XVII. Forcing Axioms

§0. Introduction

This chapter reports various researches done at different times in the later
eighties. In Sect. 1, 2 we represent [Sh:263] which deals with the relationship of
various forcing axioms, mainly SPFA = MM, SPFA ¥ PFA* (=Ax;[proper])
but SPFA implies some weaker such axioms (Ax;[R;-complete], see 2.14, and
more in 2.15, 2.16). See references in each section.

In sections 3, 4 we deal with the canonical functions (from w; to w;) modulo
normal filters on w;. We show in §3 that even PFA™* does not imply Chang’s
conjecture [even is consistent with the existence of g € “*w; such that for no
a < Ny is g smaller (modulo D,,) than the a-th function]. Then we present
a proof that Ax[a-proper] ¥ Ax [3-proper] where a < 8 < wy, 8 is additively
indecomposable (and state that any CS iteration of c.c.c. and N;i-complete
forcing notions is a-proper for every a).

In the fourth section we get models of CH + “w; is a canonical function”
without 0%, using iteration not adding reals, and some variation (say w; is the
a-th function, CH + 2% = X3 |a| = Ry (see 4.7(3)). The proof is in line of
the various iteration theorems in this book, so here we deal with using large
cardinals consistent with V = L.

Historical comments are introduced in each section as they are not so strongly

related.
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We recall definition VII 2.10: If ¢ is a property of forcing notions, @ < w; then
we write Axq[p] for the statement:

whenever P is a forcing notion satisfying ¢, (Z; : i < w;) are pre-dense subsets
of P, (Sp: B < o) are P-names of stationary subsets of wy,

then there is a directed, downward closed set G C P such that for all i < wy,
Z; NG # 0 and for all B < « the set S3[G] is stationary.

We write Ax[p] for Axq[p] and Axt[¢p] for Axi[p], PFA for Ax[proper], SPFA
for Ax[semiproper], similarly PFA* and SPFA*.

§1. Semiproper Forcing Axiom
Implies Martin’s Maximum

We prove that Ax[preserving every stationarity of S C w;] = MM (= Martin
maximum) is equivalent (in ZFC) to the older axiom Ax[semiproper] = SPFA

(= semiproper forcing axiom).

1.1 Lemma. If Ax;[Rj-complete], P is a forcing notion satisfying (), (below)
then P is semiproper, where

(>o<)1déf “the forcing notion P preserves stationary subsets of w;”.

1.1A Remark. 1) This is from Foreman, Magidor and Shelah [FMSh:240].
2) It follows that SPFA* = Ax[semiproper] is equivalent to MM* (compare
[FMSh:240]). The conclusion is superseded by 1.2, but not the lemma.

3) The proof is very similar to III 4.2.

4) Of course every semiproper forcing preserves stationarity of subsets of w;
(see X 2.3(8)).

Proof. Clearly Ax;[R;-complete] implies Rss(Ry, k) for any £ (see Defefinition
XIIT 1.5(1).). By XIII 1.7(3) “forcing with P does not destroy semi-stationarity
of subsets of Scy, (2/F!)” implies P is semiproper. (So by 1.1A(4) these two

properties are equivalent). (W
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1.2 Theorem.
Ax [not destroying stationarity of subsets of wi] =Ax [semiproper], i.e. MM (=
Martin Maximum) = SPFA (i.e., proved in ZFC).

Proof. As every semiproper forcing preserves stationary subsets of w; (X 2.3(8)),
clearly MM = SPFA. So it suffices to prove:

1.3 Lemma. [SPFA
Every forcing notion P satisfying (*); is semiproper, where

* 1d§f “the forcing notion P preserves stationarity of subsets of w”.
g

Proof. We assume (x);. Without loss of generality the set of members (=
conditions) of P is a cardinal A9 = A(0). Too generously, for £ = 0,1,2,3,
let Aey1 = A€ +1) = (2HFOIN)* Let <%, be a well ordering of H();), end

extending <} for m < £. Let

Kee def {N:N < (H(X2),€,<3,):[IN|| =Ro, P € N (hence X, \; € N) and
-(Vp € PN N)(3¢)[p € ¢ € P and q is semi generic for (N, P)|}

and
K2 AN N < (H(\), €,<3,)), [IN]| = Ro, P € N (hence Ao, \; € N)
and =(3N')[N < N' € Kp® and N Nw; = N' Nwy]}.
We now define a forcing notion Q
QY ((Ni:i<a):a<wy,Nie KNEUKD™,
N; € N;41, and N; is increasing continuous in i}.

The order on Q is being an initial segment.

The rest of the proof of Lemma 1.3 is broken to facts 1.4 — 1.11.

1.4 Fact. If P € My < (H(X\3),€,<3},),|[Mo|| = No, then there is M; such
that My < M; < (H(/\3),€,<§\3),”M1H = No,MpNw; = M; Nw; and
Mi[H(X) € K;;eg UKIF;OS.
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Proof. As P € My, clearly A\g € Mp; hence A1, A2 € My hence (H(/\e),€,<§l)
belong to My for £ = 0,1,2, so K§* € My and Kp® € My. We can assume
MolH(X2) ¢ K}, so by the definition of KB there is N’ such that (abusing
our notation) Mo N H(X2) = MolH(X2) < N’ € Kp®, |N'| = Ry and
N'Nwy = (MolH(Xo)) Nwy; hence N'Nw; = My Nwy.

Let M; be the Skolem Hull of Mo U (N' N H(A1)) in (H(X3), €,<3,)- So

H(x3): M, M,

HOw): MenH(A) < N T
HO\W) N A H(\)

We claim that M; N H(A1) = N’ N H(A;). To prove this claim, let £ be an
arbitrary element of M7 N H(A1). Now z must be of the form f(y), where f is a
Skolem function of (H(A3), €, <},) with parameters in My, and y € N'NH(\;)
(note that N’ N H(A;) is closed under taking finite sequences). Note that f’s
definition may use parameters outside H(Az), but f’ def FN(H(A) x H(A1))
belongs to H()2), so f' € Mo N H(X2) € N',;so also z = f(y) = f'(y) € N'.

So we have
M Nwy =N’ﬂw1 = My Nw1,

Mo < My < (H(Xs3), €, <},)

[IM1]] = Ro (as || Moll, [|N']| = Ro).

MinHOG) = N A H()
We can conclude by 1.5(1) below that M;[H()\2) € K, thus finishing the
proof of Fact 1.4, as:

1.5 Subfact. 1) Suppose for £ = 0,1, N? is countable, P € N* < (H(/\z),e
,<%,) and N°N H(A\;) = N'n H()\y), then N' € Kp® < N? € K.

2) Really, even N' Nw; C N° C N! < (H(X\2),€,<3},), N € Kp™® implies
N! € Kp*® (we can also fix the P in the definition of “N € Kp®”).

Proof. 1) Because in “q is (N, P)-semi generic”, not “whole N” is meaningful,

just N Nwy, the set NN P and the set of P-names of countable ordinals which
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belong to N, hence (for “reasonably closed N”) this depends only on N N 2!P!
(even |P|<*, when P = k-c.c.).

2) Assume N1 ¢ K3 If pe PN N° then p € PN N1, hence there is ¢ € P
which is (N1, P)-semi generic, ¢ > p. But as N° < N! have the same countable

ordinals, q is also (N, P)-semi generic. Oi5,1.4

1.6 Fact. Q is a semiproper forcing.

Proof. Let Q,P € M < (H(X3),€,<},), M countable. Let p € Q N M. It is
enough to prove that there is a ¢ such that p < ¢ € Q and q is semi generic for
(M, Q).

Let 6 = M Nw. By Fact 1.4 there is My, with M < My < (H(X3),€,<3,),
[|Mi]] = Ro,M1 Nwy = & and M1[H(X2) € Kp® U Kp™. We can find by
induction on n a condition g, = (N; : 1 < 0,) € QN Mi1,¢n < Gn+1,9 = D,
such that: for every @Q-name 7 of an ordinal which belongs to M; for some
natural number n = n(y) and ordinal a(y) € My we have ¢, IFq “y = a(y)”
and for every dense subset Z of @) which belongs to M;, for some n, ¢, € J.
Now ¢ % (N, : 4 < 6*) with 6* = J 6, and Ns» % U, 5. N; will be (M, Q)-
generic if it is a condition in Qna<twall, as for this the least obvious part is
N5« € Kp® U KB, Clearly (by 1.4) for each z € H(X2), I, = {(M]:i < j) €
Q:z¢ UiSj M/} is a dense subset of Q and [x € My N H(\2) = I, € M]
and (M] :i < j) € QN My = U;,; M{ C My (as M, j are countable), and
so U;<s« Ni = Mi[H()2), which belongs to Kp*® U Kp by the choice of M;.
Now q > qo = p; and, as ¢ is (M, Q)-generic it is (M7, Q)-semi generic hence
as in the proof of 1.5 (or see X2.3(9)), as M < My, M Nw; = M1 Nw1, we know

q is also (M, @)-semi generic, as required. By the way, necessarily 6* = 6. O; ¢

1.7 Conclusion. [SPFA] There is a sequence (N;* : i < wy) such that
(Vo < w))[(N] i< a) € Q).

Proof. By Fact 1.6 and SPFA (and as Zo, = {(N; : i < @) : & > ap} is a dense

subset of Q for every ap < wi; which can be proved by induction on ap : for
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ag = 0 or g = B+ 1 by Fact 1.4, for limit ag by the proof of Fact 1.6 or
simpler).

Oi7

1.8 Observation. 1 C N for i < w;.

Proof. As [i < j = N; C N;] and as N} € N, (see the definition of Q), we

can prove this statement by induction on . Ois
1.9 Definition. S % {i < w; : N} € K%}
1.10 Fact. S is not stationary.

Proof. Suppose it is; then for every i € S for some p;, € N} N P there is no
(N}, P)-semi-generic g such that p; < ¢ € P. By Fodor’s lemma (as N is

increasing continuous and each N} is countable), for some p € |J NNP

the set S, def {i € S : p; = p} is stationary.

1<wi

If p e G C P and G generic over V, then in V[G] we can find an increas-
ing continuous sequence (N; : i < w;) of countable elementary submodels of
(HY (X2),€,<3,,G) (with G as a predicate), N} C N;. As P preserves station-
arity of subsets of wy, and E = {i: N Nw; = N; Nw; =i} is a club of w; (in
VI[G]), and S, C w; is stationary (in V, hence in V[G]), it follows that there
is 0 € Sp with Ny Nw; = Ns Nw; = 6. As this holds in V[G],p € G, clearly
there is ¢ € G,q > p, such that ¢ I+ “6 and (IV; : i < w;) are as above”. As
qlF “Ny € N§[G] C Ns and 6 € E”, also ¢ IF “Nj Nw; = Nf[G]Nwy”, so g
is (N§, P)-semi generic, contradiction to the definition of S and K5 and the

choice of ps = p. U110

1.11 Fact. P is semiproper.

Proof. As S is not stationary, for some club C C wy, (V6 € C)N} € K§**. Now
if M < (H()\3),€,<}3) is countable, and P, (N} : i < w;),C belong to M,
then M NJ,.,, N = Nj for some § € C; hence Ny C M[H()2); as both Nj
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and M[H()z) are elementary submodels of (H(\2), €, <} ,) We get
Ny < MTH(\z) < (H(A\2),€,<3,)-

Clearly Ny Nwy =6 = M Nwy. As M[H(Az) is countable and by the meaning
of “N} € K% we have M[H()\;) ¢ Kp%, ie., forevery p€e PN M(= PN
(MVH()2)))) there is an (M [H(Az), P)-semi-generic q,p < q € P. Necessarily
q is (M, P)-semi-generic (as in the proof of 1.5(1)); this is enough. O.11,1.3,1.2

1.12 Conclusion. SPFA implies P(w1)/D,, is Na-saturated i.e. satisfies the

No-c.c.

Proof. Actually it follows by Foreman Magidor Shelah [FMSh:240], and Theo-
rem 1.2, but as this is a book we give a proof.

Let 2 C P(w;) be a maximal antichain modulo D,,. Remember seal(Z) =
{{(vs,a:) i < @) : @ < wy, a; is a countable subset of =, non empty for sim-
plicity, v; < wi,a; and +y; are strictly increasing continuous in 4, and for limit
0 < a we have 75 € U; .5 U scq, A}- This forcing is S-complete for every S € =
(see XIII 2.8) hence does not destroy the stationarity of subsets of w;. Hence
by 1.3 seal(ZE) is semiproper.

Now Z; = {a € seal(E) : fg(a) > i} is a dense subset of seal(Z). So by
SPFA there is a directed G C seal(Z) satisfying A\, GNZI; # 0. Let UG
be ((vi,ai) 11 <wi). We claim Z = (J{a; : i <w;}. Let C e {(vi:i=7v=wi
is a limit}, a; = {Aq : @ < wi}, A def {0 <wip: (3 <) € A)}. Now if
S € E\{A4;:i<wi}, then for all { < w1, SN A; is nonstationary, so also SN A

is nonstationary, which is impossible as C C A and C is a club. 112

§2. SPFA Does Not Imply PFAT

It is folklore that in the usual forcing for PFA(=Ax[proper]) (or SPFA=

Ax[semiproper]) any subsequent reasonably closed forcing preserves PFA (or
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SPFA). Magidor and Beaudoin refine this, showing that starting from a model
of PFA, forcing a stationary subset of {§ < wy : cf(d) = Ro} by

P = {h: h a function from some a < ws to {0,1} such that :

for all § € SZ we have : h=1({1}) N is not stationary in &}

(ordered by inclusion) produces a stationary subset of {§ < ws : cf(§) = Ro}
which does not reflect, and this still preserves PFA but easily makes PFAT
(and SPFA) fail.
We can also start with V' |=PFA, and force A : wy — w; such that no h=}({a})N
0 is stationary in §, where o < w;,d < wq, and cf(§) = R;.

It had remained open whether SPFA + SPFAt and we present here the
solution, first starting with a supercompact limit of supercompacts and then
only from one supercompact. I thank Todorcevic and Magidor for asking me

this question.

2.1 Theorem. Suppose k is a supercompact limit of supercompacts. Then, in

some generic extension, SPFA holds but PFA™* fails.
The proof is presented in 2.3 - 2.9.

Overview of the Proof. Let f* be a Laver diamond for « (see Definition VII
2.8, as Laver shows w.l.o.g. it exists). Our proof will unfold as follows. We shall
first define a semiproper iteration @*. Now I-p, “SPFA” is as in the proof of
X 2.8. We then define in VP~ a proper forcing notion R and an R-name S, IFg
“S C wy is stationary”. We then show, that for no directed G C R in V%~ is
S[G] well defined (i.e., (Vi <wq)(Ip € G)[pltr ‘i€ §” or plkg “i ¢ §”]), and
stationary (ie., {i <wi:(3p € G)p Ik “i € §”} is stationary).

Before we start our iteration, we will define several forcing notions (which
we will use later when we construct R, and also during the iteration), and we

will explain some basic properties of these forcing notions.

Convention. Trees T will be such that members are sequences with the order
being < (initial segments) and T closed under initial segments so £g(n) is the

level of  in T'. But later we will use trees T' whose members are sets of ordinal
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ordered by initial segments, so we can identify a name 7 if 7 is strictly increasing

sequence of ordinals, a = Rang(n).

2.2 Fact. Let T be a tree of height wy, & > R; with k = 282 if not said
otherwise. Let P = R; * R, where R; is Cohen forcing and R, is Levy(Ry, k)

(computed in VEt). Then every wi-branch of T in V' is already in V.

Proof. Well-known and included essentially in the proof of III 6.1.

2.3 Definition. Let T" be a tree of height w; with ®; nodes and < N; many
wi-branches {B; : 1 < i* < w;} and let {y; : i < wy and [i < 2¢* = i odd]}
list the members of T' such that: [y; <t y; = j < i]. Let B} be: B; if i = 27,
j < i* or {y;} if y; is defined. Let B; = By \ U,; B}, z; = min(B;) if B} # 0
so that the sets B; are disjoint nonempty end segments of some branch B,
or the singletons {y;} or §; let B; # @ < i € w and so (B} : j € w) form
a partition of T. Let A = {z; : i € w} (so A does not include any linearly
ordered uncountable set). The forcing “sealing the branches of T” is defined as
(see proof of 2.4(3)):
Pr ={f: f a finite function from A to w, and
if x < y are in Dom(f), then f(z) # f(y)}.
See its history in VII 3.23.

2.4 Lemma. For T, Pr as in Definition 2.3:

(1) Pr satisfies the c.c.c.

(2) Moreover: If (p; : i < wy) are conditions in P, then there are disjoint
uncountable sets S7, Sz C w; such that: whenever ¢ < j, 1 € S, j € S,
then p; and p; are compatible.

(3) If G C Pr is generic over V, V[G] C V*, and X" = RV then all w;-

branches of T in V* are already in V.

Proof. (1) Follows by (2).
(2) Recall that p and g are incompatible if:
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either p U ¢ is not a function or there are n € Dom(p), v € Dom(q) such that
p(n) = q(v), and n and v are distinct but comparable, i.e. n <7 v or v <p 7.
Let (p; : i < w1) be a sequence of conditions in Pr. By the usual A-system
argument we may assume that for all 4,5 < w; p; Up; is a function, and we
may also assume that |Dom(p;)| = n for all i < w;. We will now get the desired

result by applying the following subclaim n? times:

2.4A Subclaim. If (nl : a € 1), (N2 : a € S,) are lists of members of A
without repetitions, S;,Ss are uncountable, then there are uncountable sets

Si C S1, S5 C Sz such that: a € S7, B € S; = 7,75 are incomparable.

Proof of the subclaim. for £ =1,2 and ¢ < w, let:

Le(Q) = {na1¢ : @ < wi, Lg(g) > ¢}

Let ¢¢ = min{¢ : Ly({) is uncountable}, and if all Ly({) are countable, let

Ce = w1.

We now distinguish 4 cases:

Case 1: {1 < (a: Since L2((1) is countable, for some 7 the set S} def {ao<w::

£g(n2) > ¢1 and n <7 n2} is uncountable (as Ry = cf(R;) > No), and as L1((1)

is uncountable, S} % {a < w; : £g(nl) > ¢ and —n <7 7L} is uncountable. So
1, S% as required. We are done.

Case 2: (2 < (3: Similar.

Case 3: {; = (2 < wy: By induction on v < w; choose §(1,7) and B(2,7) such

that:

g(Mh1y) = Gt and mp oy 1¢ & {Theyn ¢ 7 <, €= 1,2}

2g(Mha,) > G2 and njg ) 1¢2 E{Mheyn ¢ Y <1, € =1,2}
U {31, 161}
and let S = {B(£,7) : vy <w1}, £=1,2.
Case 4: (1 = (2 = wy and no earlier case. For £ =1,2, ( <wy let
Af = {n € T : £g(n) = ¢ and there are X; many a with n%[{ = 7}, clearly
Af # 0.
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So T¢ %f UC <wy Ag is a downward closed subtree of T, possibly only a single
branch.

Subcase 4a: For some £ and (, |A€| > 1. Without loss of generality |Aé| > 1.
Let vy € A2, vy € AQI. \ {v2}, for £ =1,2 we let Sp = {a <w; : vg <7 nt}.
Subcase 4b: For each £ = 1,2 the set T¢ = UC<w1 Af is a branch, say Bj). If
(1) # ¢(2) then we can again find v; and v, as in case 4a. So let i = (1) = i(2).
It is impossible that uncountably many nf; are on B; (by the choice of A
in Definition 2.3), so we may assume that no nf is on B;. By induction we
can find uncountable sets S; C S1, S, C S; and sequences (v} : a € S}),
(V2 : « € S3) such that: V4, € By, vf <r nb, nt1(lg(wl) + 1) ¢ B;, and
{vl:ae Siyn{v2:ae Si} = 0. This shows that for a € S, B € S5 the
nodes 1l and n? are incomparable. So we have proved the subclaim and hence
2.4(2).

Proof of 2.4(3). Since T = UKW1 Bj is a partition of T', we can for each y € T
find a unique j = j(y) with y € B’. Let h(y) = minB;.(y) € A. In VPT we have
a generic function g : A — w, and we can extend it to a function ¢ : T — w
by demanding g(y) = g(h(y)). Now let B* be an w;-branch of T' in some ¥;-
preserving extension of V7. Clearly g] B* takes some value uncountably many

times, but g(y1) = 9(y2) & y1 <r y2 implies j(y1) = j(y2), so B* C B, for some
J- U2.q

2.5 Fact. There is a family (75 : 6 < wy, ¢ limit) such that:

(A) ns:w — 6, and sup{ns(n) :n <w} =4

(B) For all limit é1,d2 < w; and ny,n2 < w we have: if 75, (n1) = 7s,(n2), then
ny = ny and 75, [ny = 75, [ng.

(C) if m < £ <w and § < wy is limit, then ns(m) + w < ns(€) + w.

Proof. Easy. Let H : “”w; — w; be a 1-1 map such that for all n € “>w; we

have H(n) € [ maxRang(n), maxRang(n) + w) (and can add v < n = H(v) <
H(n)).

Now for any limit ordinal 4, let ap < a3 < --- be cofinal in §, and define 7;
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inductively by
ns(n) = H(nsIn" (an)).

2.6 Definition. Assume that (15 : § < wq,d limit) is as above.

(1) For n € “Zwy, let E, = {6 : n < ns}.

(2) Let Z = {n € “w; : E, is stationary}, Co = {§ < wy : (Vn < w)nsln €
Z}.

(3) Let Z* ={ne Z: (Fi<w)n (i) € Z}.

(4) Let C* = {6 € Cp : (3°n) ns[n € Z*}.

(5) Let Zo = {n € Z: (Vk < Lg(n))nlk ¢ Z*}

2.6 A Fact.

(1) Z is closed under initial segments, so Z is a tree (of height w). Z* is the
set of those nodes of Z which have uncountably many successors.

(2) Z defines a natural topology on Cy, if we take the sets E, as basic neigh-
borhoods.

(3) Cp and even C* contains a club of w;.

(4) For every finite u C Z \ Z there is p € Z which is <-incomparable with

every 1 € u moreover p € Z \ Z.

Proof. (1) and (2) should be clear.

For (3), let x be some large enough regular cardinal. If w; \ C* as stationary,
we could find a countable elementary submodel N < (H(x),€) such that
§ % Now, ¢ C* and (95 : § < wq limit) belongs to N (hence (E, : n € “>(w1)),
Z,Cy, Z*, C*, Z belong to N). Assume that for some ny < w for all n € (ng,w)

we have 75In ¢ Z*. So the set

y &f {veZ:vdnsing or: nsIne A v and (Vk € (no,Lg(v))) vik ¢ Z*}
is a subtree of Z with countable splitting, hence is countable. Let ¢’ = sup{v(k) :
v € Y,k € Dom(v)}. Since Y € N, also §' € N, but (Vk)[nslk € Y], so
ns(k) < &' < 4, contradicting § = sup{ns(k) : k < w}.
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(4) So if u C Z\ Zy is finite, let 7 € u be of minimal length and as n ¢ Z,
there is v < 7, such that v € Z*, so for some ¢ < wy, p Qef v°(i) € Z and p is
<-incomparable with every ' € wand p ¢ Zp as v < p, v € Z*. Os64

From Z we can now define the forcing notion R4, to be used below:

2.6B Definition.

R4 = {(u,w) : w a finite set of limit ordinals < w;,u a finite subset of

Z\ Zy, and wN E, =0 for n € u}.

with the natural order: (u1,w;) < (ug,w2) ff u1 C uz & w1 C wo.
Note that w N E;, = @ just means that for all § € w, n A ns. Actually n = n;
never occurs as [ € w = £g(n) < w] and [0 € u = £g(ns) = w).
So we have that (u,w) and (u’,w’) are incompatible iff (v Uu’, wUw’) is not in
Ry, i.e., either there is n € u, § € w’ such that n < 7, or there are such € v/,
d€w.

R4 produces a generic set $* = J{w : (3u)[(u,w) € Gr,]} (i-e. this is an Ry-
name), which can easily be shown to be a stationary subset of w;(in V74, see

2.6E(1))(actually V[S4] = V[GR,])-

2.6C Fact. Ry satisfies the R;-c.c.; in fact for every R; conditions there are X;

pairwise compatible (and more).

Proof. Let (ui,w;) € Ry for i < wy. Let v; & U{Rang(n) : n € u;}.
Thinning out to a A-system we may assume that there are a < w;, w* C q,

v* C o, u* C “a such that for all i < w; \ o,
w;Na=w*, v;Na=v* u;N“ a=u*

and for all i # j: w;Nw; = w*, v;Nv; = v* and u;Nu; = u*. Son € uj \u* =
maxRang(n) > a. We may also assume that none of the v; or w; is a subset
of a, and thinning out further we may also assume that for all i < j we have

a < max(w;) < min(v; \ a).

Now if i < j and (u;,w;) and (u;,w;) are incompatible, then we must have one

of the following:
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(a) (I € ui\u*) (36 € w;j)nIns

(b) (3n € u; \u*) (36 € wi)n I ms

Now if if clause (b) holds for € u;\u* and ¢ € w;, this implies § < max(w;) <
min(v; \ @) < max(Rang(n)) < . [Why? As § € w;; by assumption above;
as n € u; \ u*; as n J ns and the choice of 75 (see 2.5(1)) respectively.] A
contradiction, so clause (a) must hold. Now we claim that: for each j < w; the
set s; <f {i < j: p; and p; are incompatible} is finite.

Why? Assume not; by the above for i € s; necessarily there are n* € u; \ u*
and 0; € w; such that n° < 7ns,. But for i(0) < i(1), both in s;, we get
that 7% and 7*() must be incomparable, since neither of Rang(n*®) and
Rang(n*!)) can be a subset of the other. Hence all the (i € s;) are distinct

— a contradiction as w; is finite. Ua.6c

2.6D Fact.
(1) If A C w; is stationary, n < w, then there is § € A such that E,;;, N A is
stationary.

(2) If B C w; is stationary, then also the set
B Y {5eB:(vn<w) [Enstn N B is stationary]}

is stationary, and in fact B \ B’ is nonstationary.

Proof. (1) Using Fodor’s lemma we can find a stationary set A’ C A and a finite
sequence n* such that for all § € A’ we have n5[n = n*. So A’ C ANE,. =
AN Epjn forall § € A'.

(2) Let A < p \ B, A, & {6 € B : Ey;1n N B is nonstationary}. By (1),

each A, must be nonstationary, so also A = |J,, A, is nonstationary. Uy 6p

2.6E Fact. Let 54 be the R4-name of a subset of w; defined in 2.6B. Then we

have

(1) S* is stationary in V4,

(2) If A C wy is stationary in V, then in V®4 there is n € Z such that AN E,
is stationary and E, N §* = 0.
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(3) Every stationary subset of w; from V has (in V#4) a stationary intersection
with w; \ S4.

Proof. (1) Easy; for each p = (u,w) € R4 and club E € V of wy, as u C Z \ Z,
is finite there is n € Z \ Zy which is <-incomparable with every v € u (see
2.6A(4)) so E, is stationary hence we can find § € EN E, \ (sup(w) + 1), so
g = (u,wU{0}) € Ry;p<qand qltg, “S*NE # 0”. As Ry satisfies the c.c.c.
this suffice.

(2) Let A be stationary. By 2.6A(3) w.l.o.g. A C C* and by 2.6D(2) we may
w.l.o.g. assume that (V6 € A) (Vn < w)[E,,nNA is stationary]. Fix a condition
(u,w) € Rq. Choose § € A\ w, then for some large enough n, E,;;, Nw =0
and ns[n ¢ Zo, so (uU {nsIn}, w) is a condition in R4 above (u,v) € R4 and it
clearly forces AN Ey, 1, N S% = 0.

(3) Follows from (2). Ua.6k

2.7 Definition of the iteration. We define by induction on ¢ < s an RCS

iteration (see X, §1) Q¢ = (P;,Q; : i < (,j < (), and if ¢ < K, Q¢ € H(k),

which is a semiproper iteration (i.e. for i < j < (, i non-limit P;/P; is

semiproper but for a limit ordinal j the forcing notion @; is not necessarily
semiproper) and, if ¢ = 4, 0 a limit ordinal, also P;-names, A¢, T¢ (of a tree),
and P;i1-name W = (H(a) : @ € a € A¢), as follows:

(a) Suppose ¢ is non-limit, let k¢ < & be the first supercompact > |FP¢|, so
k¢ is a supercompact cardinal even in VP and let Q¢ be a semiproper
forcing notion of power k¢ collapsing k¢ to Ry such that I- PexQc “any
forcing notion not destroying stationary subsets of w; is semiproper”,
it exists e.g. by Lemma 1.3 and X 2.8 but really Q¢ = Levy(Ry, < ¢) (in
VF¢) is okay, as

IFp.sq; “ATu, Ry — complete]”

and even Ax;[N;-complete] implies (by 1.1) the required statement.]
(b) Suppose ¢ is limit, Q¢ will be of the form @ x Qb * Q°. Remember that
f*: Kk — H(k) is a Laver Diamond (see Definition VII 2.8).
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If f*(¢) is a P;-name, I-p, “f*({) is a semiproper forcing notion”, then let
Q¢ = f*(¢). If f*(¢) is not like that, let Q¢ =the trivial forcing.

Q’C’ will satisfy the following property:

(x) If € < ¢, € is non-limit, A € VP¢, A C w, and A is stationary in VP

(equivalently in V<) then A is stationary in VPC*QZ*QZ.
(This property (x) will follow from 2.6E, it will assure that the iteration remains
semiproper)
If ¢ is divisible by w?, we will let Q2 = Qf * Q% * Q2. First in VP choose
(see 2.1, 2.3) Q% = Ry x Ry x Pr,, where Ty = {b : b an initial segment
of some a € U£ <¢ A¢} ordered by being initial segment (for the definition
of A¢ see the definition of W below). From the generic subset of Q} (and
P; x Q¢) we can define, for each wi-branch B of T, a 2-coloring Hq(B) of
wy i Ho(B) = U{HS(a) : £ €a € B and ¢ > £ > a and H§(a) is well defined}.
(See the definition of W¢ below, we can say that if H,(B) is not a 2-coloring
of w; we use trivial forcing). Remember 2.4(3).

To define Q2, we need the following concept:
We will say that a function h : [w;]? — 2 is almost homogeneous if there is
a partition w; = U, ., An and an £ € {0,1} such that for all n the function
h1[An)? is constantly = £. We may say h is almost homogeneous with value £.

We choose QF € H(x) such that

® if there is @ € H(k) such that
(i) Qisa Pr*Q¢ * Qé—name of a forcing notion
(ii) For every £ < ( the forcing notion (F¢ * Q¢ * Qé * Q)/Pey1 is semi
proper, (equivalently, preserves stationarity of subsets of w;)

oy e PORQERQC .
(iii) if, in V'~ °° 7", B is a branch of T¢ cofinal! in {, @ < wi, then the

P, *Q"*Ql*Q
coloring Hy(B) of wy, is almost homogeneous in V'~ = ¢ -
then Q7 satisfies this.

Otherwise Q% is trivial.

t Note: members of B are subsets of ¢ with last element, so { max(a) : a €

B} is a subset of (.
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Pg*Q“*Ql*QZ
IV = ¢

set S[G]. More on S will be said below (and see “overview”).

we now define a set S¢, which is supposed to guess the

We let oo € S¢ if for all the wy-branches B of T¢ cofinal in ¢ (i.e. such that
U{a : a € B,otp(a) a successor ordinal} is unbounded in ¢) the function
H,(B) is almost homogeneous with value 1.

Now we let Qg be the forcing notion which shots a club through the complement
of S¢, unless S¢ includes modulo Dy, some stationary set from (J,, VPe in
which case Qg will be trivial. This completes the definition of Qg when ( is
divisible by w?, otherwise QY is trivial.

We let Q¢ = Q% * Q2 x Q¢ where Qf is the addition of (R; + 2Ro) V7
Cohen reals with finite support. Clearly for { < ¢, (P¢/Pey1) * Q¢ preserves
stationarity of subsets of w;, hence it is semiproper (see (a)), so Q¢ is 0.k. An
alternative to (b): we can demand Q¢ forces SPFA. If ¢ is not divisible by w?
let Q¢ be Q¢ * Qg * Q¢, with Q%, QZ trivial, Q¢ as above.

(c) For ¢ limit we also have to define W, (in VFe+1).
(i) W¢ is a function whose domainis Ac = {a:a C {(+1,{ € a € VF¢ and
a is a countable set of limit ordinals and { € a => an (£ +1) € VFe}.

(ii) Fora € A¢, W¢(a) = (HS(a) : o < otp(a)), where HS(a) is a function
from [otp(a)]? = {{J1, 2} : 1 < j2 < otp(a)} to {0,1} (where otp(a)
is the order type of a).

(iii) For every £ € a € A¢ (check definition of A¢), an (6 + 1) € Ag,
and for a < otp(a N (€ + 1)), H5(an (€ + 1)) is H(a) restricted to
[otp(A N (€ +1)))°.

(iv) If @ € A¢, we use the Cohen reals from Q¢ to choose the values of
H(a)({j1,j2}) when a = otp(a N ¢) or j; = otp(a N () or jo =
otp(an¢) that is when not defined implicitly by condition (iii), i.e. by
HY, (not using the same digit twice (digit from the Cohen reals from
Q¢)-

(v) Ty(e V<) is the tree ({45 : 6§ < ¢ alimit ordinal}, <r,), (<7, is
being an initial segment i.e. a < b iff a = bN ( max(a) + 1)).

There is no problem to carry the inductive definition.
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Note that we can separate according to whether the cofinality of ¢ in V¢
is Ro or > R; (so for a club of { < k we can ask this in V) and in each case

some parts of the definition trivialize.

2.7A Toward the proof: Clearly P, is semiproper, satisfies the k-c.c., and |P,| =
k. In Vo = VP let T* = |J{As : § < & (limit)}, and let <p- be the order:
being initial segment. Let T = {a : a an initial segment of some b € T*}.

So T is a tree, and the (o + 1)’th level of T' is {a € T : otp(a) = a + 1}.
The height of T is w; (since all elements of T are countable) and all elements
of T have K = Ny many successors and every member of T belongs to some
wi-branch.

For every wi-branch B of T' we get a family of w; many coloring functions
Ha(B) : [wi]2 — 2, by letting Ha(B)({j1,j2}) = Ha"(a)(jy, j2) for any
a € B with otp(a) > max(j1,j2, @) successor ordinal. Now we want to show
that PFAY fails in V P+, To this end, we will define a proper forcing notion R
and R-name S of a stationary set of w;. R will be obtained by composition.

The components of R and of the proof are not new.

2.8 Definition of R. Let V; = VP~ Let Ry be Levy(X1,R2) (in V). In
Vi= VOR", let Ry be the Cohen forcing; in V; def VIR1 let Ry be Levy(Ry, 2%2).
Let V3 = V2R2. Let (B; : i < i*) € V; list the wy-branches of T in V; and
ig < i* be such that i < i & &k > sup[U{a : a € B;}]. Easily in V;, T has
wi-branches with supremum & (just build by hand) so really i§ < i*. Forcing
with R; * Ry over V; does not add wi-branches to T (by 2.2), hence in V3 it
has < R; wj-branches, so let us essentially specialize it (see 2.4(3)), using the
forcing notion R3 = Pr from 2.3. Let V4 = VSRS. Let R4 be the forcing defined
in 2.6B, and let V5 = V4R4. In V5 we now define Rs: it is the product with finite
support of R, ;(a < wy,if < i < i*), where the aim of R}, ; is making w; the
union of Ry sets, on each of which HY def Hy(B;) is constantly 0 if o € S4,
constantly 1 if a ¢ S* (remember H,(B;) was defined just before 2.8 and S*
was defined from GRg, ), see definition below. See definition 2.6B and Fact 2.6E.

Let Vg = V. So the decision does not depend on i.
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Now R5 ; is just the set of finite functions A from w; to w so that on each

~1({n}) the coloring H [ s constantly 0 or constantly 1, as required above
(so some case for all n < w).

Lastly, let R = Ry * R1 * Ry * R3 *x R4 x Rs. We define S such that
StCcSCcStu{y+1:v9<w}and, if G C R is directed and S[G] well
defined, then all relevant information is decided; specifically: for the model N
of cardinality X; chosen below, for every R-name ¢ of an ordinal which belongs
to N we have (dp € G) [p forces a value to @] (i.e., what is needed below

including a well ordering of w; of order type §a for a < wy).

2.9 Fact. The forcing R is proper (in V).
As properness is preserved by composition, we just have to check each R;
in V;. The only nontrivial one (from earlier facts) is Rs. For this it suffices

to show that the product of any finitely many R2 . satisfies the N;-c.c. Let

a,i
m < w, and let the pairs (ay, ;) for | < m be distinct (so o < wy,3y < 3 < *).
Note that each B;, (an wi-branch of T) is from V;. So for some * < wy,
te, # e, = Bi, , Bi,, have no common member of level > §*. Now we claim
that in V5 (on H see in 2.8):

() If for each £ < m, (w,‘; 17 < wy) is a sequence of pairwise disjoint finite

subsets of w; \ 5%, then for some (1), 7v(2) < wi, for each even £ < m
[z € w'y(l) &yewt (2) = H[l ({=z,y}) = 0]
and for each odd £ <m

Why? First we show that this holds in Vi (note: Rs € Vi!). Because Ry is
N;-complete, it adds no new w-sequence of members of Vj, hence for some
¢ < n,{(f,wf/) : vy < w, < m} belongs to V< and to H(¢). Note that for
each £ < m, the sequence (wf; : £ < m,vy < w) is a sequence of pairwise disjoint

subsets of w; \ B* and remember the way we use the Cohen reals to define
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the Hf(a)’s. We can show that for any possible candidate (w® : £ < m) for
(wé : £ < m) or even just for a sequence (w’ : £ < m), w® C w’ (for any
€ < wy large enough) for infinitely many v < w, the conclusion of () holds for
(v(1),7(2)) = (7,¢).

Clearly (*) implies that any finite product of R‘Z‘i satisfies the R;-c.c if it holds
in the right universe (V5). So for proving the fact we need to show that the
subsequent forcing by Ri, Rz, R3, R4 preserves the satisfaction of (x).

The least trivial is why R3 preserves it (as Rs is Nj-complete and as R; and
R, satisfy: among X; conditions X; are pairwise compatible (see 2.6(C)).
Recall from 2.4 that for any sequence (p; : i < wp) of conditions we can find
disjoint uncountable sets Sj, Sz such that for i € Sy, 7 € S the conditions
p; and p; are compatible. (This is also true for R; and R4). We will work
in V3. So assume that (y}fy : v < w1, < m) is an Rz-name of a sequence
contradicting property (*) in V3R3. For v < w; let py be a condition deciding
(wh : £ < m), say py IF wé = *wt. Let S, Sz be as above, Sy = {75 : o < w1}
Let uf, = *wf;}) u *w,yg for £ < m. By thinnings out we may without loss of
generality assume that the sets J,.,, w?, for @ < w; are pairwise disjoint,
so we can apply (%) in V3. This gives us (1), a(2) such that for all even ¢,
T € ufx(l), y € “i(z) = Hgf]({x,y}) = 0 and similarly for odd £ we have
z € uf;(l) &ye uf;@) = HY({z,y}) = 1. Let q be a condition extending

« 2 : »
Py, and Py2 then q I 7;‘(1) and Ya(2) aT€ as required”. Oa0

So R is proper in Vp; as in Vs, S* is stationary and Rs satisfies the R;-c.c,
clearly S* is a stationary subset of w; in Vj too; hence, by the choice of S (just

before 2.9) we have IFgr “S C w; is stationary”.

2.9A Claim. In VP~ PFA* fail as exemplified by R, S.

Proof. In VP~ let x be e.g. J3(k)* and let N < (H(x), €,<}) be a model of
cardinality N; containing all necessary information. i.e. the following belongs
to N: i (if i < wy), (Ro, R1, Ra, B3, R4, Rs), (P;,Q; : i < K,j < &), Gp,, S*
(but not S'), f (see below), (B; : i < i*),i5. Suppose that G € VP, GCRis
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directed and meets all dense sets of R which are in N. It suffices to show that
S[G] is not stationary. Note that NV is a model of ZFC~ etc.

Let f € N be the Rp-name of the function from w; onto k, then easily
fIG] is a function from w; onto some § < k, cf(§) = Ry, in VP~. Note that
T[G] € NI[G] is just Ts, and if N[G] = “B[G] is an wi-branch of T cofinal
in k", then B[G] is as wy-branch of Ts cofinal in §, and similarly with the
coloring. We will now show how we could have predicted this situation in VFs:
Let h : w3 X w; — T be an R-name (belonging to N) which enumerates all

wy-branches of T (we use the essential specialization by R3) i.e.
Fr “{{h(i,j) :j <wi}:i<wi}={Bi:i<i*}".

Then each set {h(3,5)[G] : 7 < w1} (for i < w;) will be an w;-branch of Ty
(remember T5 = |J{A¢ : ¢ < 4 limit}), some of them cofinal in 4, and these
wy-branches will be in VF6*Q5 | as Qg (more exactly Q%, see 2.7) was chosen in
such a way that no w;-branch can be added to T without collapsing R;. Also
all the w;-branches of T[G] = T will appear in this list.

Now we can recall how the set S5 was defined: For each w;-branch B of Ts (in
VP‘s*Q;*Q";*Q% equivalently in VPJ*Q;) which is cofinal in §, we have R; many
coloring functions H,(B), and there are such w;-branches. We let a € S if for
all these wi-branches B the function H,(B) is almost homogeneous with value
1.

Now note that the set G also interprets the names for the homogeneous sets for
the colorings H, c[f]. These homogeneous sets exist in VP~ hence in V% for £ < &
large enough, so in VPG*%*Q; there is a forcing producing such sets, which, for
every £ < § preserves stationarity of sets A, which are stationary subsets of w;
in VPe+1 (the forcing is Q% * Q§ * (Pg/Ps+1)). Using the supercompactness of
we can get such a forcing in H (k). But this implies that these sets are already
almost homogeneous in VP‘S*'QE*Q‘%*Qg (see clause (b) in 2.7), so also S[G] is in

PsxQ3*xQ5*Q2 . ] . 3
|4 (see the choice of Rs in 2.8) and S[G] = Ss. But the forcing Q;

ensures that S is not stationary. Os1
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2.10 Lemma. We can reduce the assumption in 2.1 to “s is supercompact”

Proof. We repeat the proof of 2.1 with some changes indicated below. We
demand that every Qs is semiproper. We need some changes also in clause
(b) of 2.7 (in the inductive definition of @;), we let Q¢ = f*(¢) only if: f*(¢)
is a Pc-name, Ikp. “f*(() is semiproper” and let Q¢ be trivial othervise. Let

Q'C’ be trivial except when for some A¢ < &, f*(¢) € H(\¢), and ¢ is Jg(A¢)-

P:xQ¢%
supercompact. In this case we let (in V < C), Q% be defined as in the proof

of 2.1 except that the Ry, ; are now as defined below, Q7 is a forcing notion of

1

PrQ2eQ
cardinality (2%1)V ©7¢7C Which forces MA. Now let SseV be as
described below, and Q¢ is shooting a club through wi \ S5 if QF ¥ Q¢ x Q% + Q%

9gr PrQ¢rQlrQ?

is semiproper, and trivial otherwise. Now Q2 = Qt » QF * Q2. Lastly Q¢ is as
in the proof of 2.1 and Q¢ = Q¢ * Q%  Q¢, now clearly Q¢ € H(Jg()¢)). This
does not change the proof of 2.1. Now we let @, = shooting a club called E
(of order type k) through {i < k : V | “cf(i) = R¢” or V |= “i is strongly
inaccessible in V', A¢ well defined and i is Jg(\¢)-supercompact”} (ordered by

being an initial segment). Now it is easy and folklore that, for such Q,, we have
P+ Qnx P+ Qr
|4 ¢ E=SPFA, and show as before V.~ ~ |= —-PFAt.

Why the need to change Qg? As the result of an iteration we ask “is there
Q such that (i), (i), (iii) of ®”, and this may well defeat our desire that Q¢
hence Qj belongs to H(Jg()¢)). We want to be able to “decipher” the possible

“codings” fast, i.e., by a forcing notion of small cardinality, so we change Rg,i’s

inside the definition of R, in Definition 2.8).
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We let 7q,; be 0 if & € S* and 1 otherwise, and let RS ; be defined by:

Ri, ; = {(w, h) :w is a finite subset of w; and h is a finite function
from the family of nonempty subsets of w to w such that :
if ug,us € Dom(h) and h(u;) = h(uz)
then jui| = |uzland [( € us \ug & € €ug\ 1 & (< €=
HI{C, €} = Yasl}-

(actually coloring pairs suffice).

2.10A Definition. 1) A function H : [w;]? — {0, 1} is called £-colored (where
[A]* ={a C A:|a| = k}) if £ € {0,1} and there is a function h : Scy,(w1) — w
such that: if u;,us are finite subsets of w; and h(u;) = h(uz) then |u;| = Jus|
and [( €up \us &€ €ur\us &¢<€&= HH{( E}) =14).

2) Called H (as above) explicitly non-£-colored if there is a sequence (u, : v <
wy) of pairwise disjoint finite subsets of w; such that: for any a < 8 < w; there

are { € Uq, § € ug such that H({(,{}) # L.

2.10B Claim. 1) 1-colored, 0-colored are contradictory.
2) If H is explicitly non-£-colored then it is not /-colored.
3) If MA+ 2% > Xy, £ < 2and H : [w]? — {0,1} then H is ¢-colored or

explicitly non /-colored.

Proof. 1) Clearly H cannot be both 0-colored and 1-colored.

2) Note also that if H is ¢-colored, and u¢ (¢ < w;) are pairwise disjoint non
empty finite subsets of w; such that { < £ = sup(u¢) < min(u¢) then for some
¢ <&, H(u¢) = H(ug) hence Hi{{a,B} : @ € u¢, B € ug}} is constantly £.

3) Use R defined like R}, ; from above.

If it satisfies the c.c.c., from a generic enough subset of Ry we can define a
“witness” h to H being ¢-colored. If Ry is not c.c.c. a failure is exemplified say
by (u¢ : ¢ < wy); without loss of generality it is a A-system i.e. ( <§ <w; =
u¢ Nug = u*. Reflection shows that (u¢ \ u* : ( < wi) exemplifies “explicitly

non-¢-colored”. O2.10B
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The needed forcing Qg is not too large (< A¢), and by 2.10B it essentially
determines the 7, ; (i.e., we can find 73, ; so that if we have an appropriate G,
the values of the 7a,; Will be 7J ;). So we have at most one candidate for S[G],
namely Ss, and if w; \ S5 is not disjoint to any stationary subset of w; from
VP modulo Dy,, we end the finite iteration defining Qs by shooting a club
through wy \ Ss.

Why is Qs still semiproper? Clearly Qe Qé, Qg are semiproper and so preserve
stationarity of subsets of w;, and also Qg do this and Q¢ satisfies the c.c.c.
So it is enough to prove that. Now use Rss (see chapter XIII §1 but assume
on § (remember we should shoot a club through E) that we have enough
supercompactness for ) to show that we still have semiproper = not destroying
the stationarity of subsets of w; for the relevant forcing.

This finish the proof that we can define the iteration Q as required. Lastly in
the proof of the parallel of 2.9A we use also E € N hence § € E. O2.10

2.11 Claim. If a(0),a(1) < w; and |a(0)| < |a(1)|, then
Az, (o) [semiproper] ¥ Az,(1y [proper] (assuming the consistency of ZFC+3 a

supercompact).

Proof: Similar. [Now the Laver Diamond is used to guess triples of the form
(Q19, Qs,(Si 11 < a(l))), Qs is a Ps-name of a semiproper forcing, IFp,1Q; “Si
is a stationary subset of w;”. In (b) from the colourings corresponding to the
branches we decode a sequence (S% : @ < a(2)) of stationary sets and try to
shoot a club through w; \ S% for one of them such that $¢ \ Ss is stationary

for every 1 < a(1) (in addition to the earlier demands.] 0211

2.12 Observation. Properness is not productive, i.e. (provably in ZFC) there

are two proper forcings whose product is not proper.

Proof Let T be the tree (“*”(wz),<); now one forcing, P, adds a generic
branch with supremum ws, e.g., P = T (it is Rj-complete). The second forcing,

Q, guarantees that in any extension of V%, as long as X; is not collapsed, T
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will have no w;-branch with supremum wé/ . Use @ = Q1% Q2 % Q3, where
Q; is Cohen forcing, Q2 = Levy(Ry,28) in V@ (so it is well known that in
V@1* @2 cf(wY) = wy, and T has no branch with supremum w» and has no new
wi-branch so has < N; w;-branchs), and Q3 is the appropriate specialization
of T (like R3 in the proof of 2.1, see Definition 2.3). Since in VF*@ there is a
branch of T cofinal in wyY not from V and VF*@ is an extension of V@, X;
must have been collapsed (see 2.4(3)).

We could also have used the tree “*>2, but then we should replace “no w;-

branch with supremum w,"” by “no branch of T which is not in V. 3.1

2.13 Discussion. Beaudoin asks whether SPFA + Az, |[finite iteration of R;-
complete and c.c.c. forcing notions|. So the proofs of 2.1 (and 2.2) show the
implications fail (whereas it is well known that already Ax(c.c.c.)=>Ax;(c.c.c.)).

But R;-complete forcing would be a somewhat better counterexample. We

have
2.14 Fact. SPFA + Az;[X;-complete].

2.14A Reminder. We recall the following facts and definitions (see XIII):
(1) If P and Q are Rj-complete, then IFp “Q is R;-complete”.
(2) For (A; : i < wi) such that A; C w; we define the diagonal union of these
sets as Vicw, Ai = {0 <wi : (Fi < 6)(d € A))}.
If A; C w; is nonstationary for all i < wy, then V;<,, 4; is nonstationary
(and if A; is stationary for some %, then V;<,,, A; O A;\(i+1) is stationary).
(3) If S C wy is stationary, then the forcing of “shooting a club through S” is
defined as club(S) = {h : h an increasing continuous function from some
non-limit o < w; into S}. We have IFgjyp(s) “wi \ S is nonstationary”, and

for every stationary A C S we have IF¢up(s) “A is stationary”.

Proof of 2.14. Suppose V =SPFA, and P is an R;-complete forcing, S is a
P-name, and IFp “S C wy is stationary”. For i < w; let (P;, S;) be isomorphic

to (P, S), and let P* be the product of P;(i < wi) with countable support; so
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P, < P*, P* is R;-complete, and S; is a P*-name and IFp, “P*/P; does not
destroy stationarity of subsets of wy”.

Let 2 = {A €V :AC w,A is stationary and IFp “SN A is not
stationary”}. Clearly if A € = and B C A is stationary then B € E=. Let
{A; : i <i*} C E be a maximal antichain C Z (i.e., the intersection of any two
elements is not stationary).

So, by 1.12 |i*| < wi, so without loss of generality i* < w; and define
A; =0 for i € [i*,w1). Let A = Vicw, Ai. Then also IFp “A = V<, A;”, so
we have:

(i) Fp “SN A is not stationary”, and

(ii) for every stationary B C wy \ A, for some p € P, we have p I-p. “SNB
is stationary”.
Let § & wy \ A. So S is stationary (as IFp “S is stationary”). Also,
clearly,

(iif) for each ¢ < w1, and stationary B C S for some p € P, < P*, we have

plkp« “S; N B is stationary”.

As P* is the product of the P; with countable support, P*/P; does not
destroy stationarity of subsets of w1, so we have

(iv) for every stationary B C S,IFp- “for some i, S; N B is stationary” .

Let S* be the P*-name: V<, S; def {a<w;: (T <a)ae S} Solkp-
“for every stationary B C § (from V), we have B N S* is stationary”.

In VP’ let Q* be shooting a club C through AU S* (i.e., Q* = {h: h an
increasing continuous function from some non-limit & < w; into AU S} ordered
naturally). Now Q* does not destroy any stationary subset of w; from V' (though
it destroys some from VF7). So P* x Q™ does not destroy any stationary subsets
of wy from V; hence by Lemma 1.3 it is semiproper. Now if G C P* x Q" is
generic enough, for each i < w;,G N P; is generic enough such that S;[G] is
well-defined, and since C* = C|[G] is a club set and C* C AU V<., Si[G], we
have § N C* C Vicw, S:]G]. As § is stationary, for some i, Si|G] is stationary

so the projection of G to G; C P; is as required, and we have finished. [ 14
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2.15 Remark. A similar proof works if P = P% x P®, where P% satisfies the
R;-c.c. and P’ is Ry-complete in Ve, if we use P* = {f : f a function from
w1 to P, f(3) = (pi,q;) € P** P, |[{i: p; # 0} <o, |[{i: q # 0} < R;}. Note
that necessarily even any finite power of P® satisfies the R;-c.c. In short, we

need that some product of copies of P is semiproper, i.e:

2.16 Fact. [SPFA] Suppose Q is a semi proper forcing notion, and there is a
forcing notion P and a family of complete embeddings f; (¢ < i*) of P into Q
such that:

(a) for any p € P and ¢ € Q for some i, the conditions f;(p), g are compatible

with Q.

(b) the forcing Q/ fi(P) does not destroy the stationarity of subsets of w;.
Then for any dense subsets Z,, of P for & < wj, and § a P-name of a subset of
w1, IFp “S C w; is stationary” there is a directed G C P, not disjoint to any

Z, (for a < wq) such that S[G] is a well defined stationary subset of w;.

Proof. Like 2.14. We define A C w; satisfying for S and P the following
conditions (from the proof of 2.14): (i), (ii), hence (iii), (iv) (with P, = f;(P)
and S; = fi($)). Oz.16

§3. Canonical Functions for wq

3.1 Definition. 1) We define by induction on a, when a function f : w; —
ordinals is an a-th canonical function:
f is an a-th canonical function (sometimes abbreviated “f is an a-th
function” ff
(a) for every 8 < « there is a B-th function, fg < f mod D,,,
(b) f is a function from w; to the ordinals, and for every f!:w; — Ord,
if A = {i <w; : f1(i) < f(3)} is stationary then for some 8 < o and
B-th function f2 : wi — Ord the set A2 % {i € Al £2(3) = f1(5)} is

stationary,
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2) If we replace a “stationary subset of w;” by “# ) mod D” (D any filter on
wy); we write “f is a (D, a)-th function”. Of course we can replace w; by higher

cardinals.

Remember

3.2 Claim. 1) If & < wa, @ = {J,,,, @i, (@i : § < wy) is increasing continuous,
each a; is countable, and fq(%) def otp(a;) then fo is an a-th function.

2) If for every « there is an a-th function, then D,, is precipitous; really “for
every a < (2%)* there is a-th function” suffices, in fact those three statements
are equivalent.

3) If f is an o-th function; Q = Df = {A C w; : A is stationary} (ordered
by inverse inclusion) then IFg “in V¥1/Gq, we have: {z : V“1/Gq = “zis an
ordinal < f,/Gq"} is well ordered of order type a” (remember V*! /G, is the
“generic ultrapower” with universe {f/Gq : f € V and f :w; — V} and Gg
is an ultrafilter on the Boolean algebra P(w;1)V).

4) Any two a-th functions are equal modulo D,,, .

5) Similarly for the other filters (we have to require them to be N;-complete,

and for (1) - also normal).

Proof. Well known, see [J]. We will only show (1): Let A' = {1 : f(i) < fa(7)}
be stationary. So there is a countable elementary model N < H(x) (for some
large x) containing «, f, (a; : ¢ < wi) such that § NN wy € Al. We have
f(8) < fa(8) = otp(as), and as = J;cy @i € N, so there is B € N such that
f(8) = otp(as N B). Let A% = {i € A! : f(i) = otp(a; N B)}. Since A% € N,
feN,BeN,(a;:i<w)) € N and § € A%, we can deduce A? is stationary.
Os.2

The following answers a question of Velickovic:

3.3 Theorem. Let & be a supercompact. For some «-c.c. forcing notion P not

collapsing X; we have that V' satisfies:
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(a) thereis f € “iw; bigger ( mod D,,,) than the first wy function hence
the Chang conjecture fails.

(b) PFA (so D, is semiproper hence precipitous).

(c) not PFA*

Outline of the proof: In 3.4 we define a statement (), which we may assume
to hold in the ground model (3.5). We define a set S§ C Scx,(x) and we
show that if (*)g holds, then S is stationary (3.8). In 3.9 we recall that the
class of SJ-proper forcing notions is closed under CS iterations, so assuming a
supercompact cardinal we can, in the usual way, force Az[SJ-proper]. Finally

we find, for each o < wa, an SJ-proper forcing notion R, such that Az[R,] =

fa <'D‘.,2 g.

3.3A Remark. Remember that the first clause of 3.3(a) implies that Chang’s
conjecture fails, so the negation of 3.3(a) is sometimes called the “weak Chang

conjecture”.

Proof of 3.3A. Let M = (M, E,w;,...) be a model with universe wy which
codes enough set theory. Assume that there exists an elementary submodel
N < M with ||[N|| = Xy, |wV| = Rp. Let § = wl¥ = wy N N. In M we have
the function f from 3.3(a) and also a family (f,, Eq : & < wa), (fq is an a-th
canonical function, F, C wy is a club set, fo[Ey < f[E,) as well as a family
(Ea,p : @ < fB < wy) of clubs of wy satisfying fo|Ess < fg[Eag. For a < g,
o, € N we have § € E, 3N Ejg, so

(A) (Yo, B € N) [a< 8= fa(8) < f5(3)]

(B) (Vo€ N): [fa(d) < £(5)]

So the set {fa(d) : @ € N} is uncountable (by (A)) and bounded in w; (by

(B)), a contradiction. Us.3a

3.4 Definition. Let f, be the a’th canonical function for every o < wy (so

without loss of generality the f, are of the form described in 3.2(1)). Let
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g : wy — Ord. We let (x), be the statement:
(*)gq for all @ <w; we have  —(g <p,, fa)-

By 3.2(4) this definition does not depend on the choice of (f, : @ < ws).

3.5 Remark. It is easy to force a function g : w; — w; for which (x)4 holds:
let P = {h : for some i < wy, h : © — w;} ordered by inclusion. P is N;-
complete and (2%)*-c.c., so assuming CH we get RY" = RV and RY" = Y.
Let (fo : @ < wy) be the first wy canonical function in V', then they are still
canonical in VP, and it is easy to see that for any f : w1 — wy in V we have

VP E-(g <p,, f) where g is the generic function for P.

3.6 Definition. 1) We call N < (H(x),€,<}) g-small (in short g — sm or
more precisely (g, x)-small) if N is countable and otp(N Nx) < g(N Nwy).
2) We let 5§ ef {a:a € S<io(x),aNwi is an ordinal and otp(a) < g(aNwy)}

3.7 Definition. We call a forcing notion @ g-small proper if for any large
enough x and N < (H(x), €, <}), satisfying ||N|| = Ro, @ € N, p e NNQ
such that N is g-small there is ¢ > p which is (N, Q)-generic. We write g-sm

for g-small.

3.7A Observation. 1) Any proper forcing is g-sm proper.

2) Without loss of generality g is nondecreasing.

Proof. 1) Trivial.
2) Let E = {a < w; : a is a limit ordinal such that 8 < a = ¢(8) < a and
(VB < a)(3)(B <7 <akg(y) > H)}, and let

) ifa€eE gla)>a
g'(a) = {gu(;{g(ﬂ) : B < a} otherwise.

Now, for our definition ¢’, g are equivalent but ¢’ is not decreasing. U3 74
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3.8 Claim. 1) (x), holds

iff for every x > R the set S is a stationary subset of Scx, (X)

iff S§, is a stationary subset of Scx, (Rz)

iff for some x > Ny, S is a stationary subset of Scy, (x)-

2) For a forcing notion @ and x > 219l we have: Q is g-sm proper iff Q is
Sg-proper (see V1.1(2)).

3) If (x)g holds and Q is g-sm proper then

”_Q “(*)g”

Proof. 1) first implies second

Assume (*), holds, x > N2 is given, and we shall prove that Sj is a
stationary subset of Scx, (). Let z € H(x1) and x1 = J3(x)*(e.g z = 5%).

We can choose by induction on i < wy, N; < (H(x1), €,<},) increasing
continuous, countable, z € N; € N,,;. Clearly for each i we have §; ef N;Nw,
is a countable ordinal, and the sequence (d; : ¢ < wi) is strictly increasing
Ni, then wi +1 C N < (H(x1),€,<},)
and N has cardinality R, so otp(NNyx) = a for some o < wo; let h: NNy — «

continuous. Now letting N = U,
be order preserving from N N x onto .

Note: letting a} % N; N x,a; = rang(hlal) we have: a is |J,_., a; where

a; is countable increasing continuous in i and fq41(%) e otp(a;) + 1 is an
(o + 1)-th function (see 3.2(1)). Also C = {i : §; = i} is a club of w;
so by (x)g we can find ¢ € C such that fot1(¢) < g(4), so otp(N; N x) =
otp(a}) = otp(a;) < fat1(8) < g(i) = 9(&;) = g(N; Nwy). Le. for this i, N; is

g-sm; easily N; N x € 5§ and it exemplifies that S is stationary.

i<wi

second implies fourth. Trivial

fourth implies third. Check. (note: for x > Ry, otp(x N N) > otp(wz N N)).

third implies first. Let @ < we,a = |J a;, where a; are increasing

i<wi

continuous each a; countable, so fq(%) def otp(a;) is an a-th function and let

C be a club of w;. Let @ = (a; : i < wy). Let x be regular large enough (e.g.



834 XVII. Forcing Axioms

> I1). Clearly
{NNRy: N is countable, N < (H(x),€,<})}

is a club of Sx,(X2). So by assumption for some countable N < (H(x), €, <})
we have C,a € N and
(i) otp(N N Rg) < g(N Nwy).

But as @ € N also f, € N and we have [j < NNw; = a; € N = a; C N]
hence J{a; : j < NNwi} € N N o but this union is equal to annw, (@ is
increasing continuous:) so, as a € N,

(ii) otp(annw,) < otp(annw, U {a}) < otp(N Nwy).

But

(iif) fo(N Nw1) = otp(annw, )-

By (i) + (ii) + (iii) we get fo(NNw;) < g(NNw;) and trivially NNw; € C,
but C was any club of wy, hence {j < wy : fo(j) < 9(j)} is stationary. As «
was any ordinal < wy we get the desired conclusion.

(2) This is almost trivial, the only point is that to check S-properness it
is enough to consider models N < (H(x), €, <}), but for sm-g properness we
should consider N < (H(xo), €, <},) for all large enough xo. First assume Q
is g-sm proper, and we shall prove that @ is Sj-proper; and let xo be large
enough (say > Jz(x)). Let M be the Skolem Hull of {a : a < 219} U {Q, x}
in (H(xo),€,<%,) Note |[M|| = 2/9 < x hence otp(M N xo) < x and there
is an order-preserving h : M Nx — (2!9)* < x onto an ordinal belonging
to N. Let N be a countable elementary submodel of (H(xo) €, <},) to which
z = (Q, X, M, h) belongs, and (N Nx) € Sg. Let N’ CNAM, s0o N Nw; =
N Nwy, N’ is a countable elementary submodel of (H(xo), €, <},) and

otp(N' N xo) = otp(h”"(N' N xo)) < otp(N N Rang(h))
<otp(NNx) < g(NNuwy)=g(N' Nw).
[Why? as h is order presserving; as N is closed under h, h=! and N’ < N; as

rang(h) C x; as NN x € S; as N’ = N N M respectively.|
Applying “Q is g-sm proper” to N’, for every p € Q N N’ there is q such that
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p < q€ Q and qis (N',p)-generic. But QNN = QN N’ and [q is (N’, p)-generic
& qis (N, p)-generic] as NN2!9l = N'N2!Ql. As we can eliminate “z € N” (as
some such z for some x’, H(x') € H(xo0) and x’ belongs to N) we have proved
Q is SJ-proper.

The other direction should be clear too.

3) Let x = (2!@h)*.

By part (2) we know @ is S§-proper; by V 1.3 - 1.4(2) as Q is Sg-
proper, we have that IFq “(S%)V C Sery (X)V° is stationary”. Clearly kg
“(Sg)v C (Si)VQ” hence kg “(ng)vQ is a stationary subset of Scy,(x)”. So
by part (1) (fourth implies first), we have kg “(x),”. Os.s

3.9 Claim.
Assume (), (where g € “w;). Then the property “(a forcing notion is)
g-sm proper” is preserved by countable support iteration (and even strongly

preserved).

Proof. Immediate by V 2.3 and by 3.8(2) above. Os.9

3.10 Claim. Suppose, g € “'wi, and (), holds, kK supercompact, L* : kK —
H (k) is a Laver diamond (see VII 2.8) and we define Q = (P;,Q; : i < K,j < K)
as follows:
(i) it is a countable support iteration
(ii) for each i, ¢f L*(3i) is a P;-name of a g-sm proper forcing and i is
limit then Q; = L*(i), otherwise Q; = Levy(Ry,2%2), (in V', je. a
P;-name).
Then
(a) Py is g-sm proper, s-c.c. forcing notion of cardinality &, and N;’ (Pl
K
(b) Az, [g-sm proper] holds in V=
(c) PFA holds in V=
(d) in VP~ for every a < k, g is above the a-th function (by <p,,).

Proof. Q is well defined by III 3.1B.
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Clearly IFp, “Q; is g-sm proper” - by choice or as Levy(Ry,2%2)VIPl jg
R;-complete hence proper hence (by 3.7) g-sm proper. So by 3.9 the forcing P,
is g-sm proper; P satisfies s-c.c. by III 4.1 hence Ip_ “k regular, XY regular”.

The use of Levy (X, 2%2)VIP for 4 non-limit will guarantee k = Ny in VP~
Also |P;| = & is trivial, so (a) holds.

The proof of (b) is like the consistency of IFp “Az,, [proper]”, in VII 2.8
hence (by 3.7A(1)) we have I-p, “PFA” i.e. (c) hold.

So it remains to prove (d), so let a < N;/[P"] = k. This will follow from
3.10A, 3.10B, 3.10C below together with (b) above. Let us define a forcing

notion R,:

3.10A Definition. R, = {{(a; : ¢ < j) : j is a countable ordinal, each a; is a
countable subset of a and (a; : ¢ < j) is increasing continuous, and for i a limit
ordinal otp(a;) < g(4)}. The order is: p < ¢ iff p is an initial segment of q.

We can assume g is nondecreasing (see 3.7A(2)).

3.10B Observation. R, is g-sm proper.

Proof. Left to the reader.

3.10C Observation. If G C R, is sufficiently generic, then G defines an

increasing continuous sequence (a; : ¢ < wp) with |J = o and hence

1<wi @i
defines an a-th canonical function below g. Os.10,3.3

* * *

Answering a question of Judah:
Question. Does Az[Countably Complete * c.c.c.] imply PFA?

3.11 Claim. The answer is no.

Proof. Countably complete forcings and c.c.c. forcings and also their composi-

tion are w-proper. So we have
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PF A = Ax|w-proper|=Ax[countably complete  c.c.c.].

‘We will show that the first implication cannot be reversed:

3.12 Definition. ¢ = (c(i) : { < wy) is a w-club guessing for w; means that
¢(t) is an unbounded subset of i of order type w for each limit ordinal i less
than wy, such that every closed unbounded subset c of w; includes ¢(7) for some

limit ordinal i < ws.

3.13 Claim. (1) If ¢ is a w-club guessing for w;, and P is w-proper, then IFp “¢
is a w-club guessing for w;”.
(2) O, implies that there is a w-club guessing for w; (so a w-club guessing can

be obtained by a small forcing notion).

Proof. (1): Let C be a name for a closed unbounded subset of w;, p € P. We
need to find a condition ¢ > p and some ¢ < w; such that q IFp “c(i) C C”.
Let (N; : i < wp) be an increasing continuous sequence of countable models
N; < (H(x),€<3), x large enough, {p,C, P} € No. Let 6; = N; Nwy. Let
C* = {i < wy : 6 = i}. Now C* is closed unbounded, so there is some :
such that c(i) C C*, say c(i) = {i0,%1,...}, %0 < @1 < .... Let ¢ > p be N,,-
generic for all n < w. So ¢ IF “ip = N;,[G]Nw; = N;, Nw;”, and clearly
I “N;, [GlNwy € C”, 50 gl “c(i) C C”.

(2) Should be clear. Us.13

3.14 Claim. Suppose € = {c5 : § < wy) is such that: ¢s is a closed subset of §
of order type < o*. Let
R, & {(5,C) : i < w1,C is a closed subset of ¢ + 1, such that for every
§ <1, sup(es N C) < 6},
order is natural. Let
7, % {(i,C) € Rs : v < max(C)}.

Then: R; is proper, each Z, is a dense subset of Rg, and if G C R, is
directed not disjoint to each Z,, then C* = U{C : (3,C) € G} is a club of ¥;

such that: § < w; = sup(C'Ncs) < 6.
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Proof. Straight.
For proving “R; is proper” denote ¢ = (i9,C?), i = Dom(g), let N < (H(x), €
y<}), N countable, p € N N Re, and {¢,Rj,a} € N. W.lo.g. & < x. Let
0 = NNuwi, and so we can find (N; : 1 < §), an increasing continuous sequence
of elementary submodels of (H(37),€), N; C N, NnH(3}) = Uics Vs and
pE€ Ny. Sowecan find ig < iy <...,0 = Ul<w ig such that wy NN, 41\ NV, is
disjoint to cs. Let {1y, : n < w) list the Rz-names of ordinals from N, and we
can choose by induction on n a condition py, gn such that: p < py € N;y41, iP°
is Nj, Nwi, and [i?, N;p 41 Nwy) is disjoint to CP°, p, < ¢, € Re N N; 11, qn
force a value to 7, if £ <n & 7o € N;, 41, and g < ppyr, P+ = N, Nwy,
and [P+1, N; . Nw;) is disjoint to ¢P~+1. Now (p, : n < w) has a limit as
required.
Another presentation is noting:
(x) for each p* = (i*,C*) € R; and dense subset Z of P, there is a club
E = E4 1 of wy such that:
for every a € E, a > 1*, and there is (1*,C%) € R, (i%,C%) >
(o, C*) > (i*,C*), (i*,C*) is in 7 and i* < min(E \ (a + 1)).
(#x) if p € N < (H(x),€,<}), N countable, {¢,R;,a*"} € N, and T € N
a dense subset of Rz, then E,7 N N has order type N N w; hence for
unbounded many @ € NNE, 7, the interval [o, min(E\ (a+1))) is disjoint

t0 CNAw, - U3.14

3.14A Conclusion. PFA= there is no w-club guessing on w;. On the other
hand “Ax|w-proper]+ there is a w-club guessing” is consistent, since starting
from a supercompact we can force Ax[w-proper] with an w-proper iteration (see
V3.5). Os.11

3.15 Remark. The generalization to higher properness should be clear: for o
additively indecomposable, Ax[a-proper] is consistent with existence of (c(i) :
i < w; and a divides 1) as in 3.12 only the order type of ¢(7) is a (for a club of
i’s), for it to be preserved we use ¢ = (c(t) : ¢ < w1, and a devides 7) such that

for every <y the set {c(:) Ny : i < w; divisible by @ and v € C(4)} is countable.
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On the other hand Ax[a-proper] implies there is no (c() : 1 < wy, aw divides
1) such that: ¢(7) is a club of ¢ of order type aw and for every club C of w; for

some 4, ¢(i) C C.

8§4. A Largeness of D,,, in Forcing Extensions of
L and Canonical Functions

The existence of canonical functions is a “large cardinal property” of wi, or
more precisely, of the filter D, . For example, the statement “the a-th canonical
function exists for any o” will hold if D,, is Ne-saturated, and it implies that
the generic ultrapower V¥ /Gq (see 3.2(3)) is well-founded. If we know only
that w; is a canonical function, we can conclude that the generic ultrapower is
well-founded at least below wy .

It was shown by Jech and Powell [JePo] that the statement “w; is a
canonical function” implies the consistency of various mildly large cardinals.
Jech and Shelah [JeSh:378] showed how to force the Ro-th (or the 8%, for any 6)
canonical function to exist (this is weaker than “w; is a cannonical function”).
After this paper Jech reasked me a question from [JePol: “if the function w; is a
canonical function, does 0% exist?” We give here a negative answer. Our proof
which uses large cardinals whose existence is compatible with the axiom V = L,
is in the general style of this book: quite flexible iterations, quite specific to
preserving X;. We thank Menachem Magidor for many stimulating discussions
on the subject. Subsequently Magidor and Woodin find an equiconsistency
results with different method.

This section consists of two parts: First we define a large cardinal property ()}

and show (in 4.3)
Con( (3G) [V = L[G] + G C wy is generic for a forcing in L + (EI)\)(*)i]),

assuming the existence of 0% or some suitable strong partition relation. Then

we show (in 4.6, 4.7) that (x)} implies that there is a generic extension of the
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universe in which w; is a A-function, and make some remarks about possible

cardinal arithmetic in this extension.

We think that the proof of 4.6 is also interesting for its own sake, as it gives a

method for proving large cardinal properties of D,,, from consistency assump-

tions below 0#.

4.1 Definition. A —* (k);“ means that for every club C of A and function F :
[A]<“ — u there is X C C,otp(X) = & such that: u3,us C X Umin(X), |u;| =
[uz| < Ro,us N min(X) = uz N min(X) implies F(u1) = F(uz). Let A — (k)<Y
mean: if F': [A]<* — A, F(u) < min(uU{\}), then for some X C ), otp(X) = &

and F'[[X]™ constant for each n.

By the known analysis

4.2 Remark. 1) If X is minimal such that A — (k)5 then A — (k)% and A
is regular and 2° < X for 6 < ), from which it is easy to see A =+ (k). Such
N’s are Erd6s cardinals, which for x > w; implies the existence of 0% so implies
V # L. But of course it has consequences in L.

2) Remember A = {b:b C A, |b| = n}.

3) Of course p > 2 is assumed.

4) A —* (k)5* implies A is regular, p < A, and A — (k)5y for any p1 < A.

4.3 Claim. If in V: A -7 (k)S“ and & is regular uncountable, (hence A > 2¥)
then in VevY(Ro,<K) and even in LLeVY(R0:<x) (the constructible universe after

we force with the Levy collapse) (*)} is satisfied, where:

4.4 Definition. For ) an ordinal, (*)}\ is the following postulate:
for any x > 2*, and = € H(x), there are Ny, N; such that:

(a) No, N: are countable elementary submodels of (H(x), €, <x)
(b) x € No <M

(c) otp(No N A) = otp(Ny Nwy)

(d) in N; there is a subset of Levy(Ro, No Nwi) generic over Ny.
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(e) The collapsing map f : No N A — w; defined by f(a) = otp(No N a)
satisfies:
whenever u € No, u C A, |u| < Ry, then flu € Ny (note fluis f](uNNp)).

Proof of 4.8. Straightforward: let G C Levy(Ro, <k) be generic over V hence
it is also generic over L (note: Levy(Ro,<k)V = Levy(Ro, <k)L). It is also
easy to check that V[G] | “A —% (k)5“ and even A —% (k)52)” because
|Levy(Ro, < &)| < A, see 4.2.

Let x > 2%, in L[G] and we shall find Ny, Ny, f as required for LIG),z €
H(x)MC! (because L[G] is the case we shall use, V[G] we leave to the reader).
In V we can find a strictly increasing sequence (; : 1 < k) of ordinals < A,
indiscernible in (H(x)™¢, €, )\, G), each o; € C* & {a < X\ : a belongs to any
club of A definable in (H(x)l, €, A, @)} (so each q; is a cardinal in L[G]).
We define, by induction on n,in, No,n, N1, such that
(@) w<ip <int1 <wi,in is limit, o =w
(B) Non is the Skolem Hull of {z} U {a; : i < in} in (H(x) 4, €, ), G)

(7) Ni,p is the Skolem Hull of No, UJ{otp(No,n NA) +1}U{fy : u € N, is

a set of at most R of ordinals < A} where f, : uN Ny, — wy is defined

by fu(a) = otp(No, Na) in the model (H(x)C, €, A, G).

(6) in+1 = otp(N1,n Nw1).

There is no problem to do this. Let i %ef sup{in : n < w}.

Finally let No = U,<, No,n and N1 = U, N1,n. Now No, Ny, f are not

necessarily in L[G] but we now proceed to show that they satisfy requirements

n<w

(a)—(e) from (*)}. Clauses (a) and (b) are clear, since the models Ny and N;

are unions of elementary chains and N? < N} and z € Ny ,,.

Clearly Ny, Nk is an initial segment of k (as V[G] = K = Ry),s0 N1, Nk
is an initial segment of Ni n41 N k. Hence otp(N; N k) = sup{otp(N1,, N k) :
n < w} =sup{in : n < W} = ix. Since {a; : 1 < io} € Ny and the o; are
strictly increasing, we have otp(No N A) > otp{ia : @ < U, in} = fco- SO
otp(No N A) > otp(N1 N k).

For the converse inequality, note that No , N\ is an initial segment of Ny n41NA

(as the a; are indiscernible and in C* and see Definition 4.1) so otp(Ng N A) =
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sup{otp(No,n N A) : n < w} < sup{otp(Nin+1 Nwi) :n < wi} < otp(Ny Nws).
So (c) holds.

Next we have to check (d). Note that Ny is the Skolem Hull of {o; : i < 00}
Let § = NoNk; by the previous sentence also § = Ny , Nk, and even NoN L, =
NojnNLg. Let G = (Go : 0 < K), s0 | JG,, is a function from w onto a. Define
Q = Levy(Ro, 1), P ={ZNQ: Ny | “T is a dense subset of Q}”. Now in
V[G], we see that Q is Levy(Ro,d) and P is a countable family of subsets of
Q. Hence for some a < k, Q and P belongs to V[(Ggs : 8 < a)]. Without loss
of generality o > 4, and « is divisible by § x § and without loss of generality
a € Ny (this is a minor change in the choice of the Ny, Ni,’s). Define
f:a— 48 by f(6i+j) = j when j < §, now f o (|JG,) is a function from w
onto 4, is generic over V[(Gp : 8 < a)] (for Levy(Ro, a)) hence is generic over
Ny and it belongs to N7, so demand (d) holds (alternatively we can demand
(a; 11 < k) € V and proceed from this.)

Finally clause (e) follows as Ny, N A is an initial segment of Ny N A hence
defining f : NoN A — & by f(e) & otp(No N a), used in clause (e) we have:
for u € No.n, |u| <Ry, u C A, we have uN Ny = uN Ny pt1 = uN N (by the
choice of the a;’s) and f, (defined is clause () above) is flu (i.e. fI(uN No))
which we have put in Ny ny1.

So Ny, Ny, f are as required except possibly not being in L[G]. But the
statement that such models Ny, N; exist is absolute between L[G] and V[G].

Ug3

4.5 Claim. 0# implies that if Rg < k < A (in V) then LLV¥[Ro:<#l gatisfies

()3

Proof. Left to the reader as it is similar to the proof of 4.3. Oy

4.6 Main Lemma. If (x)}, X = cf(\) > Ry, and 2% = R; then for some forcing
notion P:
(i) P satisfies the Rp-c.c and has cardinality (A\¥1)*.

(ii) P does not add new w-sequences of ordinals.
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(iii) IFp “wq (i.e. the function (w; : @ < wy)) is a A-function”.

(iv) IFp 2% = |P| = [(AM)*]V” (so for u > ®; we have (2#)IV'] =
(24)V + AR1),

(v) in V| for large enough x and = € H(x) and stationary S C w; there
is a countable N < (H(x),€), £ € N such that NNw; € S and
(Vf € N)[f € N&f € “'wy = (3a € ANN)[NNw; € eq(fa, f)]]
where eq(fao, f) def {i < w1 fa(i) = f(i)}, and f, is an a-th function
(and (fo:a < A) € N).

4.6A Remark. (a) Let us call a model N < (H(x), €,<}) “good” if (Vf €
NN“w)Ba € ANN)[NNw; € eq(fa, f)] (where f = (fo : @ < A) is as
above); note that this implies eq(fq, f) C w; is stationary.

Let, for z € H(x),

M, & {N N2 : N is good and, z € N}

Note Mz N My = Mz 3. So (v) can be rephrased as:
(v)! The family (M, : = € H(x)) is a base for a nontrivial filter on
S<r, (2%1) (i.e. on the Boolean algebra (Scy, (2M)).)
(b) Note that 4.6(ii) implies IFpCH, and (i) and (ii) together imply that P
does not change any cofinalities.
(c) 4.6(v) implies almost 4.6(iii): for some § < A, (w1 : @ < wi) is a S-th
function.

Proof of (c). Let f :w; — Ord, S def {i: f(i) < wi} is stationary, and assume

that for all & < A and o-th function f, the set eq(f, fo) NS is nonstationary
(if there is such a f,) say disjoint to the club set C,. Let N be a model as
in (v) containing all relevant information. Let § = N Nw; so § € S. Then for
some o € N we have & € eq(f, fo) NS where f, € N is an a-th function. But

as a € N we also have § € Cy, a contradiction.

4.7 Conclusion. 1) If in V we have A =+ (k)<¥ (or just 0% € V,Rg < &k < A

are cardinals in V or just V = LLe¥(R0.<k) and V |= (¥)}), then in some generic
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extension VP of L, 2% = k = XY and 2 = A\t when £ < p < A\, 2% = pt
when p > A and w; is a A-th function (and (v) of 4.6).

2) We can, in the proof of 4.6 below, have a* = « if c¢f(y) > ), 7 divisible by
|| and |y| = |y/™ (just more care in bookkeeping) so IFp “2% = |y|” is also
possible.

3) If e.g. (1) above, and we let Q = Levy(Ng,)\+)VP then in VP*? we have
2% = Ry, 2% =R, (and conditions (iii)+(v) from 4.6 hold but X is no longer
a cardinal) and VP, VP*Q has the same functions from w; to the ordinals.

4) We can have in 4.6(1), that VP satisfies 2 = X for p € [k, \) and 2% = A
(and 2# = p* when > X and w; is a A-th function).

We shall prove 4.7 later.

Proof of Lemma 4.6. We use a countable support iteration Q = (Pa,Qp:a <
a*, B < a*), such that:

1) o* = (A)*

(2) if B < A, then Qg is adding a function fj : wy — wy :

Qp = {f : for some non-limit countable ordinal ¢ < wy,

f is a function from i to w;},
order: inclusion.

(3) if B = XA+ AB1 + B2 where 1 < B2 < A then Qg is shooting a club to wy

on which f3 is smaller than fj, :

Qp = {a: for some i < wi,a is a function from {j : j < i} to {0,1}

such that: {j <i:a(j) = 1} is a closed subset of sm(f%,, f5,)}

where sm(f, g) def {i <wi: f(i) <g(@)},
order: inclusion.
(4) if B < (A®)*, 8> A? and for some g, A and 7y < B and p we have
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8 . . .
®g,é,7,p g is a Py-name of a function from w; to w1, A is a P,-name of a

subset of w; and p € Pg:

pl-p, “A is a stationary subset of w;, but for no a < A,

is eq(g, fa] N A stationary”

then for some such (g3, 4%, 75, pp), with minimal v, the forcing notion
Qg is killing the stationarity of AE: that is: Qp = {a : for some i < wn,a is
a function from {j: j <} to {0,1} and {j : j < and a(j) = 1} is closed
and if pfj € Gp, then a is disjoint to A%}
order: inclusion

(5) if no previous case applies let Ag = 0,3 = 0,gs = 0., and define Q4 as
in (4).
There are no problems in defining Q. Let P = Poryy+

Explanation. We start by forcing the f,’s, which are the witnesses for the
desired conclusion and then forcing the easy condition: f, < fg mod D,,, for
a < B < A. Then we start killing undesirable stationary sets. Note that given
f € VP maybe in VP we have S = {a < X : eq[f, fa] is stationary in VF}
has cardinality A, and increasing ¢ it decreases slowly until it becomes empty,
so it is natural to use iteration of length of cofinality > X e.g. A"t x A* (ordinal

multiplication) is O.K. The problem is proving e.g. that N; is not collapsed.

Continuation of the proof of 4.6.
The main point is to prove by simultaneous induction that for a < (A%1)+
the conditions (a)s — (€)q listed below hold:
(a)a forcing with P, adds no new w-sequences of ordinals.
(b)a Pa satisfies Rq-c.c.
(€)o the set P, of p € P, such that each p(3) is an actual function (not just a

Pg-name) is dense.
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Before we proceed to define (d)q, note that for each 8 < a (using the
induction hypothesis),

IFp, “CH and |Qp| = R; and Qp is a subset of

def

H = {h:he€V is a function from some 1 < w; to w1} € V

ordered by inclusion”.

So (as Pj satisfies the Ro-c.c.), the name Qg can be represented by R; maximal

antichains of Pg : ((p?’h : ( <wi): h € H),ie. for each ¢ < wl,pgh forces
h € Qg or forces h ¢ Qp. So, uj e Uce Dom(pge) is a subset of 3 of cardinality
< R; (all done in V). We may increase uj as long as it is a subset of § of
cardinality < X;. W.lo.g. p, € Pj.

Call u C a closed (more exactly Q-closed) if 3 € u implies: u; C u and
g5, A are names represented by N; maximal antichains C Plli with union of
domains C uj and Dom(pj) C uj. W.lo.g. each uj is closed. For a closed
u C « we define P, by induction on sup(u) : let P, = {p € P,: Dom(p) C u
and for each 8 € Dom(p),p(B) is a P,ng-name}. Let P, = P, N P.. Lastly let
(d)o Py, < P, for every closed u C a; moreover
(e)o if u C a is closed, p € P/, then:

(1) plue P, C P, and

(2) plu < ¢ € P, implies q U [p] (Dom(p) \ u)] is a least upper bound of

p,q (in ).

Of course the induction is divided to cases (but (a)q is proved separately).

Note that (e)q =>(d)q.

Case A: o = 0 Trivial
Case B: a = 3+ 1, proof of (b)q, (¢)a, (d)a, (€)a-

So we know that (a)s —(e)s holds. By (a)s (as noted above), Qs has power
R;. So we know Pj satisfies Na-c.c., and IFp, “Qp satisfies the Ry-c.c.” hence
P, satisfies the Ra-c.c., i.e. (b)4 holds.

If p € Py, then p(B) is a countable subset of w; x w; from VP2, hence by
(a)p for some f € V and q we have p{3 < g € Pg and ¢ IFp, “p(B) = f”. By
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(c)g w.lo.g. g isin Pj. So qU{(B,f)} is in Py, is > p and is in P; so (c)q
holds.

As for (d)o and (e)a, if p € P), we can observe (e)q(1) which says:
“plu € P, C P,”. [Why? If B ¢ u, it is easy, so assume 8 € u; now just
note that p[(8Nu) € Pgny < P, by the induction hypothesis, now p[3 IFp,
“p(B) € Qp”, but Qp is a Ppny-name, Pgn, < Pg (as u is closed and the
induction hypothesis), so by (d)s we have (plu)|B IFp,., “p(B) € Qp”; so
plu € P, and as Dom(p[u) C u we have plu € P,.]

Next (e)q(2) follows (check) and then (d)q, (€)a follows.

Case C: o limit cf(a) > R, proof of (b)a, (¢)a, (d)a, (€)a-

Clearly P, = Jg, Pp (as the iteration is with countable support), hence
(€)o follows immediately; from (c), clearly (b)q is very easy [use a A-system
argument, and CH], and clause (e), also follows hence (d),.

Case D: a is limit c¢f(a) = Rg, proof of (b)q, (¢)a, (d)a; (€)a-

As in Case (C), it is enough to prove (). So let p € P,. Let x be
regular large enough; Ny < N; be a pair of countable elementary submodels of
(H(x), €,<}) to which Q, &, A, p belongs, satisfying (a)—(e) of ()} in Def 4.4.

We can find an w-sequence (u,, : m < w) such that:

(i) each u,, is a member of Ny, and is a bounded subset of a of power
< N; which is closed for Q[

(i1) um C Um+1

(iii) if u € Ny is a bounded subset of o of power < R; closed for Qla then

for some m we have u C uy,.

There is no problem to choose such a sequence as the family of such u’s is
directed and countable. Let (Z,, : m < w) be a list of the dense open subsets
of P, which belong to Npy.

Note that in general, neither (um : m < w) nor (Z,, : m < w) are in Nj.

Let § % Np Nw; and note that § € N;. Let R be Levy(Ro,d)“, the w-
th power of Levy(Ro,§) with finite support, so R is isomorphic to Levy(Ro, d)
and it (and such isomorphisms) belongs to N; so there is G* € N1, a (directed)
subset of R, generic over Np. Note that from the point of view of Np, Levy(Ro, d)
is Levy(Ro, R1) hence ((Levy(Ro,R1))*)Ne = (Levy(Ro,d))*, so G* is an No-
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generic subset of (Levy(Ro,R1)“)"e. Let G* = (G} : £ < w). Note that
No|G*| E ZFC~ and No[G*] C N;.
By the induction hypothesis P,,, < Py, ., < Psupu,.,1)+1 < Pa for every

m. Now we choose by induction on m < w, p,, and G,,, C P, N Ny such that:

P < Pm < Pm+tl,

Pm+1 € L N Ny

Pm[Uum € G

Gm C NoN P, is generic over Ny

U Ge € G,
<m
G, € N1, moreover G, € No[(G} : £ < m)].
Why is this possible? Arriving to m(> 0) we have P, | < Py, Gp_1 C
Pl

wm_1 1V No is generic for Np, we can choose pn, as required (p, € Z, N Ny

and pm-1 < pm and prftm-1 € Gp-1). Also P, = P, N P, belongs to
No, (as Q, P, and u,, belongs), now it has cardinality X; (and of course all
its members are in V' as well as itself), so some list (r;™ : { < w1) of the
members of P, of length w; belongs to Nyp. So as § = No Nwy € Ny, clearly
Py, NNo = {r¢™ : ¢ <} belongs to N1 and N1 “know” that it is countable.

As G*, is a subset of Levy(Ro, Ry )N = Levy(Rg, RV0)Nol(GE:6<m)] ' geperic
over No[(G} : £ < m)] there is in N[(G} : £ < m)] a subset of P, N Ny generic
for {Z :Z € No[Gm-1] and T C P, and Z is dense in P,} extending Gr,—1.
So in N; and even Ny[(G} : £ < m)] we can find G,, € P,,, N Ny generic over
Ny with p, Uy, € G, and Gp—1 € G

Note: as P,,, < P,
G =U,, Gm, 6 = Ng Nw;. We define ¢ = g¢, a function with domain a N Np:
for B € U, N Ny let

1 We succeeded to take care of “Gy, € Gry1”. Let

45(B) = U{r(B) : for some m < w we have r € G, and 7(0) is an actual
(function not just a Pg-name) }

q9c(B) is: q(B) U{(4, otp(No N B))} if B < A, and qi(B) U{(8,1)} if B = A.

Clearly g is a function with domain aN Ny, each ¢(8) a function from § +1

to w;. (Here we use the induction hypothesis (c)g.)
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If ¢ € P, then we will have ¢ € P/ and ¢ is a least upper bound of
Um<w Gm and of {pm : m < w}. Hence in particular ¢ > p thus finishing the
proof of (c)q, hence (as said above) of the present case (Case D). Now we shall
show:

® qlum € Ny for each m < w

Clearly gqglum € N1 as G, € Ny (and P, € Nj), hence to prove
® we have to show that {(8,(qc(8))(d)) : B € um} belongs to N;. Now
{(B,(a(B))(9)) : B € umNNo\A}is {(B,1) : B € umNNo\A} = (umNNo\A)x {1}
belongs to N; as u,, € Ny < N; and as said earlier, as Ng Nw; € Ny,
No E |ug| < Ry we have u,, N Ng € Ny and A € Ny < N;. Next the set
{(B,q(B)(3)) : B € um N No N A} is exactly f[um, where f is the function from
4.4(e).

So by Claim 4.8 below we finish.

Case E: a nonzero, proof of (a)q.

So by cases (B), (C), (D) we know that (b)q, (¢)a, (d)a, (€)o holds.

Now we imitate the proof of Case (D) except that in (i) and (iii) we omit
the “bounded in @”. So now P, <¢ P,” is justified not by “(c)g for § < ”
but by (¢)q + (d)o- We can finish now, by using again 4.8.

4.8 Claim. If
(a) No < N1 < (H(x),€,<%) are countable, Q is as in the proof of 4.6,
Q € Ny,a = £g(Q) € Ny, 6§ = Ny Nwy, otp(AN Np) = otp(N1 Nwy), and
part (d) of ()} of Definition 4.4 holds.
(b) G C P, N Ny,G is directed,
(c) there is a family U such that:
(@) if u € U then u € No,u C « is closed (for Q i.e. @ € u = u}, C u) of
power < Nj,
(B) Ufu:u e U} = Nona, U is directed (by C) and if u € Np is closed
(for Q) bounded subset of a of cardinality < ®; then u € U.
() if w € U then G N P, is generic over Nop
(6) if ue U then GNP, € Ny
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(d) g = qg is defined as in case D of the proof of 4.6 above, i.e. Dom(q) = aNNy
and
q'(B) = U{r(B) for some u € U, r € G, r(B) an actual function}.
a(8) is: ¢'(8) U {(8,0tp(No N )} if B < A, ¢'(8) U {(6,1)} otherwise.

Then
(i) g is in P, (and even in P))

(ii) ¢q € P, is a least upper bound of G.
Proof. We prove by induction on 8 € No N a that g[8 € P, (hence € P.).

This easily suffices.
Note. if u € Ny is closed and C u’ € U then we can add it to U.
Case 1: 8 =0, or § is limit. Trivial.
Case 2: B =7+ 1,7 < A. Check.
Case3: f=v+1,8> A
We should prove q[vy IFp, “q(7) € Q7. Recall that u? is the subset of y
(of size R;) which was needed for the antichains defining Q~, and 6 = No Nw;.
Clearly u} and u} U {7} belongs to U (being closed bounded and in Np). As

GnN Pu;u{y} is generic over Ny, clearly

gl IFp, “q() is a function from § + 1 to wy, such that

for every non limit ¢ < § we have ¢(y)[¢ € Q4.

Noting (g(7)) [¢, where ¢ < 4, is of the right form; and v > A =
(g(7))~1({1}) is closed and by the choice of g(v)(é), clearly it is enough to
prove that:

R fA<SB <N and B=A+AB1+ B2, 51 < B2 <A

then q16 I-p, “f3,(6) < f3,(6)"

®p if A2 < B < £g(Q) then qIf I+ “p} € G, = 6 ¢ AY.

Now ®, holds as g IFp, “(f5() : v € No N a) is strictly increasing” (just
see how we have defined gg(7y) in clause (d) of 4.8 above).

So let us prove ®p; remember Qg is a Py -name and (uj being closed)

Ap,gp are Py--names, pg € No N P . If qluj IF “6 ¢ Ap or pj ¢ Gp,.” we
6
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finish. Otherwise there is 7,qluj <7 € Py and 7 IF “6 € Ag & pj € Gp,”;
wlo.g. re P"“/‘E' As GrP"Za € N by the proof of ® in 4.6, case D (near the end),
also gfuy € N1, and remembering 3 € No = Pg € Np and ¢ € Ny, and Pu;,,
Pl/‘la € N1 and Ag, pj; € N1, clearly w.l.o.g.7 € N1. As B € No,gj € No C Ny is
a Pys-name and 6 € Ny, w.l.o.g. r forces a value to gj(d), say I “g5(8) = £(+)”.

Now £(x) € Np hence £(x) < otp(N1; Nwy) < otp (No N A) (here we are
finally using 4.4(c)), hence there is v € AN Ny such that £(x) = otp(Ng N 7).

But now (see definition of Qg) we have r Ikp, “eqgh, f3] N Ap is not
stationary, so it is disjoint to some club C'; of w1” where C'} is a Pg-name and
w.lo.g. Cf € No.

(Why? As g3, fy,Ap € No there is a Pg-name C} such that I-p, “ if
eqlgg, f3] N Ap is not a stationary subset of wy then C is a club of w; disjoint
to this intersection, otherwise C% = w;”].

So I “C% is a club of wy”. By the induction hypothesis for 3 (in particular
(b)g from the proof of 4.6 which says that Pj satisfies the Ro-c.c.), for some
Q-closed bounded u C 3, |u| < Ry, u € Ny and C} is a Py-name.

By the induction hypothesis ¢[3 € Pl,i; now by the construction of
4,916 IFp, “C% N4 is unbounded in 6” hence (¢[B) Ur [i.e. 7U(¢q[(6N Dom(q) \
up))] is in Py, is an upper bound of g[8 and r and it forces § € C, hence § €
eqlgp, f3] = 0 ¢ Aj. But the antecedent holds by the choice of 7,y and §(*).
So we finish the proof. Uas

Continuation of the proof of 4.6: So we have to check if conditions (i)-(v) of
4.6 hold for P = P,.. Now (i) holds by (b)a+ + (¢)a (* is the length of the
iteration- (A®1)*); condition (ii) holds by (a)4+. Condition (iii) should be clear
from the way Qq(A < a < a*) were defined (see the explanation after the
definition of Q). Prove by induction on v < A* that
(%) if g is a Py-name of a function from w; to wi, 4 is a P,-name of a subset
of w; and p* € P, then:
if p* I “ for every a < A the set Aﬂeq(g, fo) is not stationary subset
of wy”

then p* I+ “A C wy is not stationary”.
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Arriving to 7 let ((g¢, A¢,p7) © ¢ < A) list the set of such triples (their
number is < X as |P,| < A = A and P, satisfies Ro-c.c. and the list includes
such triples for smaller v’s). For each ¢ we can find a club E; of At such that:

if a < B € E¢, then for some Pg-name Cq 4,4, We have

IFp,, “if Ac Neq(ge, fa) is not stationary

then it is disjoint to Co 4 9"

« H ”
IFp, “Ca,ac,g. is a club of wy”.

For any § € N < E¢ which has cofinality > Ry, we ask whether when choosing
(95, Ap, 78, Pj) do we have a candidate (g, 4,7',p) as in ®§,A,w v <.

If for every such 0 the answer is no, we have proved (*); if yes, we get easy
contradiction.

For finishing the proof of condition (iii) note that we can let f)(i) = wi,
and prove by induction on a < A that f,, is an o’th function as follows:
B<a<A= fg<p, fa (see Qr+rp+a’s definition) and if S C wy, f € “1wy,
SN eq(f, f «) hot stationary for every a < X\ we get S is not stationary by the
definition of Qp (for 5 € [\*,a*)) so if g <p,,, fa then for every § € [a, \) the
set eqlg, fg] is not stationary and compare the definition of the o’th function
and the definition of the forcing condition).

Lastly clause (iv) of 4.6 holds as o* = (AY1)*, each Q, has cardinality N,
and P(;.. is a dense subset of P,«. Finally, condition (v) follows from 4.8.

U46

4.9. Proof of 4.7. 1)By 4.3, ()} holds in LLevy(Ro,<k) and ) is regular hence
AR — X By 4.6 we can define a forcing notion P in LLewW(i<s) |p| =
[AF)LlLevy(Ro,<m)] = A+ as required.

2) Iterate as above for a* with careful bookkeeping.

3) Left to the reader.

4) Lastly over V¥ force with Levy(\, A*) such that 2% = . Ogr
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4.10 Discussion. 1) Can we omit the Levy collapse of AT in the proof of
4.7(4) and still get 2% = X (and (w; : i < wi) is the A-th function)? Yes, if we
strengthen suitably (x)}. (e.g. saying a little more than there is a stationary
set of such X' < A, (¥)%,).

2) In 4.6 we can add e.g. that in VP, Az[proper of cardinality X; not adding
reals as in XVIII §2]. We have to combine the two proofs.

3) Suppose V |= “(x)1”, and for simplicity, V = “G.C.H., X is regular ~(3p)[A =
pt & p > cfp < ¥y, (E.g. LFev(Ro:<r) when 0# exists, x is a cardinal of
V.) For some forcing notion P, |P| = A*, and in V¥ we have: w; is an ws-
th function, IFp “N; = RY Ry = (R)V, N3 = A\, Rg = (AT)V and CH and
281 = R,”, (so we can then force by Levy(N3, R4) and get 2% = R3).

Proof. 3) Let R = Levy(R2, < \), R is Ry-complete and satisfies the A-c.c. and
|R| = A, so forcing by R adds no new w;-sequences of ordinals, make A to Ns.
Let P.. be the one from 4.6 (or 4.7(2)). As R is Ro-complete, also in VE we
have: P,,. satisfies the Ro-c.c., and Pj. has the same set of maximal antichains
as in V. So the family of P..-name of a subset of w; (or a function from w; to

wy) is the same in V and VE. So clearly P.. x R is as required. O4.10

Problem. Is ZFC + “@ is an o-th function for some « (for D,,)” + —0#
consistent? For 6 € {R;,R,, } or any preassumed §? (Which will be < 2%.)





