the main ideas of the algorithm are presented. A full description is
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provided in Appendix B. The corresponding R code is available in the package
noisySBM on CRAN.

The classical EM algorithm alternates until convergence an M-step, that up-
dates the parameter estimate θ̂, with an E-step, that determines the posterior
distribution PA,Z|X;θ̂ of the latent variables (A,Z) under the current value θ̂. As
in the standard stochastic block model, the latter step is intractable due to the
involved dependence structure of the model, but a mean-field approximation of
PA,Z|X;θ̂ by a factorized probability distribution, say P̃τ , depending on some
parameter τ , can be used. Thus, the variational E-step consists in searching
the best variational parameter τ̂ that minimizes the Kullback-Leibler diver-
gence between P̃τ and PA,Z|X;θ̂. In practice, this amounts to solve a fixed point

equation numerically. Interestingly, in addition to θ̂, the variational parameter
τ̂ obtained at the end of the variational EM algorithm provides a meaningful
node clustering.

In applications, the number of latent blocks Q is generally unknown, but
can be estimated from the data via an adaptation of the classical integrated
classification likelihood (ICL) approach [8]. It relies on a penalized observed
likelihood criterion, where the penalty involves the traditional BIC penalty and
the entropy of the latent variable distribution.

4. New procedure

In this section, we introduce our new method for paired multiple testing in the
aforementioned noisy stochastically block model.

4.1. Oracle procedure

For a given level α ∈ (0, 1), we pursue the general aim of building a multiple
testing procedure ϕ that controls the FDR at level α while having a TDR as large
as possible. Conventional procedures, such as BH procedure, base the inference
of Ai,j only on the single observation Xi,j , but do not take into account the
specific dependency structure among the observations. By contrast, it is known
from previous work [45, 49, 14] that maximizing the TDR while controlling the
MFDR can be done via the multivariate test statistics Pθ(Ai,j = 0|X), (i, j) ∈ A,
often called local FDR or �-values [23, 22, 15]. However, these quantities are
intractable in our context, because their computation involves a sum over all
possible values of the latent variable Z, which boils down to the well known
problem of computing the likelihood in a mixture model. To circumvent this
problem, we consider structured �-values that use an additional conditioning
with respect to the membership structure Z: for all (i, j) ∈ A, z ∈ {1, . . . , Q}n,
θ = (π,w, ν0, ν) ∈ Θ, we define

�i,j(X, z, θ) = Pθ(Ai,j = 0 |X,Z = z) = �(Xi,j , zi, zj , θ), (5)
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Fig 3. Null and alternative densities in the Gaussian case when zi = q, zj = � and critical
region {x : �(x, q, �; θ) ≤ t} for some values of t and wq,�. The size of the orange area
corresponds to L0(t, q, �; θ, θ), the sum of the orange and the yellow area gives L1(t, q, �; θ, θ).

where �(·) is defined as

�(x, q, �, θ) =
(1− wq,�)g0,ν0(x)

(1− wq,�)g0,ν0(x) + wq,�gνq,�
(x)

. (6)

(Note that our model assumption implies that �i,j(X, z, θ) in (5) indeed depends
on z only through zi, zj .) The structured �-value �i,j(X, z, θ) incorporates the
group information zi = q and zj = � via wq,� and νq,�, which provides much
more information than the single value Xi,j and will considerably help to make
the final decision. As illustrated in Figure 3 in the Gaussian case, the rejection
region for Xi,j corresponding to �i,j(X,Z; θ) ≤ t is not necessarily of the form
|Xi,j | ≥ c, c > 0. For instance, depending on the model parameters, it can be
one-sided (a), or two-sided with unbalanced sides (b) (other shapes are possible
and are discussed in Appendix D). Hence, unlike methods based on p-values that
are solely functions of |Xi,j |, this approach is more flexible and allows for various
shapes of rejection regions, which can lead to a substantial power improvement.

Now, we choose the threshold t in the decision rule �i,j(X,Z, θ) ≤ t so that its
MFDR is equal to α. In the NSBM with true parameter θ∗ = (π∗, w∗, ν∗0 , ν

∗) ∈
Θ, the MFDR of this procedure is denoted, with some abuse of notation, by

MFDRθ∗(θ, t) =
Eθ∗

[∑
(i,j)∈A(1−Ai,j)1{�i,j(X,Z, θ) ≤ t}

]
Eθ∗

[∑
(i,j)∈A 1{�i,j(X,Z, θ) ≤ t}

]
=

∑
q,� π

∗
qπ

∗
� (1− w∗

q,�)L0(t, q, �; θ
∗, θ)∑

q,� π
∗
qπ

∗
� [(1− w∗

q,�)L0(t, q, �; θ∗, θ) + w∗
q,�L1(t, q, �; θ∗, θ)]

,

(7)

where for δ ∈ {0, 1}, q, � ∈ {1, . . . , Q}, we let

Lδ(t, q, �; θ
∗, θ) = Pθ∗(�i,j(X,Z; θ) ≤ t | Z,Zi = q, Zj = �, Ai,j = δ)

= Pθ∗(�(Xi,j , q, �; θ) ≤ t | Zi = q, Zj = �, Ai,j = δ). (8)
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Note that the functionals L0 and L1 do not depend on (i, j) ∈ A. For θ = θ∗,
the quantities L0(t, q, �; θ, θ) and L1(t, q, �; θ, θ) correspond to the size of the
area of the rejection region under the null and the alternative, respectively, see
Figure 3. In the Gaussian NSBM, these quantities have closed-form expressions
provided in Appendix D.

Based on the above, in the NSBM with true parameter θ∗ ∈ Θ and latent
variable Z, we reject the nulls satisfying �i,j(X,Z, θ∗) ≤ t with a threshold t
chosen such that MFDRθ∗(θ∗, t) = α. To circumvent the explicit calculation of
such a threshold, we first introduce the quantities

qi,j(X, z; θ) = MFDRθ(θ, �i,j(X, z; θ)), (i, j) ∈ A. (9)

Next, composing by the function MFDRθ∗(θ∗, ·) both sides of the inequality
�i,j(X,Z, θ∗) ≤ t, we rewrite the above procedure as

ϕ∗
i,j = 1{qi,j(X,Z; θ∗) ≤ α}, (i, j) ∈ A, (10)

which is called the oracle multiple testing procedure. The quantity qi,j(X,Z; θ∗)
is often referred to as the q-value, a term popularized in [44]. Note that �-value
thresholding and q-value thresholding are equivalent in our context, see also
(16) below.

The procedure ϕ∗ has the following optimality property: under appropriate
assumptions and for a convenient nominal level α, the procedure ϕ∗ controls the
MFDR, that is, MFDRθ∗(ϕ∗) ≤ α. Moreover, ϕ∗ has maximal power among all
procedures controlling the MFDR, that is, for any multiple testing procedure ϕ
such that MFDRθ∗(ϕ) ≤ α, ϕ∗ satisfies TDRθ∗(ϕ∗) ≥ TDRθ∗(ϕ), see Theorem 6
below for a rigorous statement. The assumptions of the theorem are mainly
regularity assumptions which are precisely detailed in Section 5.1.

4.2. Data-driven procedure

The optimal procedure ϕ∗ cannot be used in general because the true model
parameter θ∗ and the block memberships Z are unknown. To approximate the
oracle by a feasible procedure, we use a plug-in approach, where θ∗ is replaced
by an estimator θ̂ = (π̂, ŵ, ν̂0, ν̂) and Z by some clustering Ẑ. One can use the
estimates provided by the VEM algorithm for the NSBM, as pointed out in
Section 3.2, but actually any appropriate estimates (θ̂, Ẑ) are allowed here (to
ensure FDR control, some sufficient conditions will be exhibited further on, see
Section 5.2). Therefore, we define the estimated version of the q- and �-values
as

�̂i,j(X) = �i,j(X, Ẑ; θ̂) =
(1− ŵẐi,Ẑj

)g0,ν̂0(Xi,j)

(1− ŵẐi,Ẑj
)g0,ν̂0(Xi,j) + ŵẐi,Ẑj

gν̂Ẑi,Ẑj
(Xi,j)

, (11)

q̂i,j(X) = qi,j(X, Ẑ; θ̂) = MFDRθ̂(θ̂, �̂i,j(X)), (12)

and obtain the following feasible multiple testing procedure

ϕNew

i,j = 1{q̂i,j(X) ≤ α}, (i, j) ∈ A.
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Algorithm 2: New paired multiple testing procedure

Input: Observations Xi,j , (i, j) ∈ A, nominal level α.
Output: Procedure ϕNew

i,j , (i, j) ∈ A.

Compute a parameter estimate θ̂ and a node clustering Ẑ for the observed data X.
Compute the �-values �̂i,j(X) according to (11).
Compute the q-values q̂i,j(X) according to (12).
Infer the decision for each pair by setting ϕNew

i,j = 1{q̂i,j(X) ≤ α}, (i, j) ∈ A.

Algorithm 2 presents the different steps to implement this procedure.

5. Theoretical properties of the new procedure

This section presents a theoretical study showing that our procedure ϕNew cor-
rectly controls the FDR and has a TDR close to the one of the oracle procedure
ϕ∗ defined in (10), which is shown to be optimal. The proofs of all results as
well as further details on the assumptions are provided in Appendix C.

5.1. Assumptions and notation

We introduce in this section the numerous and necessary assumptions to state
our main result. More illustrations are provided in Appendix D in the Gaussian
case, see also Examples 1 and 2 below.

According to (12), the behavior of the function (t, θ, θ∗) �→ MFDRθ∗(θ, t)
is crucial to study the properties of ϕNew. Since the former is related to the
functionals L0(·) and L1(·) via (7), we introduce the following assumption.

Assumption 3 (Continuity conditions for L0 and L1). For all q, � ∈ {1, . . . , Q},

• the functions (t, θ, θ∗) ∈ [0, 1] × Θ2 �→ L0(t, q, �; θ
∗, θ) and (t, θ, θ∗) ∈

[0, 1]×Θ2 �→ L1(t, q, �; θ
∗, θ) are continuous on [0, 1]×Θ2;

• there exist functions θ ∈ Θ �→ t1,q,�(θ) ∈ [0, 1] and θ ∈ Θ �→ t2,q,�(θ) ∈
[0, 1] with t1,q,�(θ) < t2,q,�(θ) for all θ, such that, for any θ∗ ∈ Θ, the maps
t ∈ [0, 1] �→ L0(t, q, �; θ

∗, θ) and t ∈ [0, 1] �→ L1(t, q, �; θ
∗, θ) are both con-

tinuous on [0, 1], with value 0 on [0, t1,q,�(θ)], increasing on [t1,q,�(θ), t2,q,�(θ)]
and value 1 on [t2,q,�(θ), 1].

When Assumption 3 holds, we let

t1(θ) = min
1≤q,�≤Q

{t1,q,�(θ)} and t2(θ) = max
1≤q,�≤Q

{t2,q,�(θ)}, (13)

for any θ ∈ Θ. We also denote by

e0(θ) = MFDRθ(θ, 1) =
∑
q,�

πqπ�(1− wq,�) (14)
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Fig 4. Graphical illustration for t �→ MFDRθ∗ (θ
∗, t), αc(θ∗) and Tθ∗ (α).

the maximal value of t �→ MFDRθ(θ, t), which corresponds to the average pro-
portion of true nulls (or of absent edges in the graph). We sometimes write e0
instead of e0(θ) to lighten notation.

One can show that the function t �→ MFDRθ(θ, t) is zero on [0, t1(θ)], con-
tinuous increasing on (t1(θ), t2(θ)] and is equal to e0(θ) on t ∈ [t2(θ), 1], see
Figure 4 for an illustration. Moreover, t ∈ [0, 1] �→ MFDRθ(θ, t) is always non-
decreasing and left-continuous so that we can define its generalized inverse in
α ∈ [0, e0] by

Tθ(α) = max{t ∈ [0, 1] : MFDRθ(θ, t) ≤ α}, θ ∈ Θ. (15)

Doing so, the oracle procedure given in (10) can be written as

ϕ∗
i,j = 1{�i,j(X,Z, θ∗) ≤ Tθ∗(α)}, (16)

that is, as a �-value thresholding procedure with threshold Tθ∗(α).
Let θ∗ ∈ Θ be the true model parameter. To avoid the regime where the

quantity MFDRθ∗(θ∗, t) is zero, we consider a level α above the so-called critical
level αc(θ

∗) introduced in [18] and defined in our context as

αc(θ
∗) = lim

t→t1(θ∗)+
{MFDRθ∗(θ∗, t)} ∈ [0, e0). (17)

It corresponds to the infimum of the non-zero values of t �→ MFDRθ∗(θ∗, t).
While αc(θ

∗) = 0 is the typical case, it occurs that αc(θ
∗) > 0 when t1(θ

∗) >
0. Sometimes, we denote αc(θ

∗) by αc for short. Throughout this section, we
thus fix a super-critical nominal level α ∈ (αc, e0) with corresponding threshold
Tθ∗(α), as illustrated in Figure 4.

In addition, the following assumption ensures the uniform concentration of
the underlying �-value empirical processes.
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Assumption 4 (Low-complexity for �-value thresholding). There is an integer
M ≥ 1 such that for any (i, j) ∈ A, t ∈ [0, 1], θ ∈ Θ, up to removing a set
of Pθ-probability measure 0, we have {�i,j(X,Z, θ) ≤ t} = {�(Xi,j , Zi, Zj , θ) ≤
t} = {Xi,j ∈ I} for some I ⊂ R which only depends on Zi, Zj , θ, t and such that
I can be written as the union of at most M non-empty open intervals of R.

Example 1. Assumptions 3 and 4 are both satisfied in the Gaussian NSBM
whenever θ∗ = (π∗, w∗, σ∗

0 , μ
∗, σ∗) is such that (0, σ∗

0) 
= (μ∗
q,�, σ

∗
q,�), for all 1 ≤

q, � ≤ Q. In addition, αc(θ
∗) = 0 if and only if maxq,� σ

∗
q,� ≥ σ∗

0 , that is, if
there is at least one variance under the alternative that is larger or equal to the
variance under the null, see Appendix D.

While Assumption 3 is sufficient to establish consistency results for ϕNew, the
following regularity conditions are useful to obtain convergence rates.

Assumption 5 (Lipschitz-type conditions for L1, MFDR and Tθ∗). For some
compact interval K ⊂ [(αc + α)/2, (α + e0)/2], there are three constants C1 =
C1(θ

∗, α,K) > 0, C2 = C2(θ
∗, α,K) > 0 and C3 = C3(θ

∗, α,K) > 0 such that

(i) supq,� supt∈Tθ∗ (K) supδ∈{0,1} supθ,θ′∈Θ\{θ∗}

{
|Lδ(t,q,�;θ

′,θ)−Lδ(t,q,�;θ
∗,θ∗)|

‖θ−θ∗‖∞∨‖θ′−θ∗‖∞

}
≤

C2;

(ii) supq,� supt∈Tθ∗ (K)\{Tθ∗ (α)}

{
|L1(t,q,�;θ

∗,θ∗)−L1(Tθ∗ (α),q,�;θ
∗,θ∗)|

|t−Tθ∗ (α)|

}
≤ C1;

(iii) supy∈K\{α}

{
|Tθ∗ (y)−Tθ∗ (α)|

|y−α|

}
≤ C3.

Example 2. Assumptions 3, 4 and 5 (i) (ii) are all satisfied in the Gaussian
NSBM, in either one of the two following cases:

• Equal variances: for all 1 ≤ q, � ≤ Q, σ∗
q,� = σ∗

0 , μ
∗
q,� 
= 0;

• Larger variances under alternatives: for all 1 ≤ q, � ≤ Q, σ∗
q,� > σ∗

0 .

Assumption 5 (iii) also holds in this case, provided that α ∈ (0, 1) is taken
outside a set of Lebesgue measure 0. We also refer to Appendix D for weaker
constraints on the parameter θ∗.

Obviously, the behavior of ϕNew relies on the quality of the estimator θ̂ and
the clustering Ẑ. To state our results on ϕNew, we introduce the following risk
probability defined for any θ∗ ∈ Θ and ε > 0 by

η(θ∗, ε) = Pθ∗(Ẑ 
= Z or ‖θ̂ − θ∗‖∞ > ε), (18)

which corresponds to the probability that, either the clustering makes at least
one mistake, or the estimator θ̂ is more than ε away from the true parameter θ∗.
Clearly, the norm and clustering inequalities in (18) hold up to label switching.

Namely, the event {‖θ̂−θ∗‖∞ > ε or Ẑ 
= Z} means that for any permutation σ

of {1, . . . , Q} we have σ(Z) 
= Ẑ or ‖θ̂σ − θ∗‖∞ > ε, where θ̂σ = (π̂σ, ŵσ, ν̂0, ν̂
σ)

with π̂σ = (π̂σ(q))1≤q≤Q, ŵ
σ = (ŵσ(q),σ(�))1≤q,�≤Q, ν̂

σ = (ν̂σ(q),σ(�))1≤q,�≤Q.
Since the pioneer paper of Celisse et al. [16], several studies have suggested

that, in various SBM-type models, under appropriate restrictions on the pa-
rameter set Θ, the order of the risk probability η(θ∗, ε) becomes small when n
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increases, see, e.g., [7, 10]. This is proved for the maximum likelihood estima-
tor, or alternatively for its variational approximation, and for a clustering based
upon a maximum a posteriori approach, as used in our algorithm in Section 3.2.
In particular, [10] suggests that η(θ∗, εn) should be small in a valued SBM, even
when ε = εn tends to zero at some rate. However, the framework used therein
does not encompass the new NSBM. As the evaluation of η(θ∗, εn) in the NSBM
would require an entirely new study, which is beyond the scope of this paper,
we leave this task for future investigations and express all our results in terms
of the implicit risk probability η(θ∗, ε).

5.2. Results

To start with, we state the optimality of ϕ∗ in terms of MFDR, FDR and TDR.

Theorem 6 (Optimality of ϕ∗). Let Assumption 3 be true and θ∗ ∈ Θ. Let
α ∈ (αc, e0) with αc = αc(θ

∗) given by (17) and e0 = e0(θ
∗) defined by (14).

Then, MFDRθ∗(ϕ∗) = α, and for any multiple testing procedure ϕ such that
MFDRθ∗(ϕ) ≤ α, we have TDRθ∗(ϕ∗) ≥ TDRθ∗(ϕ). Moreover, under the addi-
tional Assumption 4, we have lim supn {FDRθ∗ (ϕ∗)} ≤ α, where parameter θ∗

is fixed and does not depend on n.

Now, we present our two main results, showing that ϕNew mimics the behav-
ior of ϕ∗, both in terms of FDR and TDR, up to remainder terms. First, the
following consistency result holds when the sample size n increases and model
parameter θ∗ is fixed with n.

Theorem 7 (Consistency). Let Assumptions 3 and 4 be true. Let θ∗ ∈ Θ be a
fixed parameter, that does not depend on the sample size n. Choose α ∈ (αc, e0)
where αc = αc(θ

∗) given by (17) and e0 = e0(θ
∗) given by (14). Consider the

procedures ϕ∗ defined by (10) and ϕNew of Algorithm 2 for some estimator θ̂ and

clustering Ẑ. Assume that the estimator θ̂ and clustering Ẑ are consistent, that
is, η(θ∗, ε) given by (18) converges to 0 for any ε > 0 as n tends to infinity.
Then, we have

lim sup
n

{FDRθ∗ (ϕNew)} ≤ α, lim inf
n

{TDRθ∗ (ϕNew)− TDRθ∗ (ϕ∗)} ≥ 0.

Theorem 7 shows that, in the graph-structured NSBM, it is possible to con-
struct a procedure that controls the FDR and which is asymptotically optimal
with respect to the TDR, provided that a consistent estimator θ̂ and clustering
Ẑ are available. Here, consistency means that η(θ∗, ε) converges to 0, see the
end of Section 5.1 for more discussions on that condition. This results is in line
with the state-of-the-art consistency results for the FDR and TDR in mixture
models with structured latent variables, see [45, 13, 46, 14]. Theorem 7 relies
on Assumptions 3 and 4. For instance, they both hold in the Gaussian NSBM
with a true parameter taken as in Example 1.

Now, in Appendix C.1, we have derived more general results (see Theorems 10
and 11 therein), which are non-asymptotic, that is, are valid for any n ≥ 2. Here
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we only state an important consequence of this result concerning the rate of
convergence of the FDR and the TDR of the new procedure (the true parameter
θ∗ being still fixed with n).

Theorem 8 (Convergence rate). Let Assumptions 3 and 4 (with some constant
M > 0) be true, θ∗ ∈ Θ, α ∈ (αc, e0) where αc = αc(θ

∗) given by (17) and
e0 = e0(θ

∗) given by (14). Let Assumption 5 (i) be true for some compact set
K ⊂ [(αc + α)/2, (α + e0)/2]. Consider the procedure ϕNew of Algorithm 2 for

some estimator θ̂ and some clustering Ẑ with associated risk probability η(θ∗, ·)
defined by (18). Consider the oracle procedure ϕ∗ defined by (10). Then there
exist constants C = C(θ∗, α,K,M) and N = N(θ∗, α,K,M) ∈ (0, 1) such that
for all n ≥ N , we have

FDRθ∗ (ϕNew) ≤ α+ Cεn + η(θ∗, εn), (19)

for any sequence εn ≥
√

logn
n . If, in addition, Assumptions 5 (ii)-(iii) hold

(for the same set K), then there exist constants C = C(θ∗, α,K,M) and N =
N(θ∗, α,K,M) ∈ (0, 1) such that for all n ≥ N , we have

TDRθ∗ (ϕ∗) ≤ TDRθ∗ (ϕNew) + Cεn + η(θ∗, εn), (20)

for any sequence εn ≥
√

logn
n .

Above, εn corresponds to an upper bound on the convergence rate of θ̂. Given
the derived bounds, it is desirable to choose εn such that both εn and η(θ∗, εn)
tend to zero, and possibly at the same rate. The results given in [10] for other
valued SBM-type models (see, e.g., Theorem 6.2 and Proposition 3 therein)
suggest that η(θ∗, εn) could tend to zero by taking

√
nεn → ∞. This is achieved

by the condition εn ≥
√

logn
n in Theorem 8.

Finally, compared to the consistency result, Theorem 8 uses the additional
Assumption 5. This assumption is valid in the Gaussian NSBM under restric-
tions on the model parameters and on the range of α, see Example 2.

6. Numerical experiments

In this section, a simulation study evaluates the FDR and power of the new
multiple testing procedure ϕNew. Moreover, we provide a comparison with stan-
dard test procedures in various settings. For reproducibility of results, the code
is available on request.

6.1. Settings

We consider four scenarios (a)–(d), that we now describe in detail. In all sce-
narios, undirected graphs with n = 200 nodes are generated and the standard
normal distribution is chosen as the null.
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Fig 5. Structure of the latent graph A in the simulation scenarios (a)–(d).

(a) Data are simulated from the Gaussian NSBM with Q = 2 latent groups
and equal group probabilities (π1 = π2 = 1/2). The connectivity parame-
ter w is such that A has two communities, namely w1,1 = w2,2 = 0.8 and
w1,2 = 0.1. For the alternative distributions, we set Gaussian means to
μ1,1 = μ2,2 = 1 and μ1,2 = 3, so that there is a strong signal for inter-
community connections. Gaussian variances are all equal, that is σ2

q,� = 1
for all q, �.

The difference of the following three scenarios resides in the generation of the
latent graph A. Then, given A, all observations Xi,j are drawn independently
from N (2, 1) if Ai,j = 1 and from N (0, 1) under the null.

(b) The latent graph A is fixed and has the form of a star.
(c) In this setting, A is a random bipartite graph. Nodes are partitioned into

two groups of equal size. Pairs of nodes that belong to different groups
connect with probability 0.5, while there is no edge (Ai,j = 0) whenever
nodes i and j belong to the same group.

(d) In the last scenario, A is generated according to a preferential attachment
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or Barabási-Albert model [3]. Starting from a small root graph, the graph
is grown sequentially by adding new nodes that connect randomly to a
given number of nodes, by privileging connections to existing nodes with
high degree. In this way, highly heterogeneous networks are obtained. Here,
the root graph is an Erdos-Rényi graph with 40 nodes and density 0.5,
and every new node connects to 30 existing nodes.

For all scenarios, the latent graphs A are illustrated in Figure 5. Note that
in (b), (c) and (d) the latent graph A is not generated according to a SBM.
Thus, the simulated data are not exactly from a NSBM. In this regard, our
experiments also provide insights on the robustness of the NSBM with respect
to model misspecifications.

6.2. Procedures

All procedures that are considered in our study are known to control the FDR,
either for finite n or asymptotically, as n tends to infinity. Most of them are
especially suited for normally distributed data. As some methods require the
knowledge of the null distribution, we provide this information to all procedures
for reasons of equity. The following procedures are considered:

• The Benjamini-Hochberg procedure (BH) [4], used with p-values associated
with the two-sided test statistics |Xi,j |, given by

pi,j(X) = 2(1− Φ(|Xi,j |)), (i, j) ∈ A, (21)

where Φ denotes the cumulative distribution function of the standard nor-
mal distribution. This procedure, also denoted ϕBH , has the property
that FDRθ(ϕ

BH) = e0α ≤ α, since conditional independence holds in the
NSBM [6].

• The adaptive BH procedures (ABH), which corresponds to the BH proce-
dure applied at level α/ê0, where ê0 = 2

m (1 +
∑

(i,j)∈A 1{pi,j(X) > 1/2})
is an estimate of e0 [42, 43]. This procedure is an improvement of BH that
still ensures FDRθ(ϕ

ABH) ≤ α [5, 9].
• The Sun and Cai procedure (SC), which is based on thresholding cumula-

tive means of �-values, which are computed by estimating the alternative
density by a mixture distribution [45]. Note that the �-values used in SC do
not take into account the graph structure. For computations, the available
R code is used [11].

• The new procedure ϕNew given by Algorithm 2 for the Gaussian NSBM
with known null distribution and with the VEM algorithm. Recall that a
data-driven model selection is done to select the number of node blocks.

6.3. Results

For every scenario, 500 datasets are simulated and all test procedures are ap-
plied with nominal FDR level α ranging in {0.005, 0.025, 0.05, 0.1, 0.15, 0.25}.
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Fig 6. Plot of (F̂DRα, T̂DRα) for BH, ABH, SC and the new procedure ϕNew. Dashed lines
represent the nominal levels α.

We evaluate the sample FDR and the sample TDR, denoted by F̂DRα and

T̂DRα, respectively. Displaying the points (F̂DRα, T̂DRα) for all α and all test
procedures provides ROC-type curves, simultaneously illustrating whether the
FDR is correctly controlled and evaluating the test power. All results are given
in Figure 6.

In all considered scenarios, BH and its adaptive variant ABH behave very
similarly: most of the time the FDR is controlled by the nominal level α, how-
ever, the TDR is relatively low. A substantial improvement in power is obtained
by the SC procedure, while the FDR is not always controlled in scenario (b).
The improvement is due to the estimation of the alternative distribution, which
leads to more meaningful rejection regions.

Concerning the new procedure, we observe that in all considered scenarios,
ϕNew has a uniformly better performance than the other methods. Its FDR is
close to or lower than the nominal level α. Moreover, ϕNew outperforms the other
procedures in terms of the TDR, sometimes substantially. This is in line with
our theoretical results, namely Theorem 8.

In scenario (a), learning the communities of the latent graph A helps in the
detection of intragoup connections although the signal is rather small and noisy
(μ11 = μ22 = 1). Likewise for the star structure, the TDR enhancement over
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BH-like procedures and SC is spectacular. Here the model selection device in the
VEM algorithm mostly finds Q = 2 groups, where the center of the star forms
one group and all other nodes the second group. The probability of connection
between the two groups is estimated close to 1 (ŵ1,2 ≈ 1), so that intergroup
connections are efficiently discovered. Without learning the latent star structure,
the other methods fail to detect false nulls. Similar results are obtained for the
bipartite random graph, which is conveniently approximated by a NSBM with
Q = 2 groups.

Scenario (b), (c) and (d) serve to evaluate robustness of the results in view of
model mis-specification, as latent graph A is not a SBM. For instance, in (d) the
new procedure mainly selects a NSBM with Q = 2 groups to fit the data. One
group contains the nodes with high degree, the other group the remaining nodes.
Markedly, despite the model bias, the performance of our procedure is only
weakly affected: the FDR control is essentially maintained, and the ROC curve
still dominates the SC procedure even though the difference is less salient. The
robustness of our method is due to the fact that the SBM is able to accommodate
a wide spectrum of graph topologies, preferential attachement models included.

7. Application to bicycle-sharing network

Our goal is to study how the usage of a public bicycle hire scheme in London
depends on the weekday. We use data for the year 2019 available from the
web site https://cycling.data.tfl.gov.uk. For illustration, journey counts between
pairs of stations for the week of April 3–9, 2019 are displayed in Figure 7 (a).
We see that overall counts for weekdays are very similar, while a significant
difference is observed on the weekend.

Our study focuses on a comparison of the traffic on Mondays and Tuesdays
during the entire year 2019. While the global activity on these weekdays is very
much alike, we aim at identifying the pairs of docking stations in London that
have significantly different daily journey counts. The signal to be identified here
is rather sparse.

These data can be modeled by a NSBM, for which nodes represent docking
stations, and observations are the values of a test statistic that compares the
traffic on Mondays and Tuesdays for a given pair of stations. To be explicit, for
stations i and j and for every day d of 2019, let Y d

i,j be the number of journeys

realized between these two stations at this date. Denote by Ȳ Mon
i,j (resp. Ȳ Tue

i,j )

the empirical mean over the year 2019 of the day counts Y d
i,j of all Mondays (resp.

Tuesdays). Let us assume that Ȳ Mon
i,j (resp. Ȳ Tue

i,j ) is the mean of i.i.d. Poisson

variables of mean μMon
i,j (resp. μTue

i,j ). The observed difference between Mondays
and Tuesdays is summarized in the following normalized statistics

Xi,j =
Ȳ Mon
i,j − Ȳ Tue

i,j√
Ȳ Mon
i,j /nMon + Ȳ Tue

i,j /nTue
,

(with, by convention, Xi,j = 0 if the denominator is zero), where nMon = 52

https://cycling.data.tfl.gov.uk
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Fig 7. (a) Journey counts per day between pairs of stations for April 3–9, 2019. (b) Histogram
of the test statistics Xi,j compared to the standard normal distribution and to the estimated
marginal distribution of Xi,j in the NSBM.

(resp. nTue = 53) are the number of Mondays (resp. Tuesdays) in 2019. Provided
that the sample sizes are large enough, the variables Xi,j are approximately
Gaussian with variance 1.

We would like to apply our procedure to the test statistics Xi,j , (i, j) ∈ A
with a Gaussian model. However, the full data set contains 758 docking stations
and most of them are so far from another that there are no journeys between
them. Plenty of pairs of stations do not count a single journey over the whole
year, resulting in a very sparse matrixX (more than 62% of the entries are zero),
which is not compatible with the Gaussian assumption for the Xi,j . Thus, we
delete stations to achieve a rate of only 3% of zero entries of X, leading to
a graph with n = 152 nodes and 11476 possible edges. From Figure 7 (b)
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Fig 8. Number of rejected edges as a function of the significance level α for the different
procedures.

we see that data look Gaussian, but do not come exactly from the standard
normal distribution. This indicates that some observations come from a different
alternative distribution and the interest of a mixture model.

On these pre-processed data, we run the new test procedure, that is, Algo-
rithm 2 with the estimators of the VEM algorithm for a Gaussian NSBM with
a data-driven selection of the number of latent blocks. We observe in Figure 7
(b) a very good fit of the estimated marginal distribution of Xi,j to the data.

At α = 0.05, the new procedure makes 190 discoveries out of 11476 possible
pairs. This low rate of rejection (1.6%) supports the observation/assumption
that the overall traffic is very similar on Mondays and Tuesdays. Figure 8 com-
pares our multiple testing procedure to the BH, ABH and SC procedures in
terms of number of rejections as a function of the nominal significance level
α. The new procedure detects more signal than the other methods for almost
all levels α. For instance, at α = 0.05, SC finds only 167, ABH 131 and BH
126 discoveries. This is coherent with our theoretical and numerical findings.
Hence, more station pairs with a significant difference in the traffic intensity are
identified.

In addition, the values of the normal means μ̂q,� estimated by our algo-
rithm provide further information on the alternative distributions: they indi-
cate whether the traffic on Tuesdays is amplified or diminished compared to
Mondays, and even quantify the amplitude of the phenomenon. In more de-
tail, our algorithm selects a model with two latent blocks of almost equal size
(π̂ = (0.48, 0.52)). According to the obtained parameter estimates, there are 3%
of false nulls among stations belonging to the first group (ŵ1,1 = 0.035), with
a large alternative mean (μ̂1,1 = 2.95). This means that there is significantly
more traffic on Mondays than on Tuesdays for these dock stations. By con-
trast, within the second group, the proportion of false nulls is estimated to 30%
(ŵ2,2 = 0.308) with a negative alternative mean (μ̂2,2 = −1.41). This means
that significantly less bikes are used on Mondays than on Tuesdays. Finally, in
the intergroup, the proportion of false nulls is moderate (ŵ1,2 = 0.146) and the
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alternative mean is μ̂1,2 = −1.84. So this is similar to the intra traffic of group
2, but with a different amount of signal in proportion and intensity. All in all,
our method provides valuable informations that can help the practitioner when
optimizing the distribution of bikes among the stations.

Interestingly, we can check that the decision is not only driven by the ampli-
tude of Xi,j . For instance, there are pairs with moderately large positive values
Xi,j that are not declared as significant by the new procedure, because the in-
teracting nodes are learned to belong to blocks such that under the alternative
the signal takes a negative value. Thus, the observed value Xi,j is more likely
to be generated by the null distribution than under the alternative. In other
words, by analyzing the structure of the graph as a whole and the positions of
the stations therein, our method interprets some of the slightly extreme values
Xi,j of the test statistic as noise and concludes that there is no evidence for a
difference between the bike usage on Mondays or Tuesdays.

8. Conclusion and discussion

We introduced a new procedure for multiple testing of paired null hypotheses,
for which the data are collected as entries of a matrix. By viewing the multiple
testing task as a graph inference problem with an NSBM structure, we have sig-
nificantly enhanced the performance of the method compared to the state of the
art. In addition to the false discovery rate control, the inferred decision comes
with a clustering of the individuals which is a useful side information that in-
creases interpretability. While the interest of the method has been demonstrated
on a particular application, it can be applied broadly whenever the practitioner
collects interaction measures between individuals (independently for each pair).

The developed method has been validated via FDR– and TDR–guarantees
that are non-asymptotic in the number of tests under general regularity assump-
tions. This is a novelty with respect to the multiple testing literature in mixture
models. As a case in point, Theorem 8 is to our knowledge the first result in
a mixture-model context providing convergence rates for the FDR control and
the TDR optimality. In addition, while our proof technics obviously rely on
the specific NSBM structure, they can accommodate various structured frame-
works, as standard gaussian mixtures, because they are based on concentration
inequalities.

This work opens several interesting directions of research. First, to go further
in the study of the convergence rates of the FDR and TDR, the quantification
of the quality of the parameter estimator and the clustering obtained by the
VEM algorithm in the NSBM has to be addressed. Namely, in Theorem 8, εn
is an upper bound on the convergence rate of θ̂ that should be chosen so that
η(θ∗, εn) still tends to zero. It is desirable to choose εn balancing the quantities
εn and η(θ∗, εn), which requires to evaluate the risk probability η(θ∗, εn). This
task meets several recent works on various versions of the SBM, see [16, 7, 10],
but the proposed solutions are still incomplete to make our convergence rates
explicit.
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Second, our consistency results are established when the ‘true’ parameter
θ∗ is kept fixed with the number n of individuals. While our non-asymptotic
statements allow to get some bounds when the parameters depend on n, it is
unclear whether our consistency result holds in that situation, especially when
some wq,� tend to zero at some rate, that is, when the true interaction probability
vanishes. Studying such a sparse situation is an interesting avenue for future
research.

Finally, our numerical experiments (our scenario (b)) suggest that the FDR
and TDR results might hold outside the NSBM , namely in the case where the
adjacency matrix A (that is, the true/false constellation of nulls) is fixed and
deterministic, rather than generated randomly according to a SBM. Related
to this, it is interesting to adopt a Bayesian point of view on our modeling:
the parameter of interest being A, the SBM can be seen as a prior distribu-
tion on the parameter, while the underlying frequentist model is the one with a
deterministic matrix A. In this view, the new VEM-based procedure is an em-
pirical Bayes procedure that fits the hyper-parameters π and w by a marginal
maximum likelihood approach. Recent literature on frequentist properties of
Bayesian multiple testing procedures, see, e.g., [15], suggests that using Cauchy
alternative distributions, that is, Cauchy slabs, rather than Gaussians might
be of interest, especially under sparsity of the signal. Studying the FDR and
TDR properties of the resulting inference procedure is thus another interesting
direction for future work.

Appendix A: Identifiability of the NSBM

A.1. Proof of Theorem 2

The proof of Theorem 2 uses a technique similar to the one in the identifiability
proof of Theorem 12 in [2].

Proof. We consider the joint distribution of the edges relating the first three
nodes K3 = (X1,2, X2,3, X3,1) to identify all model parameters, up to label
swapping. Denote �1, Q� = {1, . . . , Q}, and w̄q,� = 1 − wq,�. Let Gu be the
cumulative distribution function associated with density gu for all u ∈ V . The
cumulative distribution function FK3 of the triplet K3 is given by

FK3(x1, x2, x3)

=
∑

a1,a2,a3∈{0,1}3

∑
q,�,m∈�1,Q�3

P(X1,2 ≤ x1, X2,3 ≤ x2, X3,1 ≤ x3,

A1,2 = a1, A2,3 = a2, A3,1 = a3, Z1 = q, Z2 = �, Z3 = m)

=
∑

a1,a2,a3

∑
q,�,m

πqπ�πm[w̄q,�Gν0(x1)]
1−a1 [wq,�Gνq,�

(x1)]
a1 [w̄�,mGν0(x2)]

1−a2

× [w�,mGν�,m
(x2)]

a2 [w̄q,mGν0(x3)]
1−a3 [wq,mGνq,m(x3)]

a3 ,
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Table 1

List of mixture component distributions with corresponding mixing weight of the distribution
of K3. The last two columns give the possible values of the variables indicating the presence
or absence of edges A1,2,3 = (A1,2, A2,3, A3,1) and the group memberships (Z1, Z2, Z3) for

the corresponding mixture component distribution.

For Component Mixing weight A1,2,3 (Z1, Z2, Z3)

q ∈ �1, Q� Gνq,q ⊗ Gνq,q ⊗ Gνq,q π3
qw

3
q,q (1,1,1) (q, q, q)

q 
= � Gνq,q ⊗ Gνq,�
⊗ Gνq,�

π2
qπ�wq,qw

2
q,� (1,1,1) (q, q, �)

q 
= � Gνq,�
⊗ Gνq,q ⊗ Gνq,�

π2
qπ�wq,qw

2
q,� (1,1,1) (�, q, q)

q 
= � Gνq,�
⊗ Gνq,�

⊗ Gνq,q π2
qπ�wq,qw

2
q,� (1,1,1) (q, �, q)

q 
= � 
= m Gνq,�
⊗ Gν�,m

⊗ Gνm,q πqπ�πmwq,�w�,mwm,q (1,1,1) (q, �,m)

q, �,m ∈ �1, Q�3 Gνq,�
⊗ Gν�,m

⊗ Gν0 πqπ�πmwq,�w�,mw̄m,q (1,1,0) (q, �,m)

q, �,m ∈ �1, Q�3 Gνq,�
⊗ Gν0 ⊗ Gν�,m

πqπ�πmwq,�w�,mw̄m,q (1,0,1) (�, q,m)

q, �,m ∈ �1, Q�3 Gν0 ⊗ Gνq,�
⊗ Gν�,m

πqπ�πmwq,�w�,mw̄m,q (0,1,1) (m, q, �)

q ∈ �1, Q� Gνq,q ⊗ Gν0 ⊗ Gν0 π2
qwq,q

∑
� π�w̄

2
q,� (1,0,0) (q, q, �1, Q�)

q < � Gνq,�
⊗ Gν0 ⊗ Gν0 2πqπ�wq,�

∑
m πmw̄�,mw̄m,q (1,0,0) (q, �, �1, Q�)∪

(�, q, �1, Q�)
q ∈ �1, Q� Gν0 ⊗ Gνq,q ⊗ Gν0 π2

qwq,q
∑

� π�w̄
2
q,� (0,1,0) (�1, Q�, q, q)

q < � Gν0 ⊗ Gνq,�
⊗ Gν0 2πqπ�wq,�

∑
m πmw̄�,mw̄m,q (0,1,0) (�1, Q�, q, �)∪

(�1, Q�, �, q)
q ∈ �1, Q� Gν0 ⊗ Gν0 ⊗ Gνq,q π2

qwq,q

∑
� π�w̄

2
q,� (0,0,1) (q, �1, Q�, q)

q < � Gν0 ⊗ Gν0 ⊗ Gνq,�
2πqπ�wq,�

∑
m πmw̄�,mw̄m,q (0,0,1) (q, �1, Q�, �)∪

(�, �1, Q�, q)
Gν0 ⊗ Gν0 ⊗ Gν0

∑
q,�,m πqπ�πmw̄q,�w̄�,mw̄m,q (0,0,0) �1, Q�3

using the conditional independence property of the NSBM. From the above
expression, it is clear that K3 has a (3-dimensional) mixture distribution with
numerous terms, all of them having independent coordinates. More precisely,
Table 1 summarizes all mixture component distributions with corresponding
mixing weights. Furthermore, the last two columns of the table give the possible
values of the variables indicating the presence or absence of edges A1,2,3 =
(A1,2, A2,3, A3,1) and the group memberships (Z1, Z2, Z3) for the corresponding
mixture component.

It is important to note that due to the latent structure of the model and
since the parameters {ν0} ∪ {νq,�, q ≤ �} are supposed to be pairwise distinct,
not any combination of three distributions Gνq,�

is a mixture component. For
example,Gν1,1⊗Gν2,2⊗Gν3,3 is not a mixture component, since the first marginal
distribution implies that node 2 belongs to group 1, i.e. Z2 = 1, while the
second marginal implies that node 2 belongs to group 2, i.e. Z2 = 2. Indeed,
to identify model parameters we heavily rely on the specific structure of the
mixture distribution.

By Assumption 1 and since the parameters {ν0} ∪ {νq,�, q ≤ �} are supposed
to be pairwise distinct, the mixture contains exactly 4Q3 + 3Q(Q + 1)/2 + 1
components.

According to Theorem 1 in [48], the mixture parameters of the finite mixture
FK3 are identifiable under the assumptions of Theorem 2. That is, we identify
the parameters, say (u1

a, u
2
a, u

3
a) ∈ V3, of each mixing component with associated

mixture weight, say pa. In other words, we identify the parameter set B given
by

B =
{
(u1

a, u
2
a, u

3
a, pa), 1 ≤ a ≤ 4Q3 + 3Q(Q+ 1)/2 + 1

}
,
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where elements of B are unordered. Now, the first step is to identify the pa-
rameter uk

a for k ∈ {1, 2, 3} which corresponds to the parameter ν0 of the null
distribution.

First, note that the mixture distribution of K3 contains exactly Q+ 1 com-
ponents with i.i.d. coordinates, which are Gνq,q ⊗ Gνq,q ⊗ Gνq,q for 1 ≤ q ≤ Q
and Gν0 ⊗Gν0 ⊗Gν0 . All other mixture components contain at least two coor-
dinates with different distributions as the parameters ν0 and νq,� are assumed
to be all distinct. In other words, we identify the parameters of the intragroup
distributions νq,q and the parameter ν0 of the null with corresponding mixing
weights. That is, we identify the set

C = {(ub, sb), 1 ≤ b ≤ Q+ 1}

=
{
(νq,q, π

3
qw

3
q,q), 1 ≤ q ≤ Q

}
∪

{(
ν0,

∑
q,�,m

πqπ�πmw̄q,�w̄�,mw̄m,q

)}
.

To start with, we identify the element of C that corresponds to the null
distribution. For this, we use that the null is the only distribution that can mix
with any other distributionGνq,q . More precisely, consider the components of the
mixture distribution FK3 where the coordinates have two different distributions
with parameters ub belonging to C, that is, consider all mixture components of
the form Gu1 ⊗ Gu1 ⊗ Gu2 with u1, u2 ∈ C and u1 
= u2. As stated above, it
is impossible to get the component Gνq,q ⊗Gνq,q ⊗Gν�,�

with q 
= � due to the
topology induced by the latent structure of the NSBM. Thus, all components of
the form Gu1 ⊗Gu1 ⊗Gu2 are either Gνq,q ⊗Gνq,q ⊗Gν0 or Gν0 ⊗Gν0 ⊗Gνq,q ,
for some 1 ≤ q ≤ Q. As a result, ν0 is the only element u ∈ C such that the
components Gu1 ⊗Gu1 ⊗Gu and Gu2 ⊗Gu2 ⊗Gu both appear in the mixture for
two different elements u1, u2 ∈ C. Hence, as Q ≥ 2, we are able to recognize the
null parameter ν0. Next, we also identify νq,q, 1 ≤ q ≤ Q, up to label swapping
of the remaining parameters ub in C.

Now fix 1 ≤ q ≤ Q. As the parameter νq,q has already been identified,
we can consider the mixing weight, say s, associated with mixture component
Gνq,q ⊗Gνq,q ⊗Gννq,q

, that corresponds to the term π3
qw

3
q,q. Similarly, the mixing

weight, say t, associated with mixture component Gνq,q⊗Gνq,q⊗Gν0 corresponds
to π3

qw
2
q,qw̄q,q. Hence, s/(s + t) is equal to the parameter wq,q. In this way, we

identify wq,q for all 1 ≤ q ≤ Q. Next, we note that s1/3/wq,q equals πq.
To summarize, at this stage we have identified ν0 and the vectors (νq,q, πq, wq,q)

for 1 ≤ q ≤ Q up to label swapping.
Now fix 1 ≤ q < � ≤ Q. We identify parameter νq,� as the only parameter

u 
= ν0 such that there are two components of the form Gνq,q ⊗ Gu ⊗ Gu and
Gν�,�

⊗Gu⊗Gu in the global mixture. To see this, note that a mixture component
of the form Gνq,q ⊗Gu⊗Gu with u 
= ν0 implies that the first two nodes belong
to the latent group q, i.e. Z1 = Z2 = q. Hence, the other two coordinates are
interactions of a node in group q with another node. So parameter t belongs
to the set Dq = {νq,m, q ≤ m ≤ Q} ∪ {νm,q, 1 ≤ m ≤ q}. Likewise, the second
and third coordinates of the component Gν�,�

⊗Gu ⊗Gu with u 
= ν0 describe
interactions of a node in group � with a node in another group. Thus, u belongs
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to the set D� = {ν�,m, � ≤ m ≤ Q} ∪ {νm,�, 1 ≤ m ≤ �}. As Dq ∩ D� = νq,�, it
follows that u = νq,�. This proves identifiability in parameter νq,�.

Finally, since the component Gνq,q⊗Gνq,�
⊗Gνq,�

is identifiable, the associated
mixing weight y = π2

qπ�wq,qw
2
q,� is also identifiable. Hence, parameter wq,� is

given by
(
y/(π2

qπ�wq,q)
)1/2

. This concludes the proof.

Theorem 2 also holds for directed graphs. One of the differences in the proof
concerns the identification of parameters νq,�. Considering the two mixture com-
ponents of the form Gνq,q ⊗Gu1 ⊗Gu2 and Gν�,�

⊗Gu2 ⊗Gu1 with u1, u2 
= ν0,
it follows that u1 = νq,� and u2 = ν�,q.

A.2. Affiliation model

To illustrate that identifiability can be obtained in settings different from The-
orem 2, we consider here an NSBM with an affiliation structure, see, e.g., [33].
In particular, we define the affiliation-NSBM as the NSBM where

wq,� =

{
win if q = �
wout if q 
= �

; gνq,�
=

{
gin if q = �
gout if q 
= �

.

Here the model parameters are win, wout, the group proportions πq, 1 ≤ q ≤
Q and the distributions g0, gin, gout. The following theorem shows that the
affiliation-NSBM is identifiable.

Theorem 9. Let n ≥ Q and Q ≥ 2. Suppose that G = {gu, u ∈ V} satisfies
Assumption 1. Let g0, gin, gout ∈ G be three pairwise distinct distributions. As-
sume that win < 1/2 and wout < 1/2. Then the parameters win, wout and the
distributions g0, gin, gout of the associated affiliation-NSBM are identifiable, and
the group proportions πq, 1 ≤ q ≤ Q are identifiable up to label swapping.

Proof. Similarly to the proof of Theorem 2 we first study the distribution of the
triplet K3 = (X1,2, X2,1, X3,1) to identify the distributions G0, Gin and Gout

and the connectivity parameters win and wout. However, to identify the group
proportions πq we have to proceed differently.

First, note that the distribution of K3 is a three-dimensional finite mixture.
All mixture components have independent coordinates. The mixture has 24
components.

From the distribution of K3 we identify three components with i.i.d. coordi-
nates that correspond to G0⊗G0⊗G0, Gin⊗Gin⊗Gin and Gout⊗Gout⊗Gout

and corresponding mixing weights p1 := w̄3
in

∑Q
q=1 π

3
q + 3w̄inw̄

2
out

∑
q 
=� π

2
qπ� +

w̄3
out

∑
q 
=�
=m πqπ�πm, p2 := w3

in

∑Q
q=1 π

3
q and p3 := w3

out

∑
q 
=�
=m πqπ�πm. In

other words, we identify the unordered set given by B = {(Ga, ta), a ∈ �1, 3�} =
{(G0, p1), (Gin, p2), (Gout, p3)}. By the assumption win < 1/2 and wout < 1/2 it
is clear that G0 is the distribution with largest associated mixing weight, that
is p1 = max{p1, p2, p3}. This gives us G0. To decide which of the remaining dis-
tributions in B, say G1 and G2, corresponds to Gin, we remark that only one of
the following two components appears in the mixture of K3: either G1⊗G2⊗G2
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or G2 ⊗G1 ⊗G1. This component coincides with Gin ⊗Gout ⊗Gout. Thus, we
identify the distributions Gin and Gout.

Denote by p4 = w2
inw̄in

∑Q
q=1 π

3
q the weight of component Gin ⊗ Gin ⊗ G0.

Then we see that p2/(p2 + p4) = win. We also derive the value of
∑Q

q=1 π
3
q as

p2/w
3
in.

Finally, denote by p5 the weight of component Gin ⊗ G0 ⊗ G0, that is p5 =
winw̄

2
in

∑Q
q=1 π

3
q + winw̄

2
out

∑
q 
=� π

2
qπ�. Moreover, let p6 denote the weight of

component Gin ⊗ Gout ⊗ Gout, that is p6 = winw
2
out

∑
q 
=� π

2
qπ�. Then, (p5 −

winw̄
2
in

∑Q
q=1 π

3
q )/win = w̄2

out

∑
q 
=� π

2
qπ� =: u, and p6/(winu) = (wout/w̄out)

2 :=

v, such that
√
v/(1+

√
v) = wout. Thus, at this state we have identified G0, Gin,

Gout, win and wout.

Now, to identify the proportions πq, for some m, let us denote by Cm =
(X1,2, X2,3, . . . , Xm−1,m, Xm,1) the edges of a circle with m nodes. As above,
the distribution of this m–dimensional vector is a mixture distribution. One of
its mixture components is ⊗m

k=1Gin corresponding to the case where all m nodes
belong to the same latent group. The associated mixing weight is wm

in

∑
q π

m
q .

Applying this reasoning for 1 ≤ m ≤ Q provides the values
∑

q π
m
q for all

1 ≤ m ≤ Q. Now, according to Newton’s identities, the values of πq, 1 ≤ q ≤ Q
can be considered as the roots of a known polynomial of degree Q and thus they
are identifiable up to label swapping. This concludes the proof.

From the proof we see that the assumption that n ≥ Q is used to identify the
group proportions πq, 1 ≤ q ≤ Q, which cannot be deduced from the distribution
of K3 as in the proof of Theorem 2.

Appendix B: Estimation algorithm for the NSBM

The NSBM is a latent variable model, so that an EM-type algorithm may be
used to approximate the maximum likelihood estimator of the model parameter
θ = (π,w, ν0, ν) ∈ Θ based on observation X. Such an approach is developed in
this section.

B.1. Maximum likelihood estimation

In the NSBM the complete-data likelihood function θ ∈ Θ �→ L(X,A,Z; θ) is
given by

L(X,A,Z; θ) = L(X |A,Z; ν0, ν)L(A | Z;w)L(Z;π)

=
∏

(i,j)∈A
(g0,ν0(Xi,j))

1−Ai,j (gνZi,Zj
(Xi,j))

Ai,j

×
∏

(i,j)∈A
w

Ai,j

Zi,Zj
(1− wZi,Zj )

1−Ai,j ×
n∏

i=1

πZi



Powerful multiple testing of paired null hypotheses 2825

=
∏

(i,j)∈A:
Ai,j=0

g0,ν0(Xi,j)×
Q∏

q=1

Q∏
�=1

∏
(i,j):Ai,j=1
Zi,qZj,�=1

gνq,�
(Xi,j)

×
∏

1≤q≤�≤Q

w
Mq,�

q,� (1− wq,�)
M̄q,� ×

Q∏
q=1

π
∑n

i=1 Zi,q
q , (22)

where Zi,q = 1{Zi = q} and

Mq,� = #{(i, j) ∈ A : Ai,j = 1, Zi,qZj,� + Zi,�Zj,q > 0},
M̄q,� = #{(i, j) ∈ A : Ai,j = 0, Zi,qZj,� + Zi,�Zj,q > 0}.

The observed likelihood function θ ∈ Θ �→ L(X; θ) is obtained from the
complete-data likelihood function by integration over all possible configurations
of the latent variables (A,Z) ∈ {0, 1}A × {1, . . . , Q}n. In practice, this is pro-
hibitive for any reasonable values of n and Q due to the size of the latter set.
As a consequence, it is not possible to compute the maximum likelihood (ML)
estimator by maximizing directly the observed likelihood function.

A common estimation approach is to use an EM-type algorithm. To this end,
let Q be any distribution of the latent variables (A,Z). As usual, the observed
log-likelihood can be expressed as

logL(X; θ) = EQ[logL(X,A,Z; θ)] +H(Q) +KL
(
Q ‖ PA,Z|X;θ

)
=: J(θ,Q) +KL

(
Q ‖ PA,Z|X;θ

)
,

where H(Q) denotes the entropy of Q and KL the usual Kullback-Leibler diver-
gence. It is clear that the positivity of the Kullback-Leibler divergence implies
that J is a lower bound of the observed log-likelihood logL(X; θ).

Now the classical EM algorithm can be viewed as a method that maximizes
the lower bound J(θ,Q) by alternating between maximizing J with respect to θ
while fixing Q (M-step) and maximizing J with respect to Q while fixing θ (E-
step). Indeed, the latter maximization is equivalent to minimizing the Kullback-
Leibler divergence KL

(
Q ‖ PA,Z|X;θ

)
with respect to Q. Thus, if there is no

contraint on Q, the best choice for Q is the conditional distribution PA,Z|X;θ of
the latent variables (A,Z) given the data X. This corresponds to the E-step of
the classical EM algorithm.

Now, problems come in when the conditional distribution PA,Z|X;θ is not
tractable. In this case, a variational approximation approach can be used.

B.2. E-step using variational approximation

Let θ ∈ Θ be the current value of the model parameter. As mentioned be-
fore, the E-step of the classical EM-algorithm determines the conditional dis-
tribution PA,Z|X;θ of the latent variables (A,Z) given the observation X, when
(X,A,Z) ∼ Pθ. As in the standard SBM, we encounter the difficulty that the
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conditional distribution PA,Z|X;θ is intractable due to the involved dependence
structure of the model. We thus use a mean-field approximation, that is, an ap-
proximation by a factorized probability distribution. More precisely, we denote
by P̃τ,X,θ the distribution on {0, 1}A × {1, . . . , Q}n, depending on the observed
values of X and the current parameter value θ, such that the corresponding
likelihood is of the form

L(A,Z; P̃τ,X,θ) = L(A | Z,X; θ)
n∏

i=1

τi,Zi , (23)

for a parameter τ = (τi,q)i,q belonging to the set

T =

{
τ = (τi,q)1≤i≤n,1≤q≤Q ∈ [0, 1]nQ :

Q∑
q=1

τi,q = 1, for all i ∈ {1, . . . , n}
}
.

Then, the variational E-step consists in maximizing the lower bound J(θ,Q)
with respect to Q taken in the restricted set of distributions of the form P̃τ,X,θ.
This is equivalent to searching the variational parameter τ̂ that gives the best
approximation of the conditional distribution PA,Z|X;θ of (A,Z) given X under

Pθ by a factorized distribution P̃τ,X,θ in terms of the Kullback-Leibler diver-
gence. More precisely, for all θ ∈ Θ,

τ̂ = τ̂(θ) = argmin
τ∈T

KL
(
P̃τ,X,θ ‖ PA,Z|X;θ

)
. (24)

The following proposition states that the optimisation problem in (24) is
equivalent to solving a fixed point equation, which in practice is solved numer-
ically by an iterative algorithm.

Proposition 1. For all θ ∈ Θ, any solution τ̂ = (τ̂i,q)i,q ∈ T ∩ (0, 1)nQ of (24)
verifies the following fixed point equation

τ̂i,q = Ciπq exp

⎛⎜⎜⎝ n∑
j=1
j 
=i

Q∑
�=1

τ̂j,� d
i,j
q,�

⎞⎟⎟⎠ , i ∈ {1, . . . , n}, q ∈ {1, . . . , Q},

where Ci > 0, i ∈ {1, . . . , n} are normalization constants such that
∑Q

q=1 τ̂i,q = 1
and

ρi,jq,� = ρi,jq,�(θ) =
wq,�gνq,�

(Xi,j)

wq,�gνq,�
(Xi,j) + (1− wq,�)g0,ν0(Xi,j)

, (25)

di,jq,� = di,jq,�(θ)

= ρi,jq,�

[
log gνq,�

(Xi,j) + logwq,� − log(ρi,jq,�)
]

(26)

+ (1− ρi,jq,�)
[
log gν0(Xi,j) + log(1− wq,�)− log(1− ρi,jq,�)

]
. (27)
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To prove Proposition 1 we first give an explicit expression of the lower bound
J in the NSBM that we restate as

J(θ;Q) = J(θ; (τ,X, θ′))

= Ẽτ,X,θ′ [logL(X,A,Z; θ)]− Ẽτ,X,θ′ [logL(A,Z; P̃τ,X,θ)], (28)

where Ẽτ,X,θ′ denotes the expectation when (A,Z) has conditional distribution

P̃τ,X,θ′ .

Lemma 1. For any θ, θ′ ∈ Θ, τ ∈ T , the lower bound J(θ; (τ,X, θ′)) has the
following expression

J(θ; (τ,X, θ′)) =

Q∑
q=1

n∑
i=1

τi,q log
πq

τi,q

+

Q∑
q=1

Q∑
l=1

∑
(i,j)∈A

ρi,jq,lτi,qτj,l

{
log gνq,l

(Xi,j) + logwq,l − log(ρi,jq,�)
}

+

Q∑
q=1

Q∑
l=1

∑
(i,j)∈A

(1− ρi,jq,l)τi,qτj,l

{
log g0,ν0(Xi,j) + log(1− wq,l)− log(1− ρi,jq,�)

}
.

where ρi,jq,l = ρi,jq,l(θ
′) is defined by (25).

Proof. We have by (23) that

J(θ; (τ,X, θ′)) =

Ẽτ,X,θ′ [logL(X,A,Z; θ)]−Ẽτ,X,θ′ [logL(A | Z,X; θ′)]−Ẽτ,X,θ′ [log(P̃τ,X,θ′(Z))].

Now, by using (22), we have

Ẽτ,X,θ′ [logL(X,A,Z; θ)]

=
∑

(i,j)∈A
P̃τ,X,θ′ (Ai,j = 0) log g0,ν0(Xi,j)

+

Q∑
q=1

Q∑
�=1

∑
(i,j)∈A

P̃τ,X,θ′ (Ai,j = 1, Zi,qZj,� = 1) log gνq,�
(Xi,j)

+
∑
q≤�

Ẽτ,X,θ′ [Mq,�] logwq,� + Ẽτ,X,θ′
[
M̄q,�

]
log(1− wq,�)

+

Q∑
q=1

n∑
i=1

Ẽτ,X,θ′ [Zi,q] log πq.

This gives

J(θ; (τ,X, θ′)) =
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−
Q∑

q=1

Q∑
�=1

∑
(i,j)∈A

τi,qτj,�

(
ρi,jq,� log(ρ

i,j
q,�) + (1− ρi,jq,�) log(1− ρi,jq,�)

)

+

Q∑
q=1

n∑
i=1

τi,q log
πq

τi,q
+

∑
(i,j)∈A

log g0,ν0(Xi,j)

Q∑
q=1

Q∑
�=1

(1− ρi,jq,�)τi,qτj,�

+

Q∑
q=1

Q∑
�=1

∑
(i,j)∈A

ρi,jq,�τi,qτj,� log gνq,�
(Xi,j)

+

Q∑
q=1

Q∑
�=1

logwq,�

∑
(i,j)∈A

ρi,jq,�τi,qτj,� +

Q∑
q=1

Q∑
�=1

log(1− wq,�)
∑

(i,j)∈A
(1− ρi,jq,�)τi,qτj,�.

Rearranging terms yields the result.

Proof of Proposition 1. From Lemma 1 we see that the partial derivative of J
with respect to τi,q is given by

∂

∂τi,q
J(θ; (τ,X, θ′)) = − log τi,q + log πq − 1 +

∑
j 
=i

Q∑
�=1

τj,�d
i,j
q,�.

And the zero of this derivate satisfies

τi,q = πq exp

⎛⎝∑
j 
=i

Q∑
�=1

τj,�d
i,j
q,� − 1

⎞⎠ .

Finally, the condition
∑Q

q=1 τi,q = 1 yields the result.

B.3. M-step

Let τ ∈ T be the current value of the variational parameter and θ′ ∈ Θ the
current value of the model parameter. The M-step consists in updating the
value of the model parameter θ by maximizing θ ∈ Θ �→ J(θ; (τ,X, θ′)).

Proposition 2 (M-step). The optimisation problem

argmax
θ∈Θ

J(θ; (τ,X, θ′)), (29)

splits into three independent problems. The solutions for π and w are given by

π̂q =
1

n

n∑
i=1

τi,q, q ∈ {1, . . . , Q} (30)

ŵq,� =

∑
(i,j)∈A κi,j

q,�∑
(i,j)∈A(τi,qτj,� + τi,�τj,q)

, q 
= �, (31)
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ŵq,q =

∑
(i,j)∈A κi,j

q,q∑
(i,j)∈A τi,qτj,q

, q ∈ {1, . . . , Q}, (32)

where

κi,j
q,� =

{
(τi,qτj,� + τi,�τj,q)ρ

i,j
q,� if q 
= �;

τi,qτj,qρ
i,j
q,q if q = �,

(33)

and

κ̄i,j
q,� =

{
(τi,qτj,� + τi,�τj,q)(1− ρi,jq,�) if q 
= �;

τi,qτj,q(1− ρi,jq,q) if q = �.
(34)

with ρi,jq,� = ρi,jq,�(θ
′) defined by (25). In addition, the solution of (29) in (ν0, ν)

is given by, for 1 ≤ q ≤ � ≤ Q,

arg max
ν0∈T0

∑
(i,j)∈A

log g0,ν0(Xi,j)
∑
q≤�

κ̄i,j
q,�, arg max

νq,�∈T

∑
(i,j)∈A

κi,j
q,� log(gνq,�

(Xi,j)).

(35)

Proof. First note that

argmax
θ∈Θ

J(θ; (τ,X, θ′)) = argmax
θ∈Θ

Ẽτ,X,θ′ [logL(X,A,Z; θ)]

and

max
θ

Ẽτ,X,θ′ [logL(X,A,Z; θ)] = max
ν0,ν

Ẽτ,X,θ′ [logL(X |A,Z; ν0, ν)]

+ max
w

Ẽτ,X,θ′ [logL(A | Z;w)] + max
π

Ẽτ,X,θ′ [logL(Z;π)] .

For the term in π we have

Ẽτ,X,θ′ [logL(Z;π)] =

Q∑
q=1

log πq

n∑
i=1

Ẽτ,X,θ′ [Zi,q] =

Q∑
q=1

log πq

n∑
i=1

τi,q.

Taking into account the condition
∑Q

q=1 πq = 1, we obtain that the maximum
is attained at π̂q given by (30). Concerning the optimization with respect to w,
we have

Ẽτ,X,θ′ [logL(A | Z;w)]

=
∑
q≤�

Ẽτ,X,θ′ [Mq,�] log(wq,�) + Ẽτ,X,θ′
[
M̄q,�

]
log(1− wq,�),

which is maximal at

ŵq,� =
Ẽτ,X,θ′ [Mq,�]

Ẽτ,X,θ′
[
Mq,� + M̄q,�

] .
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Now, for all q 
= �,

Ẽτ,X,θ′ [Mq,�]

=
∑

(i,j)∈A
P̃τ,X,θ′ (Ai,j = 1, Zi,qZj,� = 1) + P̃τ,X,θ′ (Ai,j = 1, Zi,�Zj,q = 1)

=
∑

(i,j)∈A
Pθ′ (Ai,j = 1|Zi,qZj,� = 1, X) τi,qτj,�

+ Pθ′ (Ai,j = 1|Zi,�Zj,q = 1, X) τi,�τj,q

=
∑

(i,j)∈A
ρi,jq,�(τi,qτj,� + τi,�τj,q) =

∑
(i,j)∈A

κi,j
q,�.

Since Mq,� + M̄q,� = #{(i, j) ∈ A : Zi,qZj,� + Zi,�Zj,q > 0}, we obtain

Ẽτ,X,θ′
[
Mq,� + M̄q,�

]
=

∑
(i,j)∈A

P̃τ,X,θ′ (Zi,qZj,� = 1) + P̃τ,X,θ′ (Zi,�Zj,q = 1)

=
∑

(i,j)∈A
τi,qτj,� + τi,�τj,q.

This yields the solutions given in (31)–(32).
As for (ν0, ν), we have

Ẽτ,X,θ′ [logL(X |A,Z; ν0, ν)]

= Ẽτ,X,θ′

⎡⎢⎢⎣ ∑
(i,j)∈A
Ai,j=0

log g0,ν0(Xi,j)

⎤⎥⎥⎦+ Ẽτ,X,θ′

⎡⎢⎢⎣ Q∑
q=1

Q∑
�=1

∑
(i,j):Ai,j=1
Zi,qZj,�=1

log(gνq,�
(Xi,j))

⎤⎥⎥⎦
=

∑
(i,j)∈A

log g0,ν0(Xi,j)
∑
q≤�

κ̄i,j
q,� +

∑
q≤�

∑
(i,j)∈A

κi,j
q,� log(gνq,�

(Xi,j)),

which yields the result.

Concerning the maximization in (ν0, ν), we see that the terms to maximize
in (35) have the form of weighted likelihood functions. This implies that the
solutions have the form of the traditional ML estimates where sample means
are replaced with weighted means. For instance, in the Gaussian NSBM defined
in (1), the solution of (29) in ν0 = σ2

0 and νq,� = (μq,�, σ
2
q,�) is given by

μ̂q,� =

∑
(i,j)∈A κi,j

q,�Xi,j∑
(i,j)∈A κi,j

q,�

, σ̂2
q,� =

∑
(i,j)∈A κi,j

q,�(Xi,j − μ̂q,�)
2∑

(i,j)∈A κi,j
q,�

, ∀q ≤ �,

σ̂2
0 =

∑
q≤�

∑
(i,j)∈A κ̄i,j

q,�X
2
i,j∑

q≤�

∑
(i,j)∈A κ̄i,j

q,�

,

where κi,j
q,� and κ̄i,j

q,� are given by (33) and (34).
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Algorithm 3: General VEM algorithm for the NSBM
Input: Observation X, number Q of latent groups.
Output: Estimator θ̂, clustering Ẑ, variational parameters τ and probabilities ρi,jq,�.

Initialization of θ and τ ;
while not converged do

VE-step: update probabilities ρi,jq,�(θ) and update τ = τ(θ) by solving the fix point

equation in Proposition 1;
M-step: update θ according to Proposition 2 ;

end

Set θ̂ = θ;
Set Ẑi = argmaxq∈{1,...,Q}{τi,q(θ)}, i ∈ {1, . . . , n}.

Overall, the VEM algorithm has the form given in Algorithm 3. Its principal
outputs are an estimate of the model parameter denoted θ̂ and a clustering of
the nodes denoted Ẑ. In addition, the final variational parameters τ can be used
as a soft clustering of the nodes. Finally, the conditional probabilities ρi,jq,� are
estimates of the probabilities of the presence of an edge between i and j in the
graph A given that the interacting nodes belong to the latent blocks q and �,
resp.

Remark 1 (Variational approximation does not affect �-values). By definition,
the conditional distribution of A given (Z,X) is unchanged after applying the
variational approximation, see (27), because the variational approximation only
acts on (Z,X). In particular, computing the �-values according to P̃τ,X,θ or Pθ

are identical, and some of the quantities introduced in the VEM approach can
be expressed in terms of the likelihood ratio functional �(x, q, �, θ), defined by
(6). More precisely, we easily check that ρi,jq,�(θ) = 1− �(Xi,j , q, �, θ), see (25).

B.4. Model selection

In practice the number of latent blocks Q is generally unknown and has to
be estimated from the data. Here we use the classical integrated classification
likelihood (ICL) approach [8], which can be interpreted as a penalized observed
likelihood criterion, where the penalty is the sum of the traditional BIC penalty
and of the entropy of the latent variable distribution. The entropy is large when
the uncertainty of the underlying clustering is high, so that the quality of the
obtained clustering is taken into account in the model selection procedure. More
precisely, in the NSBM the ICL criterion is given by

ICL(Q) = Ẽτ̂ [Q],X,θ̂[Q] [logL(X,A,Z; θ̂[Q])] + penBIC(Q), (36)

where θ̂[Q] and τ [Q] are the output of the VEM algorithm with Q groups, and
penBIC(Q) denotes the BIC penalty, which is (roughly) the number of model
parameters multiplied with the logarithm of the number of observations. In
the NSBM, the parameter θ splits into two parts: for the group proportion
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vector π, there are n observations corresponding to the nodes, while for the
other parameters w, ν0, ν there arem observations corresponding to the observed
edges, which leads to

penBIC(Q) = −(Q− 1) logn−
(
(1 + d1)

Q(Q+ 1)

2
+ d0

)
logm.

Now, for some given maximal number Qmax of groups, the number of latent
groups Q̂ chosen by the ICL criterion is given by

Q̂ = arg max
1≤Q≤Qmax

ICL(Q).

B.5. R package

The VEM algorithm as presented here has been implemented in R. The R code
is available on CRAN via the package noisySBM. Several variants of the Gaus-
sian NSBM with varying constraints on the parameter space of the Gaussian
parameters are available. Also the Gamma NSBM has been implemented.

Appendix C: Proofs for Section 5

In this section, we prove Theorem 7 and Theorem 8. For this, we first present in
Section C.1 more general non-asymptotical results, namely Theorems 10 and 11,
and we prove Theorems 7 and 8 as easy corollaries. Section C.2 then presents a
proof for Theorems 10 and 11, while Section C.3 introduces appropriate lemmas.
Technical tools are given in Section C.4.

C.1. More general results

To states our non-asymptotic results, we need some additional notation. Recall
the assumptions of Section 5.1, relying on θ∗ ∈ Θ, αc = αc(θ

∗) given by (17)
and α ∈ (αc, e0), where e0 = e0(θ

∗) is given by (14).
First, let for θ∗ = (π∗, w∗, ν∗0 , ν

∗),

κ(θ∗, α) =
∑
q,�

π∗
qπ

∗
� [(1− w∗

q,�)L0(Tθ∗((αc + α)/2), q, �; θ∗, θ∗)

+ w∗
q,�L1(Tθ∗((αc + α)/2), q, �; θ∗, θ∗)] ∈ (0, 1]. (37)

Second, for convenience, we formalize a bit further Assumption (38) by defin-
ing the set of subsets of R containing the union of at most M non-empty open
intervals of R by

IM =

{
M⋃
k=1

(ak, bk),−∞ ≤ ak ≤ bk ≤ +∞ for 1 ≤ k ≤ M,
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and bk ≤ ak+1 for 1 ≤ k ≤ M − 1

}
. (38)

For instance, the set (−∞,−1) ∪ (5, 7) is in I2, is also in I3 (because empty
intervals are allowed), but is not in I1.

Third, we avoid to rely on Assumption 5 by defining the following continuity
moduli: for all u ∈ (0, 1), and for K ⊂ [(αc+α)/2, (α+e0)/2] a compact interval,

Wθ∗,L(u) = sup
q,�

sup
t∈Tθ∗ (K)

sup
δ∈{0,1}

sup {|Lδ(t, q, �; θ
′, θ)−Lδ(t, q, �; θ

∗, θ∗)| :

θ, θ′ ∈ Θ, ‖θ − θ∗‖∞ ≤ u, ‖θ′ − θ∗‖∞ ≤ u} ; (39)

WT,L1(u) = sup
q,�

sup {|L1(t, q, �; θ
∗, θ∗)−L1(Tθ∗(α), q, �; θ∗, θ∗)| ,

t ∈ Tθ∗(K), |t− Tθ∗(α)| ≤ u} ; (40)

Wα,T (u) = sup{|Tθ∗(y)− Tθ∗(α)| : y ∈ K, |y − α| ≤ u}. (41)

Above, we implicitly used the generic notation “Wx,f” for the modulus of the
function “f” in the point “x”. Note that these functions also depend on α, θ∗

and K.
The first result provides the non-asymptotical behavior of the FDR of the

procedure ϕNew.

Theorem 10. Let n ≥ 2. There exist universal constants c1, c
′
1, c2, c

′
2 > 0 such

that the following holds. Let Assumptions 3 and 4 (with some constant M) be
true and let θ∗ = (π∗, w∗, ν∗0 , ν

∗) ∈ Θ. Consider αc = αc(θ
∗) given by (17),

α ∈ (αc, e0), κ = κ(θ∗, α) given by (37), K ⊂ [(αc +α)/2, (α+ e0)/2] a compact
interval, and the modulus Wθ∗,L defined by (39). Let π∗

min = minq{π∗
q} and

w∗
max = maxq,�{w∗

q,�}. Consider the procedure ϕNew of Algorithm 2 for some

estimator θ̂ and clustering Ẑ having for risk probability η(θ∗, ·) defined by (18).
Then there exists ε = ε(θ∗, α,K) ∈ (0, 1) such that for all ε ∈ (0, ε), for all x > 0
with x < (π∗

min)
2 ∧ (1− w∗

max),

FDRθ∗ (ϕNew) ≤ α+ x+ 16κ−1(Wθ∗,L(ε) + 3Q2ε) + η(θ∗, ε)

+ c1Q
2e−c′1nκ

2x2/Q4

+ c2Q
2e−c′2n

2(π∗
min)

2(1−w∗
max)κ

2x2/M2

.

The second result provides the non-asymptotical behavior of the TDR of the
procedure ϕNew.

Theorem 11. Let n ≥ 2. There exist universal constants c1, c
′
1, c2, c

′
2 > 0 such

that the following holds. Consider the setting of Theorem 10 and additionally
let w∗

min = minq,�{w∗
q,�} and e1 = 1− e0. Consider the functions WT,L1 , Wα,T

given respectively by (40),(41) and the optimal procedure ϕ∗ defined by (10).
Then there exists ε = ε(θ∗, α,K) ∈ (0, 1) such that for all ε ∈ (0, ε), for all
x > 0 with x < (π∗

min)
2 ∧ w∗

min,

e1TDRθ∗ (ϕNew)

≥ e1TDRθ∗ (ϕ∗)− x− e1η(θ
∗, ε)
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− 2Wθ∗,L(ε)− 6Q2ε−WT,L1 ◦Wα,T

(
8κ−1(Wθ∗,L(ε) + 3Q2ε)

)
− c1e1Q

2e−c′1nx
2/Q4 − c2e1Q

2e−c′2n
2(π∗

min)
2w∗

minx
2/M2

.

Proof of Theorem 7. By using Theorems 10 and 11, and since θ̂, Ẑ are consis-
tent, we have for all ε ∈ (0, ε), and x ∈ (0, (π∗

min)
2 ∧ (1− w∗

max)),

lim sup
n

FDRθ∗ (ϕNew) ≤ α+ x+ 16κ−1(Wθ∗,L(ε) + 3Q2ε)

and

e1 lim inf
n

{TDRθ∗ (ϕNew)− TDRθ∗ (ϕ∗)}

≥ −x− 2Wθ∗,L(ε)− 6Q2ε−WT,L1 ◦Wα,T

(
8κ−1(Wθ∗,L(ε) + 3Q2ε)

)
.

Now, by Assumption 3, the functions Wθ∗,L, WT,L1 have both a zero limit in
zero. In addition, Wα,T also has a zero limit in zero (because y ∈ K �→ Tθ∗(y) is
continuous by Lemma 2). Hence, taking ε and x tending to 0 gives the result.

Proof of Theorem 8. By Assumption 5 (i), we have Wθ∗,L(ε) ≤ C2ε. Hence,
(19) easily derives from Theorem 10. Relation (20) is proved similarly from
Assumption 5 (ii)-(iii) and Theorem 11.

C.2. Proving Theorems 10 and 11

First, note that by (15), the optimal procedure ϕ∗ and our procedure ϕNew can
be equivalently written as �-value thresholding procedures, that is, for (i, j) ∈ A,

ϕ∗
i,j = 1{�i,j(X,Z, θ∗) ≤ Tθ∗(α)} = 1{MFDRθ∗(θ∗, �i,j(X,Z, θ∗)) ≤ α};

ϕNew

i,j = 1{�i,j(X, Ẑ, θ̂) ≤ Tθ̂(α)} = 1{MFDRθ̂(θ̂, �i,j(X, Ẑ, θ̂)) ≤ α},

for which we recall that θ∗ is the true value of the parameter.
Next, recall that on the event

E = E(θ∗, ε) =
{
‖θ̂ − θ∗‖ ≤ ε and Ẑ = Z up to label switching

}
, (42)

there exists some permutation σ of {1, . . . , Q} such that both σ(Z) = Ẑ and

‖θ̂σ − θ∗‖∞ ≤ ε, where θ̂σ = (π̂σ, ŵσ, ν̂0, ν̂
σ) for π̂σ = (π̂σ(q))1≤q≤Q, ŵ

σ =

(ŵσ(q),σ(�))1≤q,�≤Q, ν̂σ = (ν̂σ(q),σ(�))1≤q,�≤Q. Hence, we have �i,j(X, Ẑ; θ̂) =

�i,j(X,σ(Z); θ̂) = �i,j(X,Z; θ̂σ) and MFDRθ̂σ (θ̂σ, t) = MFDRθ̂(θ̂, t). This gives
ϕNew = ϕZ , where ϕZ denotes the procedure defined by

ϕZ

i,j = 1{MFDRθ̂σ (θ̂
σ, �i,j(X,Z, θ̂σ)) ≤ α} = 1{�i,j(X,Z, θ̂σ) ≤ Tθ̂σ (α)}. (43)

The latter is easier to study than ϕNew because ‖θ̂σ − θ∗‖∞ ≤ ε and Z is the
true clustering. In the sequel, for any θ, we denote the �-values �i,j(X,Z; θ) (5)
by �i,j(θ) for short.
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Third, let us introduce additional useful notation. Define for any t ∈ [0, 1],
θ ∈ Θ,

F̂0(θ, t) = m−1
∑

(i,j)∈A
(1−Ai,j)1{�i,j(θ) ≤ t}; (44)

F̂1(θ, t) = m−1
∑

(i,j)∈A
Ai,j1{�i,j(θ) ≤ t}; (45)

F̂ (θ, t) = F̂0(θ, t) + F̂1(θ, t) = m−1
∑

(i,j)∈A
1{�i,j(θ) ≤ t}; (46)

FDP(θ, t) =
F̂0(θ, t)

F̂ (θ, t)
. (47)

Also let for θ′ = (π′, w′, ν′0, ν
′) ∈ Θ,

F0,θ′(θ, t) = Eθ′ [F̂0(θ, t)] =
∑
q,�

π′
qπ

′
�(1− w′

q,�)L0(t, q, �; θ
′, θ); (48)

F1,θ′(θ, t) = Eθ′ [F̂1(θ, t)] =
∑
q,�

π′
qπ

′
�w

′
q,� L1(t, q, �; θ

′, θ); (49)

Fθ′(θ, t) = F0,θ′(θ, t) + F1,θ′(θ, t). (50)

Note that MFDRθ∗(θ, t) defined in (7) is thus such that

MFDRθ∗(θ, t) =
F0,θ∗(θ, t)

Fθ∗(θ, t)
. (51)

Also, note that κ(θ∗, α) defined in (37) is thus equal to Fθ∗(θ∗, Tθ∗((αc+α)/2)).

Proof of Theorem 10. First observe that by using ϕNew = ϕZ and (43), we have

FDRθ∗ (ϕNew) ≤ Eθ∗

[
FDP(θ̂σ, Tθ̂σ (α))1E

]
+ η(θ∗, ε),

where σ denotes any (data dependent) permutation of {1, . . . , Q} such that

both σ(Z) = Ẑ and ‖θ̂σ − θ∗‖∞ ≤ ε. This permutation exists on the event E by
definition (42). Now, let x > 0 with x < (π∗

min)
2 ∧ (1 − w∗

max) and y > 0 and
consider the event

Ω = Ω(θ∗, x, y) =

⎧⎪⎨⎪⎩ sup
θ∈Θ,t∈[0,1]
Fθ∗ (θ,t)≥y

|FDP(θ, t)−MFDRθ∗(θ, t)| ≤ x

⎫⎪⎬⎪⎭ . (52)

We have

Eθ∗

[
FDP(θ̂σ, Tθ̂σ (α))1E

]
≤ Eθ∗

[
FDP(θ̂σ, Tθ̂σ (α))1Ω1E

]
+ Pθ∗(Ωc).

Now, applying Lemma 3 (56) (with the definition of υ(ε) therein), there ex-

ists ε = ε(θ∗, α,K) ∈ (0, 1) such that for all ε ≤ ε, if ‖θ̂σ − θ∗‖∞ ≤ ε then
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Tθ∗(minK) ≤ Tθ∗(α − υ(ε)) ≤ Tθ̂σ (α) ≤ Tθ∗(α + υ(ε)) ≤ Tθ∗(maxK). In par-

ticular, Fθ∗(θ̂σ, Tθ̂σ (α)) ≥ Fθ∗(θ̂σ, Tθ∗(minK)) ≥ κ(1 − υ(ε)/4), by applying
Lemma 3 (54). Hence, choosing y = κ/2 so that y ≤ κ(1− υ(ε)/4) (which holds
by choosing ε small enough), we get by definition of Ω,

Eθ∗

[
FDP(θ̂σ, Tθ̂σ (α))1Ω1E

]
≤ x+ Eθ∗

[
MFDRθ∗(θ̂σ, Tθ̂σ (α))1E

]
≤ x+ Eθ∗

[
MFDRθ∗(θ̂σ, Tθ∗(α+ υ(ε)))1E

]
≤ x+MFDRθ∗(θ∗, Tθ∗(α+ υ(ε))) + υ(ε) = x+ α+ 2υ(ε),

by applying (55). This gives

FDRθ∗ (ϕNew) ≤ α+ x+ 2υ(ε) + Pθ∗(Ωc) + η(θ∗, ε).

We conclude by upper bounding Pθ∗(Ωc) according to Lemma 4.

Proof of Theorem 11. First observe that, similarly to the proof of Theorem 10
(and using the same notation for the permutation σ), we have

e1TDRθ∗ (ϕNew) ≥ Eθ∗

[
F̂1(θ̂

σ, Tθ̂σ (α))1E
]
.

Also observe that for the procedure ϕ∗ given by (10), we have

e1TDRθ∗ (ϕ∗) = Eθ∗

[
F̂1(θ

∗, Tθ∗(α))
]
= F1,θ∗(θ∗, Tθ∗(α)).

For all x > 0 with x < (π∗
min)

2 ∧ w∗
min, consider the event

Ω1 = Ω1(θ
∗, x) =

{
sup

θ∈Θ,t∈[0,1]

∣∣∣F̂1(θ, t)− F1,θ∗(θ, t)
∣∣∣ ≤ x

}
.

We obviously have

Eθ∗

[
F̂1(θ̂

σ, Tθ̂σ (α))1E
]
≥ Eθ∗

[
F̂1(θ̂

σ, Tθ̂σ (α))1Ω11E
]

≥ Eθ∗

[
F1,θ∗(θ̂σ, Tθ̂σ (α))1Ω11E

]
− x.

Now, by applying Lemma 3 (with the definition of υ(ε)), there exists ε =

ε(θ∗, α,K) ∈ (0, 1) such that for all ε ≤ ε, if ‖θ̂σ − θ∗‖∞ ≤ ε then Tθ∗(minK) ≤
Tθ∗(α− υ(ε)) ≤ Tθ̂σ (α) ≤ Tθ∗(α+ υ(ε)) ≤ Tθ∗(maxK) and

Eθ∗

[
F1,θ∗(θ̂σ, Tθ̂σ (α))1Ω11E

]
≥ Eθ∗

[
(F1,θ∗(θ∗, Tθ̂σ (α))− κυ(ε)/4)1Ω11E

]
≥ F1,θ∗(θ∗, Tθ∗(α− υ(ε)))− κυ(ε)/4− e1Pθ∗(Ωc

1)− e1η(θ
∗, ε),
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because F1,θ∗(θ∗, Tθ̂σ (α)) ≤ e1 pointwise. Now using the functions WT,L1 and
Wα,T defined by (40) and (41), respectively, we have by (57),

F1,θ∗(θ∗, Tθ∗(α− υ(ε))) ≥ F1,θ∗(θ∗, Tθ∗(α))−WT,L1 (Tθ∗(α)− Tθ∗(α− υ(ε)))

≥ F1,θ∗(θ∗, Tθ∗(α))−WT,L1 ◦Wα,T (υ(ε)) .

Using Lemma 5 to upper-bound Pθ∗(Ωc
1) concludes the proof.

C.3. Main lemmas for Section 5

Lemma 2. Let Assumption 3 be true and consider any θ ∈ Θ with the corre-
sponding quantities t1,q,�(θ), t2,q,�(θ), q, � ∈ {1, . . . , Q}2, t1(θ) = minq,� t1,q,�(θ)
and t2(θ) = maxq,� t2,q,�(θ). Then the function t �→ MFDRθ(θ, t) is increas-
ing on [t1(θ), t2(θ)], continuous on (t1(θ), 1], satisfies MFDRθ(θ, t) = 0 for
t ∈ [0, t1(θ)], MFDRθ(θ, t) = e0 for t ∈ [t2(θ), 1] and MFDRθ(θ, t) < t for
t ∈ (t1(θ), 1].

Proof. First note that the following relation holds (coming from (5), (7) and
Fubini’s theorem): for all θ ∈ Θ, t ∈ [0, 1],

MFDRθ(θ, t) =
Eθ

[∑
(i,j)∈A �i,j(θ)1{�i,j(θ) ≤ t}

]
Eθ

[∑
(i,j)∈A 1{�i,j(θ) ≤ t}

] . (53)

In the sequel, denote respectively MFDRθ(θ, t) by f(t) and �i,j(θ) by �i,j for
short. Note that by Assumption 3, we have f(t) = 0 for t ∈ [0, t1], f(t) = e0 for
t ∈ [t2, 1]. Notice that the �i,j are continuous random variables because their
c.d.f.’s are continuous by Assumption 3. Thus, (53) yields

f(t) =
F0,θ(θ, t)

Fθ(θ, t)
=

Eθ

[∑
(i,j)∈A �i,j1{�i,j < t}

]
Eθ

[∑
(i,j)∈A 1{�i,j < t}

] , for t ∈ [0, 1].

As a result, by the dominated convergence theorem, f is both left-continuous
and right-continuous in any t such that Fθ(θ, t) > 0.

Now prove that f is increasing on [t1, t2]. For this, let t1 ≤ t < t′ ≤ t2 and
prove f(t′) > f(t). If Fθ(θ, t) = 0, then f(t) = 0. Since F0,θ(θ, t

′) > 0 and
Fθ(θ, t

′) > 0, we have f(t′) > 0 = f(t). Now assume Fθ(θ, t) > 0, so that
Fθ(θ, t

′) > 0 also holds. We let

δ =
Fθ(θ, t

′)

Fθ(θ, t)
− 1 =

Eθ

[∑
(i,j)∈A 1{t < �i,j ≤ t′}

]
Eθ

[∑
(i,j)∈A 1{�i,j ≤ t}

] .

Now, we have

(f(t′)− f(t))Fθ(θ, t
′)
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= Eθ

⎡⎣ ∑
(i,j)∈A

�i,j1{�i,j ≤ t′}

⎤⎦− (1 + δ) Eθ

⎡⎣ ∑
(i,j)∈A

�i,j1{�i,j ≤ t}

⎤⎦
= Eθ

⎡⎣ ∑
(i,j)∈A

�i,j1{t < �i,j ≤ t′}

⎤⎦− δ Eθ

⎡⎣ ∑
(i,j)∈A

�i,j1{�i,j ≤ t}

⎤⎦
≥ t Eθ

⎡⎣ ∑
(i,j)∈A

1{t < �i,j ≤ t′}

⎤⎦− δ Eθ

⎡⎣ ∑
(i,j)∈A

�i,j1{�i,j ≤ t}

⎤⎦
≥ t

⎛⎝Eθ

⎡⎣ ∑
(i,j)∈A

1{t < �i,j ≤ t′}

⎤⎦− δ Eθ

⎡⎣ ∑
(i,j)∈A

1{�i,j ≤ t})

⎤⎦⎞⎠ = 0.

Now, since Fθ(θ, t
′) > 0, this entails f(t′) ≥ f(t). Also, if f(t′) = f(t), the

inequalities above are all equalities and we have

Eθ

⎡⎣ ∑
(i,j)∈A

�i,j1{t < �i,j ≤ t′}

⎤⎦ = t Eθ

⎡⎣ ∑
(i,j)∈A

1{t < �i,j ≤ t′}

⎤⎦
and thus

Eθ

⎡⎣ ∑
(i,j)∈A

(�i,j − t)1{t < �i,j ≤ t′}

⎤⎦ = 0

which gives (�i,j − t)1{t < �i,j ≤ t′} = 0 Pθ-a.s. for all (i, j), which is impossible
because �i,j is a continuous random variable with an increasing c.d.f. on [t, t′]
(Assumption 3). Hence, f(t′) > f(t) and the increasingness of f is proved.

Finally, let t ∈ (t1, 1] and prove that t > f(t).

(t− f(t))Fθ(θ, t) = Eθ

⎡⎣ ∑
(i,j)∈A

(t− �i,j)1{�i,j < t}

⎤⎦ ≥ 0

and thus t ≥ f(t). Moreover, t = f(t) entails (t− �i,j)1{�i,j ≤ t} = 0 Pθ-a.s. for
all (i, j), which is impossible because �i,j is a continuous random variable with
an increasing c.d.f. on [t1, t] (Assumption 3). Hence t > f(t).

Lemma 3. Let Assumption 3 be true, θ∗ ∈ Θ, αc = αc(θ
∗) given by (17),

α ∈ (αc, e0), κ = κ(θ∗, α) given by (37), K ⊂ [(αc +α)/2, (α+ e0)/2] a compact
interval, the modulus Wθ∗,L defined by (39) and the modulus WT,L1 defined by
(40). Then there exists ε = ε(θ∗, α,K) ∈ (0, 1) such that for all ε ≤ ε, letting
υ(ε) = 8κ−1(Wθ∗,L(ε)+3Q2ε), we have minK ≤ α−υ(ε) and α+υ(ε) ≤ maxK
and for any θ, θ′ ∈ Θ with ‖θ − θ∗‖∞ ≤ ε and ‖θ′ − θ∗‖∞ ≤ ε, we have

sup
t∈Tθ∗ (K)

|F0,θ′(θ, t)− F0,θ∗(θ∗, t)| ∨ |F1,θ′(θ, t)− F1,θ∗(θ∗, t)|

∨ |Fθ′(θ, t)− Fθ∗(θ∗, t)| ≤ 2Wθ∗,L(ε) + 6Q2ε = κυ(ε)/4; (54)
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sup
t∈Tθ∗ (K)

|MFDRθ′(θ, t)−MFDRθ∗(θ∗, t)| ≤ υ(ε); (55)

Tθ∗(minK) ≤ Tθ∗(α− υ(ε)) ≤ Tθ(α) ≤ Tθ∗(α+ υ(ε)) ≤ Tθ∗(maxK). (56)

Moreover, for t ∈ Tθ∗(K) with |t− Tθ∗(α)| ≤ ε, we have

|F1,θ∗(θ∗, t)− F1,θ∗(θ∗, Tθ∗(α))| ≤ WT,L1(ε). (57)

Proof. To prove (54), we have by (39) and (49), for all t ∈ Tθ∗(K), θ ∈ Θ,
θ∗ = (π∗, w∗, ν∗0 , ν

∗), θ′ = (π′, w′, ν′0, ν
′),

|F1,θ′(θ, t)− F1,θ∗(θ∗, t)|

=

∣∣∣∣∣∣
∑
q,�

π′
qπ

′
�w

′
q,� L1(t, q, �; θ

′, θ)−
∑
q,�

π∗
qπ

∗
�w

∗
q,� L1(t, q, �; θ

∗, θ∗)

∣∣∣∣∣∣
≤

∑
q,�

π′
qπ

′
�w

′
q,�

∣∣∣∣∣L1(t, q, �; θ
′, θ)−

π∗
qπ

∗
�w

∗
q,�

π′
qπ

′
�w

′
q,�

L1(t, q, �; θ
∗, θ∗)

∣∣∣∣∣
≤ sup

q,�
|L1(t, q, �; θ

′, θ)−L1(t, q, �; θ
∗, θ∗)|+

∑
q,�

∣∣π′
qπ

′
�w

′
q,� − π∗

qπ
∗
�w

∗
q,�

∣∣
≤ Wθ∗,L(ε) + 3Q2ε.

Similarly, the latter bound is also valid for |F0,θ′(θ, t)− F0,θ∗(θ∗, t)|. Since we
have Fθ′(θ, t) = F0,θ′(θ, t)+F1,θ′(θ, t), this proves (54). The proof of (57) follows
similarly.

Let us now establish (55). First, by (54), and since Fθ∗(θ∗, Tθ∗(minK)) ≥
κ > 0, we have for all t ∈ Tθ∗(K), Fθ′(θ, t) ≥ κ/2 by choosing ε = ε(θ∗, α) small
enough. Hence,

|MFDRθ′(θ, t)−MFDRθ∗(θ∗, t)|

=

∣∣∣∣F0,θ′(θ, t)

Fθ′(θ, t)
− F0,θ∗(θ∗, t)

Fθ∗(θ∗, t)

∣∣∣∣
≤

∣∣∣∣F0,θ′(θ, t)

Fθ′(θ, t)
− F0,θ∗(θ∗, t)

Fθ′(θ, t)

∣∣∣∣+ F0,θ∗(θ∗, t)

∣∣∣∣ 1

Fθ′(θ, t)
− 1

Fθ∗(θ∗, t)

∣∣∣∣
≤ |F0,θ′(θ, t)− F0,θ∗(θ∗, t)|

κ/2
+

F0,θ∗(θ∗, t)

Fθ∗(θ∗, t)

|Fθ′(θ, t)− Fθ∗(θ∗, t)|
κ/2

≤ 4κ−1(2Wθ∗,L(ε) + 6Q2ε),

which proves (55) by using again (54).
Let us finally prove (56). The relation (55), used with θ = θ′ gives for all

t ∈ Tθ∗(K),

MFDRθ∗(θ∗, t)− υ(ε) ≤ MFDRθ(θ, t) ≤ MFDRθ∗(θ∗, t) + υ(ε). (58)

Furthermore, applying (58) for t = Tθ∗(α+ υ(ε)) and t = Tθ∗(α− υ(ε)) yields

α ≤ MFDRθ(θ, Tθ∗(α+ υ(ε))) and MFDRθ(θ, Tθ∗(α− υ(ε))) ≤ α,

which gives the result by definition of the pseudo-inverse (15).
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Lemma 4 (Concentration of the FDP process). There exists universal constants
c1, c

′
1, c2, c

′
2 > 0 such that the following holds. Let Assumption 4 be true for

some integer M ≥ 1. Let θ∗ = (π∗, w∗, ν∗0 , ν
∗) ∈ Θ, π∗

min = minq{π∗
q}, w∗

min =
minq,�{w∗

q,�} and w∗
max = maxq,�{w∗

q,�}. Then for all x > 0 with x < (π∗
min)

2 ∧
(1− w∗

max) and y > 0,

Pθ∗

⎛⎜⎝ sup
θ∈Θ,t∈[0,1]
Fθ∗ (θ,t)≥y

|FDP(θ, t)−MFDRθ∗(θ, t)| > x

⎞⎟⎠
≤ c1Q

2e−c′1ny
2x2/Q4

+ c2MQ2e−c′2n
2(π∗

min)
2(1−w∗

max)y
2x2/M2

.

Proof. We have∣∣∣∣∣ F̂0(θ, t)

F̂ (θ, t)
− F0,θ∗(θ, t)

Fθ∗(θ, t)

∣∣∣∣∣
≤

∣∣∣∣∣ F̂0(θ, t)− F0,θ∗(θ, t)

F̂ (θ, t)

∣∣∣∣∣+ F0,θ∗(θ, t)

F̂ (θ, t)Fθ∗(θ, t)
|F̂ (θ, t)− Fθ∗(θ, t)|

≤
∣∣∣∣∣ F̂0(θ, t)− F0,θ∗(θ, t)

F̂ (θ, t)

∣∣∣∣∣+ 1

F̂ (θ, t)
|F̂ (θ, t)− Fθ∗(θ, t)|

≤ 2

Fθ∗(θ, t)

( ∣∣∣F̂0(θ, t)− F0,θ∗(θ, t)
∣∣∣+ ∣∣∣F̂ (θ, t)− Fθ∗(θ, t)

∣∣∣)
≤ 2

y

( ∣∣∣F̂0(θ, t)− F0,θ∗(θ, t)
∣∣∣+ ∣∣∣F̂ (θ, t)− Fθ∗(θ, t)

∣∣∣) ,

which holds provided that Fθ∗(θ, t) ≥ y and by assuming F̂ (θ, t) ≥ Fθ∗(θ, t)/2.
Now consider the event⎧⎪⎨⎪⎩ sup

θ∈Θ,t∈[0,1]
Fθ∗ (θ,t)≥y

|F̂0(θ, t)− F0,θ∗(θ, t) | ≤ xy/4

⎫⎪⎬⎪⎭
∩

⎧⎪⎨⎪⎩ sup
θ∈Θ,t∈[0,1]
Fθ∗ (θ,t)≥y

|F̂ (θ, t)− Fθ∗(θ, t)| ≤ xy/4

⎫⎪⎬⎪⎭ .

On this event, we indeed have F̂ (θ, t) ≥ Fθ∗(θ, t) − xy/4 ≥ Fθ∗(θ, t) − y/4 ≥
Fθ∗(θ, t)/2 (because x ≤ 1 and, again, y ≤ Fθ∗(θ, t)). Hence, the display above
entails

sup
θ∈Θ,t∈[0,1]
Fθ∗ (θ,t)≥y

∣∣∣∣∣ F̂0(θ, t)

F̂ (θ, t)
− F0,θ∗(θ, t)

Fθ∗(θ, t)

∣∣∣∣∣ ≤ 2

y
(xy/4 + xy/4) = x.

Applying Lemma 5 with x in place of xy/4 finishes the proof.
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C.4. Auxiliary results

Lemma 5. Consider the setting of Lemma 4 and let m = n(n− 1)/2. Then for
all x > 0 with x < (π∗

min)
2 ∧ (1− w∗

max),

Pθ∗

(
sup

θ∈Θ,t∈[0,1]

∣∣∣F̂0(θ, t)− F0,θ∗(θ, t)
∣∣∣ > x

)
≤ 2Q2e−2�n/2�x2/(9Q4) + 3Q2e−m(π∗

min)
2(1−w∗

max)x
2/(72M2).

For all x > 0 with x < (π∗
min)

2 ∧ w∗
min,

Pθ∗

(
sup

θ∈Θ,t∈[0,1]

∣∣∣F̂1(θ, t)− F1,θ∗(θ, t)
∣∣∣ > x

)
≤ 2Q2e−2�n/2�x2/(9Q4) + 3Q2e−m(π∗

min)
2w∗

minx
2/(72M2).

Finally, for all x > 0 with x < (π∗
min)

2,

Pθ∗

(
sup

θ∈Θ,t∈[0,1]

∣∣∣F̂ (θ, t)− Fθ∗(θ, t)
∣∣∣ > x

)
≤ 2Q2e−2�n/2�x2/(9Q4) + 2Q2e−m(π∗

min)
2x2/36.

Proof. For short, we denote in this proof π∗, w∗, π∗
min, w

∗
min, w

∗
max by π, w,

πmin, wmin, wmax, respectively. Let us denote

mq,�(Z) =
∑

(i,j)∈A
1{Zi = q, Zj = �}

m0,q,�(A,Z) =
∑

(i,j)∈A
1{Zi = q, Zj = �}(1−Ai,j),

for q, � ∈ {1, . . . , Q}. For all θ ∈ Θ and t ∈ [0, 1], we have

F̂0(θ, t) = m−1
∑

(i,j)∈A
(1−Ai,j)1{�i,j(θ) ≤ t} =

∑
1≤q,�≤Q

m0,q,�(A,Z)

m
F̂0,q,�(θ, t),

where we let

F̂0,q,�(θ, t)

= (m0,q,�(A,Z))−1
∑

(i,j)∈A
1{Zi = q, Zj = �}(1−Ai,j)1{�(Xi,j , q, �; θ) ≤ t}.

Note that
Eθ∗(F̂0,q,�(θ, t) |A,Z) = L0(t, q, �; θ

∗, θ),

as defined by (8). As a consequence, we have

|F̂0(θ, t)− F0,θ∗(θ, t)|
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=

∣∣∣∣∣∣
∑

1≤q,�≤Q

m0,q,�(A,Z)

m
F̂0,q,�(θ, t)−

∑
1≤q,�≤Q

πqπ�(1− wq,�)L0(t, q, �; θ
∗, θ)

∣∣∣∣∣∣
≤

∑
1≤q,�≤Q

∣∣∣∣m0,q,�(A,Z)

m
F̂0,q,�(θ, t)− πqπ�(1− wq,�)L0(t, q, �; θ

∗, θ)

∣∣∣∣
≤

∑
1≤q,�≤Q

∣∣∣∣m0,q,�(A,Z)

m
− πqπ�(1− wq,�)

∣∣∣∣
+

∑
1≤q,�≤Q

πqπ�(1− wq,�)
∣∣∣F̂0,q,�(θ, t)−L0(t, q, �; θ

∗, θ)
∣∣∣

≤
∑

1≤q,�≤Q

mq,�(Z)

m

∣∣∣∣m0,q,�(A,Z)

mq,�(Z)
− (1− wq,�)

∣∣∣∣
+

∑
1≤q,�≤Q

(1− wq,�)

∣∣∣∣mq,�(Z)

m
− πqπ�

∣∣∣∣
+

∑
1≤q,�≤Q

πqπ�(1− wq,�)
∣∣∣F̂0,q,�(θ, t)−L0(t, q, �; θ

∗, θ)
∣∣∣ .

The latter is smaller than or equal to x on the event

Ω =

{
∀q, � ∈ {1, . . . , Q} :

∣∣∣∣m0,q,�(A,Z)

mq,�(Z)
− (1− wq,�)

∣∣∣∣ ≤ x/3,∣∣∣∣mq,�(Z)

m
− πqπ�

∣∣∣∣ ≤ x/(3Q2), sup
θ∈Θ,t∈[0,1]

∣∣∣F̂0,q,�(θ, t)−L0(t, q, �; θ
∗, θ)

∣∣∣ ≤ x/3

}
.

Let us now provide an upper-bound for Pθ∗(Ωc). We have

Pθ∗(Ωc)

≤
Q∑

q,�=1

Pθ∗

(∣∣∣∣m0,q,�(A,Z)

mq,�(Z)
− (1− wq,�)

∣∣∣∣ > x/3,

∣∣∣∣mq,�(Z)

m
− πqπ�

∣∣∣∣ ≤ x/(3Q2)

)

+

Q∑
q,�=1

Pθ∗

(∣∣∣∣mq,�(Z)

m
− πqπ�

∣∣∣∣ > x/(3Q2)

)

+

Q∑
q,�=1

Pθ∗

(
sup

θ∈Θ,t∈[0,1]

∣∣∣F̂0,q,�(θ, t)−L0(t, q, �; θ
∗, θ)

∣∣∣ > x/3,∣∣∣∣m0,q,�(A,Z)

mq,�(Z)
− (1− wq,�)

∣∣∣∣ ≤ x/3,

∣∣∣∣mq,�(Z)

m
− πqπ�

∣∣∣∣ ≤ x/(3Q2)

)
.

= (I) + (II) + (III).

To bound (I), we note that, conditionally on Z, m0,q,�(A,Z) is the sum of
mq,�(Z) i.i.d. B(1−wq,�), which gives by applying (i) of Lemma 7 (p = 1−wq,�,
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n = mq,�(Z)), that

(I) ≤
Q∑

q,�=1

Eθ∗

(
2e−2mq,�(Z)(x/3)21

{∣∣∣∣mq,�(Z)

m
− πqπ�

∣∣∣∣ ≤ x/(3Q2)

})
≤ 2Q2e

−m(2/9)(πqπ�−x/(3Q2))
+
x2

.

For bounding (II), we use readily (ii) of Lemma 7 to obtain

(II) ≤ 2Q2e−2�n/2�x2/(9Q4).

For bounding (III), note that

F̂0,q,�(θ, t)

= (m0,q,�(A,Z))−1
∑

(i,j)∈A
1{Zi = q, Zj = �}(1−Ai,j)1{�(Xi,j , q, �; θ) ≤ t}

= (m0,q,�(A,Z))−1
∑

(i,j)∈A
1{Zi = q, Zj = �}(1−Ai,j)1{Xi,j ∈ I(q, �, θ, t)},

for some I(q, �, θ, t) ∈ IM , by using Assumption 4. Note that, conditionally on
A,Z, the variables of (Xi,j , (i, j) ∈ A, Ai,j = 0, Zj = q, Zj = �) are i.i.d. Hence,
we can apply Lemma 6 (n = m0,q,�(A,Z)), to get for all x > 0,

(III) ≤ Q2Eθ∗

(
2e−m0,q,�(A,Z)x2/(18M2)

1
{
m0,q,�(A,Z) ≥ m(πqπ� − x/(3Q2))((1− wq,�)− x/3)

})
≤ 2Q2e−m(πqπ�−x/(3Q2))+((1−wq,�)−x/3)+x2/(18M2).

Finally, note that πqπ� − x/3 ≥ π2
min/2 provided that x ≤ 3π2

min/2 and (1 −
wq,�)− x/3 ≥ (1−wmax)/2, provided that x ≤ 3(1−wmax)/2, so that Pθ∗(Ωc)
is smaller than

2Q2e−mπ2
minx

2/9 + 2Q2e−2�n/2�x2/(9Q4) + 2Q2e−mπ2
min(1−wmax)x

2/(72M2).

This concludes the proof of the first inequality. The second inequality is similar,
by replacing 1 − wq,� (resp. 1 − Ai,j) by wq,� (resp. Ai,j). The third inequality
is obtained similarly.

Lemma 6. Let U1, . . . , Un be n i.i.d. continuous real random variables and M
a positive integer. Then we have for all x > 0,

P

(
sup
I∈IM

∣∣∣∣∣n−1
n∑

i=1

1{Ui ∈ I} − P(U1 ∈ I)

∣∣∣∣∣ ≥ x

)
≤ 2e−nx2/(2M2),

where IM is defined by (38).
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Proof. Denote

C = {(ak, bk)1≤k≤M such that −∞ ≤ ak ≤ bk ≤ +∞ for 1 ≤ k ≤ M,

and bk ≤ ak+1 for 1 ≤ k ≤ M − 1}.

First, note that, almost surely, ∀i ∈ {1, . . . , n}, ∀t ∈ Q, Ui 
= t, so that we have
almost surely,

sup
t∈R

∣∣∣∣∣n−1
n∑

i=1

1{Ui < t} − P(U1 < t)

∣∣∣∣∣ = sup
t∈Q

∣∣∣∣∣n−1
n∑

i=1

1{Ui < t} − P(U1 < t)

∣∣∣∣∣
= sup

t∈Q

∣∣∣∣∣n−1
n∑

i=1

1{Ui ≤ t} − P(U1 ≤ t)

∣∣∣∣∣
= sup

t∈R

∣∣∣∣∣n−1
n∑

i=1

1{Ui ≤ t} − P(U1 ≤ t)

∣∣∣∣∣ .
Hence, almost surely,

sup
I∈IM

∣∣∣∣∣n−1
n∑

i=1

1{Ui ∈ I} − P(U1 ∈ I)

∣∣∣∣∣
≤ 2 sup

(ak,bk)k∈C

M∑
k=1

∣∣∣∣∣n−1
n∑

i=1

1{Ui ≤ ak} − P(U1 ≤ ak)

∣∣∣∣∣
≤ 2M sup

t∈R

∣∣∣∣∣n−1
n∑

i=1

1{Ui ≤ t} − P(U1 ≤ t)

∣∣∣∣∣ ,
because 1{ak < Ui < bk} = 1{Ui < bk} − 1{Ui ≤ ak}. The proof is finished by
using DKW inequality with Massart’s constant, see [31].

Lemma 7. Let n ≥ 2 be an integer. Then

(i) For Y ∼ B(n, p), p ∈ (0, 1), we have for all x > 0,

P (|Y/n− p| ≥ x) ≤ 2e−2nx2

.

(ii) For Zi for 1 ≤ i ≤ n i.i.d. where πq = P(Z1 = q) ∈ (0, 1), q = 1, . . . , Q,∑Q
q=1 πq = 1, we have for all x > 0,

P

⎛⎝∣∣∣∣∣∣m−1
∑

1≤i<j≤n

1{Zi = q, Zj = �} − πqπ�

∣∣∣∣∣∣ ≥ x

⎞⎠ ≤ 2e−2�n/2�x2

.

Proof. Both inequalities are applications of versions of Hoeffding inequalities:
(i) is the classical version, while (ii) is the one devoted to U -statistics, see e.g.
[41].
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C.5. Proof of Theorem 6

We follow an argument inspired from the proof of Theorem 1 in [14]. De-
note �i,j(θ

∗) by �i,j for short. First, note that by Lemma 2, MFDRθ∗(ϕ∗) =
MFDRθ∗(θ∗, Tθ∗(α)) = α by definition of Tθ∗(α) ∈ (t1(θ

∗), t2(θ
∗)), see (15).

This gives

Eθ∗

⎡⎣ ∑
(i,j)∈A

(�i,j − α)ϕ∗
i,j

⎤⎦ = Eθ∗

⎡⎣ ∑
(i,j)∈A

�i,jϕ
∗
i,j

⎤⎦− αEθ∗

⎡⎣ ∑
(i,j)∈A

ϕ∗
i,j

⎤⎦ = 0,

by using the MFDR expression given by (53). Also, since Ψ : x ∈ [0, 1) �→
(x−α)/(1−x) is continuous increasing and defines a one to one map from [0, 1)
to [−α,+∞), we have, almost surely,

ϕ∗
i,j = 1{Ψ(�i,j) ≤ Ψ(Tθ∗(α))} = 1

{
�i,j − α ≤ Tθ∗(α)− α

1− Tθ∗(α)
(1− �i,j)

}
.

As a result, it can then be checked that for any procedure ϕ,

(�i,j − α)(ϕ∗
i,j − ϕi,j) ≤

Tθ∗(α)− α

1− Tθ∗(α)
(1− �i,j)(ϕ

∗
i,j − ϕi,j). (59)

Indeed, this is true if ϕ∗
i,j = 1 and ϕi,j = 0. If ϕ∗

i,j = ϕi,j this obviously holds.

If ϕ∗
i,j = 0 and ϕi,j = 1, then �i,j − α ≥ Tθ∗ (α)−α

1−Tθ∗ (α)
(1 − �i,j) and the relation is

also true. Hence, provided that MFDRθ∗(ϕ) ≤ α, we have

Eθ∗

⎡⎣ ∑
(i,j)∈A

(�i,j − α)ϕi,j

⎤⎦ ≤ 0 = Eθ∗

⎡⎣ ∑
(i,j)∈A

(�i,j − α)ϕ∗
i,j

⎤⎦ .

This implies

0 ≤ Eθ∗

⎡⎣ ∑
(i,j)∈A

(�i,j − α)(ϕ∗
i,j − ϕi,j)

⎤⎦ .

Hence, by (59), we get

0 ≤ Tθ∗(α)− α

1− Tθ∗(α)
Eθ∗

⎡⎣ ∑
(i,j)∈A

(1− �i,j)(ϕ
∗
i,j − ϕi,j)

⎤⎦ ,

which in turn gives TDRθ∗(ϕ∗) ≥ TDRθ∗(ϕ), because Tθ∗(α) ∈ (α, 1).
Finally, let us prove lim supn {FDRθ∗ (ϕ∗)} ≤ α. First observe that by using

(47) and (52), we have for x > 0 with x < (π∗
min)

2 ∧ (1 − w∗
max) and y =

Fθ∗(θ∗, Tθ∗(α)),

FDRθ∗ (ϕ∗) ≤ Eθ∗ [FDP(θ∗, Tθ∗(α))1Ω] + Pθ∗(Ωc)
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Hence, noting that MFDRθ∗(θ∗, Tθ∗(α)) = α and upper bounding Pθ∗(Ωc) ac-
cording to Lemma 4 (that uses Assumption 4), we get

FDRθ∗ (ϕ∗) ≤ x+ α+ c1Q
2e−c′1�n/2�y2x2/Q4

+ c2MQ2e−c′2m(π∗
min)

2(1−w∗
max)y

2x2/M2

.

Making n goes to infinity and x goes to zero in the last display gives the result.

Appendix D: Computations in the Gaussian model

D.1. Checking assumptions in a Gaussian NSBM

In this section, we consider the Gaussian NSBM (1) with parameter set such
that

for all q, � ∈ {1, . . . , Q}, (μq,�, σq,�) 
= (0, σ0). (60)

The next sections present explicit calculations showing parameter configu-
rations θ = (π,w, σ0, μ, σ) for which Assumptions 3, 4 and 5 hold true. The
following propositions gather the obtained results.

Proposition 3. In the Gaussian NSBM satisfying (60), Assumption 3 hold,
with, for all q, �, t1,q,�(θ) = 0 if and only if σq,� ≥ σ0, and t2,q,�(θ) = 1 if and
only if σq,� ≤ σ0. In addition, Assumption 4 hold for M = 2.

Proposition 3 is proved in Sections D.2 and D.3. Hence, the function t �→
MFDRθ(θ, t) enjoys the properties given in Lemma 2. Nevertheless, it might
jump in t1(θ) (see case 4), so is not necessarily continuous on [0, 1]. Also, this
function might have infinite derivative at the boundary points {t1,q,�(θ)}q,�,
{t2,q,�(θ)}q,� (see cases 2-3-4).

Proposition 4. In the Gaussian NSBM satisfying (60), for any parameter
θ = (π,w, σ0, μ, σ) ∈ Θ, we have αc(θ) = 0 if and only if there exists q, � ∈
{1, . . . , Q}, such that σq,� ≥ σ0.

Proposition 4 is proved in Section D.4. For instance, in the context of Figure 9,
αc = 0 in cases 1-2-3 while αc > 0 in case 4.

Avoiding the non regular behavior of our functionals at the boundary points
{t1,q,�(θ)}q,� ∪ {t2,q,�(θ)}q,�, we can provide Assumption 5 (i)-(ii)-(iii).

Let us consider θ∗ the true value of the parameter and let

A(θ∗) = MFDRθ∗(θ∗, t′2(θ
∗)) ∈ (αc, e0] (61)

t′2(θ
∗) = min{t1,q,�(θ∗), t2,q,�(θ∗), for q, � s.t. t1,q,�(θ

∗) 
= t1(θ
∗)} ∈ (t1(θ

∗), 1].
(62)

The following proposition is proved in Section D.5.

Proposition 5. In the Gaussian NSBM satisfying (60), assume α ∈ (αc, A(θ
∗)).

Then Assumption 5 (ii) holds with any compact interval K ⊂ [(αc + α)/2, (α+
A(θ∗))/2].
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Fig 9. Plot of t �→ MFDRθ(θ, t) defined by (7) in the Gaussian case, for 2 different values of
the parameter θ. In each case, the vertical dashed (resp. dashed-dotted) lines correspond to
{t1,q,�}q,� (resp. {t2,q,�}q,�). In all cases, we have πq,� = 0.5 for all q, �; Q = 2; w1,1 = 0.4,
w1,2 = 0.5, w2,2 = 0.6; σ0 = 1. For case 1: μ1,1 = 1, μ1,2 = −2, μ2,2 = 4, σq,� = σ0 for all
q, �. For case 2: μq,� = 0 for all q, �, σ1,1 = 1.1, σ1,2 = 2, σ2,2 = 4. For case 3: μ1,1 = 1,
μ1,2 = −2, μ2,2 = 4, σ1,1 = 0.5, σ1,2 = 1.1, σ2,2 = 3. For case 4: μq,� = 0 for all q, �,
σ1,1 = 0.3, σ1,2 = 0.9, σ2,2 = 0.4.

For instance, in Figure 9, t′2(θ
∗) is equal to 1, ≈ 0.62, ≈ 0.27 and ≈ 0.31

in case 1-2-3-4, respectively. As a matter of fact, t′2(θ
∗) is often fairly away

from zero. For instance, we establish in Section D.6, that t′2(θ
∗) ≥ 1/2 when

θ∗ = (π∗, w∗, σ∗
0 , μ

∗, σ∗) is such that w∗
q,� ≤ 1/2 and σ∗

q,� ≥ σ∗
0 for all q, �.

Proposition 6. In the Gaussian NSBM satisfying (60), assume α ∈ (αc, A(θ
∗)).

Then Assumption 5 (i) holds with any compact interval K ⊂ [(αc + α)/2, (α +
A(θ∗))/2] provided that the parameter set Θ satisfies

C(θ) = {(q, �) ∈ {1, . . . , Q}2 : σq,� = σ0} (63)

does not depend on θ = (π,w, σ0, μ, σ) ∈ Θ.

Proposition 6 is proved in Section D.7. The main idea is that (63) ensures
that, in a neighborhood of θ∗, the formulas given in (i)-(ii)-(iii) of Section D.2
are active, without indicator, which means that the involved functionals are
regular enough.
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Equivalently, (63) means that there exists some C ⊂ {1, . . . , Q}2 such that

Θ ⊂ {θ = (π,w, σ0, μ, σ) ∈ Θ : ∀(q, �) ∈ C, σq,� = σ0, ∀(q, �) /∈ C, σq,� 
= σ0}.

For instance, it is satisfied in one of the two following parameter sets (mentioned
in the main manuscript):

• Equal variances: σq,� = σ0 (and thus also μq,� 
= 0), for all 1 ≤ q, � ≤ Q.
This corresponds to C(θ) = {1, . . . , Q}2;

• Larger variances under alternatives: σq,� > σ0 for all 1 ≤ q, � ≤ Q. This
corresponds to C(θ) = ∅.

Proposition 7. In the Gaussian NSBM satisfying (60), there exists some mea-
surable set Λ ⊂ [0, 1] of Lebesgue measure 0 such that if α ∈ (αc, A(θ

∗))\Λ, As-
sumption 5 (iii) holds with any compact interval K ⊂ [(αc+α)/2, (α+A(θ∗))/2].

The proof of Proposition 7 is straightforward and does not rely on the Gaus-
sian distribution; since Tθ∗ is continuous increasing on (αc, e0), it is almost
everywhere differentiable on (αc, A(θ

∗)). It is thus differentiable in α, up to
remove a subset of Lebesgue measure equal to zero.

D.2. Computing �(·) and Lδ(·)

The functional � (6) is clearly given by

�(x, q, �; θ) =
(1− wq,�)φ(x/σ0)/σ0

(1− wq,�)φ(x/σ0)/σ0 + wq,�φ((x− μq,�)/σq,�)/σq,�
. (64)

Now, let us fix q, � ∈ {1, . . . , Q}, θ′, θ ∈ Θ, δ ∈ {0, 1} and let us compute the
functional Lδ. We have

Lδ(t, q, �; θ
′, θ) = Pθ′(�(Xi,j , q, �; θ) ≤ t | Zi = q, Zj = �, Ai,j = δ).

First, for t = 0,Lδ(t, q, �; θ
′, θ) = 0. Second, for all t ∈ (0, 1], if θ = (π,w, σ0, μ, σ),

observe that

{x ∈ R : �(x, q, �; θ) ≤ t}

=

{
x ∈ R :

(1− wq,�)φ(x/σ0)/σ0

(1− wq,�)φ(x/σ0)/σ0 + wq,�φ((x− μq,�)/σq,�)/σq,�
≤ t

}
=

{
x ∈ R :

φ((x− μq,�)/σq,�)

φ(x/σ0)
≥ (σq,�/σ0)(1/wq,� − 1)(1/t− 1)

}
.

Now, since −2 log
(

φ((x−μq,�)/σq,�)
φ(x/σ0)

)
= [σ−2

q,� − σ−2
0 ]x2 − 2μq,�σ

−2
q,�x+ μ2

q,�σ
−2
q,� , we

have

{�(Xi,j , q, �; θ) ≤ t} =
{
aX2

i,j + bXi,j + c ≤ 0
}
, (65)
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for the values a = a(q, �, θ), b = b(q, �, θ), c = c(q, �, θ) given by⎧⎨⎩
a = σ−2

q,� − σ−2
0 ;

b = −2μq,�σ
−2
q,� ;

c = μ2
q,�σ

−2
q,� + 2 log ((σq,�/σ0)(1/wq,� − 1)(1/t− 1)) .

(66)

As a result, we have

Lδ(t, q, �; θ
∗, θ) = PU∼N (μ(δ),σ(δ)2)(aU

2 + bU + c ≤ 0), (67)

for μ(δ) = μ(δ, q, �, θ∗), σ(δ) = σ(δ, q, �, θ∗) given by

μ(0) = 0, σ(0) = σ∗
0 , and μ(1) = μ∗

q,�, σ(1) = σ∗
q,�. (68)

In addition, expression (67) can be made explicit by an elementary inversion
of aU2+bU+c < 0 in U . More precisely, denoting Φδ the cumulative distribution
function of the distribution N (μ(δ), σ(δ)2), we obtain

(i) if a < 0 (that is, σq,� > σ0),

Lδ(t, q, �; θ
∗, θ) = 1{b2 < 4ac}

+

[
Φδ

(
b− (b2 − 4ac)

1/2
+

2|a|

)
+ 1− Φδ

(
b+ (b2 − 4ac)

1/2
+

2|a|

)]
1{b2 ≥ 4ac};

(ii) if a > 0 (that is, σq,� < σ0),

Lδ(t, q, �; θ
∗, θ) =

[
Φδ

(
−b+ (b2 − 4ac)

1/2
+

2a

)
− Φδ

(
−b− (b2 − 4ac)

1/2
+

2a

)]
1{b2 > 4ac};

(iii) if a = 0 and b 
= 0 (that is, σq,� = σ0 and μq,� 
= 0),

Lδ(t, q, �; θ
∗, θ) = (1− Φδ(−c/b))1{b < 0}+Φδ(−c/b)1{b > 0}.

Also, both equations in (i) and (ii) can be merged as follows: if a 
= 0,

Lδ(t, q, �; θ
∗, θ) = 1{a < 0}

+

[
Φδ

(
−b+ (b2 − 4ac)

1/2
+

2a

)
− Φδ

(
−b− (b2 − 4ac)

1/2
+

2a

)]
1{b2 > 4ac}.

D.3. Proof of Proposition 3

By Lemma 9, and expression (67), we get that, for all q, � ∈ {1, . . . , Q}, the
function

(t, θ, θ∗) ∈ [0, 1]×Θ2 �→ Lδ(t, q, �; θ
∗, θ)



2850 T. Rebafka et al.

is continuous on [0, 1]×Θ2, which proves part (i) of Assumption 3.
Now, let us define t1,q,�(θ) and t2,q,�(θ) as follows:

(t1,q,�(θ), t2,q,�(θ)) =

⎧⎨⎩
(0, t0) if σq,� > σ0;
(t0, 1) if σq,� < σ0;
(0, 1) if σq,� = σ0;

(69)

t0 =

(
1 +

wq,�

1− wq,�

σ0

σq,�
exp

(
μ2
q,�

2(σ2
0 − σ2

q,�)

))−1

.

Then, we easily show that the function t ∈ [0, 1] �→ Lδ(t, q, �; θ
∗, θ) is constant

equal to 0 on [0, t1,q,�(θ)], continuous increasing on [t1,q,�(θ), t2,q,�(θ)] from t =
t1,q,�(θ) (value 0) to t = t2,q,�(θ) (value 1) and then is constant equal to 1 on
[t2,q,�(θ), 1].

Indeed, if a = 0 the result is obvious. If a 
= 0, t0 is the only value of t
such that b2 = 4ac; if a < 0, the quantity ac, as a function of t, is continuous
increasing with limits −∞ and +∞ in t = 0+ and t = 1−. If a > 0, the quantity
ac, as a function of t, is decreasing with limits +∞ and −∞ in t = 0+ and
t = 1−, respectively. This proves part (ii) of Assumption 3.

Finally, note that (65) shows that Assumption 4 holds with M = 2.

D.4. Proof of Proposition 4

Let θ = (π,w, σ0, μ, σ) ∈ Θ. Recall

αc(θ) = lim
t→t1(θ)+

{MFDRθ(θ, t)} = lim
t→t1(θ)+

⎧⎨⎩ 1

1 +
∑

q,� πqπ�wq,�L1(t,q,�;θ,θ)∑
q,� πqπ�(1−wq,�)L0(t,q,�;θ,θ)

⎫⎬⎭ .

In this section, we compute αc in different parameter configurations, which
will prove Proposition 4. First note that for all t ∈ [0, 1], we have

min
q,�

{
wq,�

1− wq,�

L1(t, q, �; θ, θ)

L0(t, q, �; θ, θ)

}
≤

∑
q,� πqπ�wq,�L1(t, q, �; θ, θ)∑

q,� πqπ�(1− wq,�)L0(t, q, �; θ, θ)

≤ max
q,�

{
wq,�

1− wq,�

L1(t, q, �; θ, θ)

L0(t, q, �; θ, θ)

}
.

We distinguish among the three following cases:

• if θ is such that for all q, �, we have σq,� < σ0. Then t1(θ) = minq,� t1,q,�(θ) >
0. In that case,

αc(θ) =
1

1 +
∑

q,� πqπ�wq,�L1(t1(θ)+,q,�;θ,θ)∑
q,� πqπ�(1−wq,�)L0(t1(θ)+,q,�;θ,θ)

> 0,

because in the sums, L0(t1(θ)
+, q, �; θ, θ) and L1(t1(θ)

+, q, �; θ, θ) are non-
zero for q, � such that t1,q,�(θ) = t1(θ) (and are zero otherwise).
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• if θ is such that for all q, �, we have σq,� ≤ σ0 and there exists q, � such
that σq,� = σ0. Then t1(θ) = minq,� t1,q,�(θ) = 0. Also, for t close enough
to 0, we have ∑

q,� πqπ�wq,�L1(t, q, �; θ, θ)∑
q,� πqπ�(1− wq,�)L0(t, q, �; θ, θ)

=

∑
q,�:σq,�=σ0

πqπ�wq,�L1(t, q, �; θ, θ)∑
q,�:σq,�=σ0

πqπ�(1− wq,�)L0(t, q, �; θ, θ)
,

because by Section D.3, Lδ(t, q, �; θ, θ) = 0 for σq,� < σ0 when t is close
enough to 0. Next, by the computations of Section D.2, for all δ ∈ {0, 1}
(see case a = 0 therein), for all q, �, with σq,� = σ0, we have

Lδ(t, q, �; θ, θ)

=

(
1− Φδ

(
μ2
q,�σ

−2
q,� + 2 log ((σq,�/σ0)(1/wq,� − 1)(1/t− 1))

2μq,�σ
−2
q,�

))
× 1{μq,� > 0}

+Φδ

(
μ2
q,�σ

−2
q,� + 2 log ((σq,�/σ0)(1/wq,� − 1)(1/t− 1))

2μq,�σ
−2
q,�

)
1{μq,� < 0}

=

(
1− Φδ

(
μq,�

2
+ σ2

0

log ((1/wq,� − 1)(1/t− 1))

μq,�

))
1{μq,� > 0}

+Φδ

(
μq,�

2
+ σ2

0

log ((1/wq,� − 1)(1/t− 1))

μq,�

)
1{μq,� < 0}.

Recall that 1 − Φ(x) ∼ φ(x)/x when x → ∞. Hence, for all q, �, when
t → 0+,

L1(t, q, �; θ, θ)

L0(t, q, �; θ, θ)

∼
|μq,�|
2σ0

+ σ0
log((1/wq,�−1)(1/t−1))

|μq,�|
−|μq,�|
2σ0

+ σ0
log((1/wq,�−1)(1/t−1))

|μq,�|

φ
(

−|μq,�|
2σ0

+ σ0
log((1/wq,�−1)(1/t−1))

|μq,�|

)
φ
(

|μq,�|
2σ0

+ σ0
log((1/wq,�−1)(1/t−1))

|μq,�|

)
∼ exp {log ((1/wq,� − 1)(1/t− 1))} =

1− wq,�

wq,�
(1/t− 1).

because φ(x − y)/φ(x + y) = e2xy for all x, y ∈ R. Hence, in that case,
when t → 0+, ∑

q,� πqπ�wq,�L1(t, q, �; θ, θ)∑
q,� πqπ�(1− wq,�)L0(t, q, �; θ, θ)

∼ 1/t.

and αc(θ) = 0.
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• if θ is such that there exist q, � with σq,� > σ0, then t1(θ) = minq,� t1,q,�(θ) =
0. Also, for t close enough to 0, we have∑

q,� πqπ�wq,�L1(t, q, �; θ, θ)∑
q,� πqπ�(1− wq,�)L0(t, q, �; θ, θ)

=

∑
q,�:σq,�≥σ0

πqπ�wq,�L1(t, q, �; θ, θ)∑
q,�:σq,�≥σ0

πqπ�(1− wq,�)L0(t, q, �; θ, θ)
,

because by Section D.3, Lδ(t, q, �; θ, θ) = 0 for σq,� < σ0 when t is close
enough to 0. Hence, we have for t close enough to 0,

min
q,�:σq,�≥σ0

{
wq,�

1− wq,�

L1(t, q, �; θ, θ)

L0(t, q, �; θ, θ)

}
≤

∑
q,� πqπ�wq,�L1(t, q, �; θ, θ)∑

q,� πqπ�(1− wq,�)L0(t, q, �; θ, θ)

≤ max
q,�:σq,�≥σ0

{
wq,�

1− wq,�

L1(t, q, �; θ, θ)

L0(t, q, �; θ, θ)

}
.

We know by above that when t → 0+,

min
q,�:σq,�=σ0

{
wq,�

1− wq,�

L1(t, q, �; θ, θ)

L0(t, q, �; θ, θ)

}
∼ max

q,�:σq,�=σ0

{
wq,�

1− wq,�

L1(t, q, �; θ, θ)

L0(t, q, �; θ, θ)

}
∼ 1/t.

Now, for q, � such that σq,� > σ0, we have for t small enough (a < 0, c > 0)

Lδ(t, q, �; θ, θ)

= Φδ

(
b− (b2 − 4ac)

1/2
+

2|a|

)
+ 1− Φδ

(
b+ (b2 − 4ac)

1/2
+

2|a|

)

= 1− Φ

(
−b+ 2|a|μ(δ) + (b2 − 4ac)

1/2
+

2|a|σ(δ)

)

+ 1− Φ

(
b− 2|a|μ(δ) + (b2 − 4ac)

1/2
+

2|a|σ(δ)

)

= 1− Φ

(
−|(b− 2|a|μ(δ))|+ (b2 − 4ac)

1/2
+

2|a|σ(δ)

)

+ 1− Φ

(
|(b− 2|a|μ(δ))|+ (b2 − 4ac)

1/2
+

2|a|σ(δ)

)
Now use for all z > 0, for x → ∞,

1− Φ(−z + x)

1− Φ(z + x)
∼ φ(−z + x)

φ(z + x)
= e2xz → ∞
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so that 1−Φ(−z + x) + 1−Φ(z + x) ∼ 1−Φ(−z + x). As a result, since
|(b− 2|a|μ(1))| = 2|μq,�||σ−2

q,� + |σ−2
q,� − σ−2

0 || = 2|μq,�|σ−2
0 , when t → 0+,

L0(t, q, �; θ, θ) ∼ 1− Φ

(
−2|μq,�|σ−2

q,� + (b2 − 4ac)
1/2
+

2|a|σ0

)

L1(t, q, �; θ, θ) ∼ 1− Φ

(
−2|μq,�|σ−2

0 + (b2 − 4ac)
1/2
+

2|a|σq,�

)

= 1− Φ

(
−|μq,�|
σq,�

+
σ0

σq,�

−2|μq,�|σ−2
q,� + (b2 − 4ac)

1/2
+

2|a|σ0

)
.

Now use for all z > 0, u ∈ (0, 1), for x → ∞,

1− Φ(−z + ux)

1− Φ(x)
∼ u−1φ(−z + ux)

φ(x)
= u−1e((1−u2)x2+2uzx−z2)/2 → ∞,

to conclude that

min
q,�:σq,�≥σ0

{
wq,�

1− wq,�

L1(t, q, �; θ, θ)

L0(t, q, �; θ, θ)

}
, max
q,�:σq,�≥σ0

{
wq,�

1− wq,�

L1(t, q, �; θ, θ)

L0(t, q, �; θ, θ)

}
both tends to infinity when t → 0+. Hence, αc(θ) = 0 in that case.

D.5. Proof of Proposition 5

It follows from the following result.

Lemma 8. The function t ∈ [0, 1] �→ Lδ(t, q, �; θ
∗, θ) is infinitely differentiable

on (t1,q,�(θ), t2,q,�(θ)), but not differentiable in t1,q,�(θ) when t1,q,�(θ) > 0 and
in t2,q,�(θ) when t2,q,�(θ) < 1.

The derivative in t /∈ {t1,q,�(θ), t2,q,�(θ)} is equal to, when a 
= 0,

2 1{b2 > 4ac}
t(1− t)(b2 − 4ac)1/2

(
φδ

(
−b+ (b2 − 4ac)

1/2
+

2a

)
+ φδ

(
−b− (b2 − 4ac)

1/2
+

2a

))
,

and when a = 0 (and thus b 
= 0),

2

t(1− t)|b|φδ

(
−c

b

)
,

where φδ denotes the density of the distribution N (μ(δ), σ(δ)2). This entails
Lemma 8.

In particular, t �→ Lδ(t, q, �; θ
∗, θ∗) is differentiable in t = Tθ∗(α) when

Tθ∗(α) /∈ {t1,q,�(θ), t2,q,�(θ)}, which proves Proposition 5.
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D.6. Studying t′2(θ)

In the case where θ = (π,w, σ0, μ, σ) is such that ∀q, �, σq,� ≥ σ0, we have by
Section D.3 that t1,q,�(θ) = 0 for all q, � and thus

t′2(θ) = min{t1,q,�(θ), t2,q,�(θ), for q, � s.t. t1,q,�(θ) 
= t1(θ)}
= min

q,�
{t2,q,�(θ)}

If ∀q, �, σq,� = σ0, the latter is simply t′2(θ) = 1. Otherwise, we have

t′2(θ)=min

⎧⎨⎩
(
1 +

wq,�

1− wq,�

σ0

σq,�
exp

(
μ2
q,�

2(σ2
0 − σ2

q,�)

))−1

, for q, � s.t. σq,� > σ0

⎫⎬⎭
≥ min

q,�

(
1 +

wq,�

1− wq,�

)−1

= 1−max
q,�

{wq,�}.

D.7. Proof of Proposition 6

Denote C the set (63). Recall that by (39), we have

Wθ∗,L(u) = sup
q,�

sup
t∈Tθ∗ (K)

sup
δ∈{0,1}

sup {|Lδ(t, q, �; θ
′, θ)−Lδ(t, q, �; θ

∗, θ∗)| :

θ, θ′ ∈ Θ, ‖θ − θ∗‖∞ ≤ u, ‖θ′ − θ∗‖∞ ≤ u} .

For short, denote d(q, �, θ, t) = b2(q, �, θ) − 4a(q, �, θ)c(q, �, θ, t) for any θ ∈ Θ
(and a, b and c being the quantities defined by (66)), and consider

B(θ∗, α) =
{
θ ∈ Θ : ∀(q, �) /∈ C, |a(q, �, θ)− a(q, �, θ∗)| ≤ |a(q, �, θ∗)|/2,

∀t ∈ Tθ∗(K), |d(q, �, θ, t)− d(q, �, θ∗, t)| ≤ |d(q, �, θ∗, t)|/2,
∀(q, �) ∈ C, |b(q, �, θ)− b(q, �, θ∗)| ≤ |b(q, �, θ∗)|/2

}
.

We check that there exists υ(θ∗, α) such that for all ε ≤ υ(θ∗, α), we have

{θ ∈ Θ : ‖θ − θ∗‖∞ ≤ ε} ⊂ B(θ∗, α). (70)

To see this, let θ ∈ Θ with ‖θ− θ∗‖∞ ≤ ε. For (q, �) /∈ C, we have a(q, �, θ∗) 
= 0
so that, since θ ∈ Θ �→ a(q, �, θ) is continuous, for ε smaller than some positive
number υ1(q, �, θ

∗), we have |a(q, �, θ)− a(q, �, θ∗)| ≤ |a(q, �, θ∗)|/2. In addition,
by definition of Tθ∗(K), we have t1,q,�(θ

∗), t2,q,�(θ
∗) /∈ Tθ∗(K), see (69), and thus

the sign of d(q, �, θ, t) does not depend on t ∈ Tθ∗(K). Assume without loss
of generality that it is positive, so that inft∈Tθ∗ (K) d(q, �, θ

∗, t) > 0. Now, since
Tθ∗(K) is a compact set and (θ, t) ∈ Θ × Tθ∗(K) �→ d(q, �, θ, t) is continuous,
we have that limθ→θ∗ supt∈Tθ∗ (K) |d(q, �, θ, t)−d(q, �, θ∗, t)| = 0 (otherwise, there
exists c > 0, θn → θ∗ and tn such that for n large, |d(q, �, θn, tn)−d(q, �, θ∗, tn)| >
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c and we obtain a contradiction by considering any limit t0 of tn). As a result,
there is υ2(q, �, θ

∗, α) such that for ε ≤ υ2(q, �, θ
∗, α),

sup
t∈Tθ∗ (K)

|d(q, �, θ, t)− d(q, �, θ∗, t)| ≤ inf
t∈Tθ∗ (K)

d(q, �, θ∗, t)/2,

that is, ∀t ∈ Tθ∗(K), |d(q, �, θ, t)−d(q, �, θ∗, t)| ≤ d(q, �, θ∗, t)/2. Finally, consider
(q, �) ∈ C. In that case, a(q, �, θ∗) = 0 and thus b(q, �, θ∗) 
= 0. Since θ ∈ Θ �→
b(q, �, θ) is continuous, for ε smaller than some positive number υ3(q, �, θ

∗), we
have |b(q, �, θ) − b(q, �, θ∗)| ≤ |b(q, �, θ∗)|/2. Summing up, we obtain (70) for
ε ≤ υ(θ∗, α) = min(q,�)/∈C{υ1(q, �, θ∗) ∧ υ2(q, �, θ

∗, α)} ∧ min(q,�)∈C υ3(q, �, θ
∗).

We have for all δ ∈ {0, 1}, θ, θ′ ∈ Θ with ‖θ− θ∗‖∞ ≤ ε and ‖θ′ − θ∗‖∞ ≤ ε,
for all q, � ∈ {1, . . . , Q}, for all t ∈ Tθ∗(K), when ε ≤ υ(θ∗, α),

|Lδ(t, q, �; θ
′, θ)−Lδ(t, q, �; θ

∗, θ∗)|
‖θ − θ∗‖∞ ∨ ‖θ′ − θ∗‖∞

≤ sup
q,�

sup
t∈Tθ∗ (K)

sup
(θ′,θ)∈B(θ∗,α)2

‖∇(θ′,θ)Lδ(t, q, �; ·, ·)‖∞,

where ∇(θ′,θ)Lδ(t, q, �; ·, ·) denotes the gradient of the function (θ′, θ) ∈
B(θ∗, α)2 �→ Lδ(t, q, �; θ

′, θ). Now, thanks to the definition of B(θ∗, α), the for-
mulas given in (i)-(ii)-(iii) of Section D.2 are active, without indicator, which
means that (t, θ′, θ) ∈ Tθ∗(K) × B(θ∗, α)2 �→ ∇(θ′,θ)Lδ(t, q, �; ·, ·) is continuous
and thus for all δ ∈ {0, 1} and ε ≤ υ(θ∗, α), the quantities

sup
t∈Tθ∗ (K)

sup
(θ′,θ)∈B(θ∗,α)2

‖∇(θ′,θ)Lδ(t, q, �; ·, ·)‖∞

for (q, �) ∈ {1, . . . , Q}2, are below some constant that depends only θ∗ and α.
This proves Proposition 6.

D.8. A useful lemma

Lemma 9. Let D = {(a, b, c, μ, σ2) ∈ R2×R∪{+∞}×R×(0,∞) : a2+b2 
= 0}.
Then the function

(a, b, c, μ, σ2) ∈ D �→ PU∼N (μ,σ2)(aU
2 + bU + c < 0). (71)

is continuous on D.

Proof. Consider (a0, b0) ∈ R2\{0}, c0 ∈ R, μ0 ∈ R, σ0 > 0 and some sequence
(an, bn, cn, μn, σn) with (an, bn, cn, μn, σn) → (a0, b0, c0, μ0, σ0) as n tends to
infinity. Consider V ∼ N (0, 1), Un = μn + σnV and U = μ0 + σ0V so that
Un ∼ N (μn, σ

2
n) and U ∼ N (μ0, σ

2
0). Then anU

2
n + bnUn + cn converges to

a0U
2+b0U+c0 almost surely and thus also in distribution. Since the distribution

of a0U
2 + b0U + c0 is continuous (because a0 and b0 are not both zero), we

have by the Portmanteau Lemma that P(anU
2
n + bnUn + cn < 0) converges

to P(a0U
2 + b0U + c0 < 0). Finally, a similar reasoning can be applied when

c0 = +∞, with a limit equal to 0. The continuity follows.
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