
XVII. Forcing Axioms

§0. Introduction

This chapter reports various researches done at different times in the later

eighties. In Sect. 1, 2 we represent [Sh:263] which deals with the relationship of

various forcing axioms, mainly SPFA — MM, SPFA Y PFA+ (—Axi[proper])

but SPFA implies some weaker such axioms (Axι[Kι-complete], see 2.14, and

more in 2.15, 2.16). See references in each section.

In sections 3, 4 we deal with the canonical functions (from ω\ to ω\) modulo

normal filters on ω\. We show in §3 that even PFA+ does not imply Chang's

conjecture [even is consistent with the existence of g G ωιωι such that for no

α < H2 is g smaller (modulo Vωι) than the α-th function]. Then we present

a proof that Ax[α-proper] Y Ax [/3-proper] where α < β < ω\, β is additively

indecomposable (and state that any CS iteration of c.c.c. and Ni-complete

forcing notions is α-proper for every α).

In the fourth section we get models of CH -f "ωi is a canonical function"

without 0^, using iteration not adding reals, and some variation (say ω\ is the

α-th function, CH + 2Nl = N3 α| = H2 (see 4.7(3)). The proof is in line of

the various iteration theorems in this book, so here we deal with using large

cardinals consistent with V = L.

Historical comments are introduced in each section as they are not so strongly

related.
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We recall definition VII 2.10: If φ is a property of forcing notions, α < ω\ then

we write Axα[y?] for the statement:

whenever P is a forcing notion satisfying φ, (Ii : i < ωι) are pre-dense subsets

of P, (Sβ : β < a) are P-names of stationary subsets of ω\,

then there is a directed, downward closed set G C P such that for all i < ωi,

Xi Π G ^ 0 and for all /? < α the set Sβ[G] is stationary.

We write Ax[φ] for Ax0[^] and Ax+ [φ] for Axi [</?], PFA for Ax[proper], SPFA

for Ax[semiproper], similarly PFA+ and SPFA+.

§1. Semiproper Forcing Axiom
Implies Martin's Maximum

We prove that Ax[preserving every stationarity of 5 C ωι] = MM (— Martin

maximum) is equivalent (in ZFC) to the older axiom Ax[semiproper] = SPFA

(— semiproper forcing axiom).

1.1 Lemma. If Axι[Nι-complete], P is a forcing notion satisfying (*)x (below)

then P is semiproper, where

(*)1 = "the forcing notion P preserves stationary subsets of ω\\

1.1 A Remark. 1) This is from Foreman, Magidor and Shelah [FMSh:240].

2) It follows that SPFA+ = Axi [semiproper] is equivalent to MM+ (compare

[FMSh:240]). The conclusion is superseded by 1.2, but not the lemma.

3) The proof is very similar to III 4.2.

4) Of course every semiproper forcing preserves stationarity of subsets of ω\

(see X 2.3(8)).

Proof. Clearly Axι[Nι-complete] implies Rss(Nι,ft) for any K (see Defefinition

XIII 1.5(1).). By XIII 1.7(3) "forcing with P does not destroy semi-stationarity

of subsets of 5<κ1(2'pl)" implies P is semiproper. (So by 1.1A(4) these two

properties are equivalent). DI.I
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1.2 Theorem.

Ax [not destroying stationarity of subsets of ω\] =Ax [semiproper], i.e. MM (=

Martin Maximum) = SPFA (i.e., proved in ZFC).

Proof. As every semiproper forcing preserves stationary subsets of ω\ (X 2.3(8)),

clearly MM => SPFA. So it suffices to prove:

1.3 Lemma. [SPFA.]

Every forcing notion P satisfying (*)ι is semiproper, where

(*)ι = "the forcing notion P preserves stationarity of subsets of ω\\

Proof. We assume (*)ι Without loss of generality the set of members (=

conditions) of P is a cardinal λ0 = λ(0). Too generously, for t = 0,1,2,3,

let AM-I - \(ί - h i ) - (2lH<λ '>l)+. Let <*£ be a well ordering of H(X£), end

extending <^ for m < i. Let

),G,<^ 2 ) , | |TV | | = K0,P G TV (hence λ0,λι G TV) and

> G P Π N)(3q)\p < q G P and q is semi generic for (TV, P)]}

and

i defPOS ef {N :N ^ ^(Aa)j G j <*2))5 HATH = HO, P G TV (hence λ0, λt G TV)

and -(3TV7)[^ -< Nf e K™g and TV Π ωl = N'

We now define a forcing notion Q

Q = {(Ni :i<a):a< ω^ TV, € tf£eg U K£OS,

Ni G TVi+ι, and TV, is increasing continuous in i}.

The order on Q is being an initial segment.

The rest of the proof of Lemma 1.3 is broken to facts 1.4 — 1.11.

1.4 Fact. If P G MO X (#(λ3), G, <J3), ||M0|| = NO, ίften there is Ml such

that Mo -< Ml -< (ff(λ3),e,<3;3),||Mι|| - N 0,M 0nα;ι - Ml Π ωι and
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Proof. As P G MO, clearly λ0 G M0; hence λι,λ2 G M0 hence (if(λ^), G, <J£)

belong to M0 for ί = 0, 1, 2, so K£OS G M0 and K™g G M0. We can assume

M0tif(λ2) £ #£°s, so by the definition of #£os there is Nf such that (abusing

our notation) M0 Π if(λ2) - MQ\H(X2) ^ N' e K™g, \\N'\\ = N0 and

N' Π ωι = (Mo f-ff(λo)) Π ωι] hence ΛΓ' Π ω\ = M0 Π ωi .

Let MI be the Skolem Hull of M0 U (N' Π if (λi)) in (if (λ3), G, <J3). So

if (λ3) : Mo - > Mi

ίf(λ2): M 0Πif(λ 2) -< Nf J

if(λι): ΛΓ'nίf(λι)

We claim that MI Π if (λi) = JV7 Π if(λι). To prove this claim, let x be an

arbitrary element of MI Π if (λi). Now x must be of the form /(y), where / is a

Skolem function of (if (λa), G, <^3) with parameters in MO, and y G N'Γ\H(\ι)

(note that N' Π if(λι) is closed under taking finite sequences). Note that /'s

definition may use parameters outside if (λ2), but /' = / Π (iί(λι) x iί(λι))

belongs to if (λ2), so /' G M0 Π if (λ2) C N', so also x = /(y) - /'(y) G N'.

So we have
MI Π ωi = JV7 Π ω\ = MO Π α i,

We can conclude by 1.5(1) below that Mιfif(λ2) G #£eg, thus finishing the

proof of Fact 1.4, as:

1.5 Subfact. 1) Suppose for ί = 0,1, Ne is countable, P G N1 -< (if(λ2),G

, <*J and JV° Π if (λi) - N1 Π if (λi), then N1 G K^eg <Φ N2 G #peg.

2) Really, even N1 Π ̂  C N° C N1 x (if(λ2), G, <jj, AΓ° G iίpeg implies

AT1 G Kpeg (we can also fix the P in the definition of UN G #peg")

Proo/. 1) Because in "<? is (TV, P)-semi generic", not "whole AT" is meaningful,

just NΓ\ωι, the set AT Π P and the set of P-names of countable ordinals which
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belong to N, hence (for "reasonably closed N") this depends only on N Π 2'pl

(even |P|<K, when P \= «-c.c.).

2) Assume AT1 φ Kpeg. If p G P Π AΓ° then p G P Π AT1, hence there is <? G P

which is (A/'1, P)-semi generic, q > p. But as N® -< JV1 have the same countable

ordinals, <? is also (A^°,P)-semi generic. Πι.5,ι.4

1.6 Fact. Q is a semiproper forcing.

Proof. Let Q,P G M -< (#(λ3), G, <J3),M countable. Let p G Q Π M. It is

enough to prove that there is a g such that p < q G Q and <? is semi generic for

(M,Q).

Let 5 = M Π ωi. By Fact 1.4 there is MI, with M -< MI ^ (if (λ3), G, <J3),

I I A f i H - No,Mi Π ωv = δ and Mι\H(λ2) G tf£eg U tf£os. We can find by

induction on n a condition qn = (Ni : i < δn) G Q Π M\,qn < qn+ι,qQ = p,

such that: for every Q-name 7 of an ordinal which belongs to MI for some

natural number n = 71(7) and ordinal a(j) G MI we have qn \\-Q "7 = #(7)"

and for every dense subset X of Q which belongs to MI, for some n, <?n G J\

Now q =f (Ni:i<δ*) with ί* = (J 5n and 7V5,
 d= \Ji<δ* Ni will be (Mi, Q)-

n<ω
generic if it is a condition in Q at all, as for this the least obvious part is

Nδ. G #peg U K»os. Clearly (by 1.4) for each x G £Γ(λ2), Ix = {{M/ : i < j) G

Q : x G (J;<j Mt } is a dense subset of Q and [x G MI Π ίf(λ2) => Ix G MI]

and (M/ : i < j) G Q Π MI =Φ U«j ̂  C MI (as M/, j are countable), and

so |J;«5* ̂  = Mi Γff(λ2), which belongs to ̂ eg U K»os by the choice of MI.

Now q> q$ = p] and, as # is (Mi,<3)-generic it is (Mι,(5)-semi generic hence

as in the proof of 1.5 (or see X2.3(9)), as M X Mι,MΠωι = MiΠα i, we know

q is also (M, Q)-semi generic, as required. By the way, necessarily 5* = δ. Dι.6

1.7 Conclusion. [SPFA] There is a sequence (Λf* : z < ω\) such that

(Vα<ωι)[(7V* : i < a) G Q].

Proof. By Fact 1.6 and SPFA (and as Iao = {(Ni : i < a) : a > a0} is a dense

subset of Q for every αo < ωι; which can be proved by induction on αo : for
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QO = 0 or αo = β + 1 by Fact 1.4, for limit QQ by the proof of Fact 1.6 or

simpler) .

Πl.7

1.8 Observation, i C N* for i <ω\.

Proof. As [i < j =Φ> Ni C Nj] and as N* G N*+l (see the definition of Q), we

can prove this statement by induction on i. Di.g

1.9 Definition. 5 d= {i < ωl : AT* G #£eg}.

1.10 Fact. 5 is not stationary.

Proof. Suppose it is; then for every i G 5 for some pi G N. * Π P there is no

(7V*,P)-semi-generic q such that pi < q G P. By Fodor's lemma (as TV* is

increasing continuous and each N* is countable), for some p G Uz<Wl ^i ^ -P

the set Sp = {i G 5 : pi — p} is stationary.

If p G G C P and G generic over V, then in V[G] we can find an increas-

ing continuous sequence (Ni : i < ω\) of countable elementary submodels of

(/fv(λ2), G, <^2, G) (with G as a predicate), N* C Ni. As P preserves station-

arity of subsets of u i, and E — {i : N* Π c^i = Ni Π ωi = i} is a club of α i (in

V[G]), and Sp C α i is stationary (in V, hence in V[G]), it follows that there

is δ G Sp with N£ Πωi = N§Γ\ωι = δ. As this holds in V[G],p G G, clearly

there is q G G,q > p, such that g Ih "5 and (Ni : i < ωi) are as above". As

q Ih "JV; C N£[G] C JV f f and 5 G E", also ςι Ih "AT; Π ωι = N%[G] Π c^i", so q

is (AΓ£, P)-semi generic, contradiction to the definition of 5 and K™g and the

choice of p§ = p. DI.IO

1.11 Fact. P is semiproper.

Proof. As 5 is not stationary, for some club C C ω\, (V<5 G C)N$ G Kp°s. Now

if M -< (ίί(λ3),G,<^3) is countable, and P,(N* : i < α>ι),G belong to M,

then M Π (Jί<u;ι ^* - Nj for some 5 G G; hence Nj C Mt/f(λ2); as both JV5*
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and M\H(\2) are elementary submodels of (jEf(λ2), G, <]\2)
 we βet

Clearly N£ Π ω\ — δ = M Π ω\. As M\H(\z) is countable and by the meaning

of "7V7 G #£os" we have Mf^(λ2) ^ K™g, i.e., for every p G P Π Af (= P Π

(M\H(\2)))) there is an (Mf#(λ2),P)-semi-generic q,p < q G P. Necessarily

<? is (M, P)-semi-generic (as in the proof of 1.5(1)); this is enough. DI. 11,1.3,1.2

1.12 Conclusion. SPFA implies P(ωι)/Ί)ωι is N2-saturated i.e. satisfies the

N2-c.c.

Proof. Actually it follows by Foreman Magidor Shelah [FMSh:240], and Theo-

rem 1.2, but as this is a book we give a proof.

Let Ξ C P(ω\) be a maximal antichain modulo Vωι. Remember seal(Ξ) =

{{(7i,αi) '• i < a) : a < ωi, α^ is a countable subset of Ξ, non empty for sim-

plicity, 7i < ωijtti and 7^ are strictly increasing continuous in z, and for limit

δ < a we have 75 G Uΐ<<5 Uyieαi }̂ ^n^s f°rcing is S'-complete for every S G Ξ

(see XIII 2.8) hence does not destroy the stationarity of subsets of ω\. Hence

by 1.3 seal(Ξ) is semiproper.

Now Ti — {α G seal(Ξ) : ίg(a) > i} is a dense subset of seal(Ξ). So by

SPFA there is a directed G C seal(Ξ) satisfying /\i<ωι G Π J< φ 0. Let \J G

be ((7i, a») : i < α i). We claim Ξ = \J{di : i < uι}. Let C = {7^ : i — 7^ = ωi

is a limit}, α^ = {A* <^ < ωϊ], A = {δ < ω\ : (3i < δ)(δ G Ai)}. Now if

S G Ξ\ {A : i < α i}, then for alH < ωi, 5(Ί ̂  is nonstationary, so also SΓ\A

is nonstationary, which is impossible as C C A and C is a club. Πι.i2

§2. SPFA Does Not Imply PFA+

It is folklore that in the usual forcing for PFA(=Ax[proper]) (or SPFA=

Ax[semiproper]) any subsequent reasonably closed forcing preserves PFA (or
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SPFA). Magidor and Beaudoin refine this, showing that starting from a model

of PFA, forcing a stationary subset of {δ < ω2 : cf(5) = K0} by

P = {h : h a function from some a < ω% to {0,1} such that :

for all 5 G Si we have : Λ~1({1}) Π δ is not stationary in δ}

(ordered by inclusion) produces a stationary subset of {δ < ω^ : cf(5) = NO}

which does not reflect, and this still preserves PFA but easily makes PFA+

(and SPFA) fail.

We can also start with V |=PFA, and force h:ω<ι-> ω\ such that no /ι~1({α})(Ί

δ is stationary in <5, where α < u>ι, δ < cj2, and cf(5) = NI.

It had remained open whether SPFA h SPFA+ and we present here the

solution, first starting with a supercompact limit of supercompacts and then

only from one supercompact. I thank Todorcevic and Magidor for asking me

this question.

2.1 Theorem. Suppose K is a supercompact limit of supercompacts. Then, in

some generic extension, SPFA holds but PFA"1" fails.

The proof is presented in 2.3 - 2.9.

Overview of the Proof. Let /* be a Laver diamond for K (see Definition VII

2.8, as Laver shows w.l.o.g. it exists). Our proof will unfold as follows. We shall

first define a semiproper iteration Qκ. Now \\-pκ "SPFA" is as in the proof of

X 2.8. We then define in VPκ a proper forcing notion R and an jR-name 5, \\-R

"5 C ωι is stationary". We then show, that for no directed G C R in VPκ is

S[G\ well defined (i.e., (Vi < ωι)(3p G G)\p !hβ "i G S" or p \\-R

 ui $ 5"]), and

stationary (i.e., {i < ω\ : (3p G G)p Ih "z G 5"} is stationary).

Before we start our iteration, we will define several forcing notions (which

we will use later when we construct #, and also during the iteration), and we

will explain some basic properties of these forcing notions.

Convention. Trees T will be such that members are sequences with the order

being < (initial segments) and T closed under initial segments so £g(η) is the

level of η in T. But later we will use trees T whose members are sets of ordinal
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ordered by initial segments, so we can identify a name η if η is strictly increasing

sequence of ordinals, α = Rang(ry).

2.2 Fact. Let Γ be a tree of height ωi, K > NI with K = 2*2 if not said

otherwise. Let P = R\ * #2, where #ι is Cohen forcing and R<2 is Levy (Hi, /ς)

(computed in VRl). Then every u^-branch of T in Fp is already in V.

Proof. Well-known and included essentially in the proof of III 6.1.

2.3 Definition. Let T be a tree of height ω\ with NI nodes and < NI many

ωi-branches {B* : i < i* < ωi} and let {yi : i < ω\ and [i < 2i* => i odd]}

list the members of Γ such that: [yj <τ yi =^ j < i] Let B* be: £j if i = 2j,

j < i* or {^} if yj is defined. Let β^ - β* \ (Ji^ 5*, Xj = min(B^.) if β^ ^ 0

so that the sets Bj are disjoint nonempty end segments of some branch By,

or the singletons { y j } or 0; let B'3 φ 0 <ίΦ i G w and so (B^ : j e w) form

a partition of T. Let A = {xi : i G w} (so A does not include any linearly

ordered uncountable set). The forcing "sealing the branches of T" is defined as

(see proof of 2.4(3)):

PT = {/ / a finite function from A to ω, and

if x < y are in Dom(/), then /(#) ^ f ( y ) }

See its history in VII 3.23.

2.4 Lemma. For T, Pτ as in Definition 2.3:

(1) PT satisfies the c.c.c.

(2) Moreover: If (pi : i < ω\) are conditions in P, then there are disjoint

uncountable sets Si, 52 C ω\ such that: whenever i < j, i G Si, j G 62,

Λen pi and PJ are compatible.

(3) If G C Pτ is generic over V, F[G] C V*, and «Γ - KΓ, then all ωi-

branches of T in y* are already in V.

Proof. (1) Follows by (2).

(2) Recall that p and q are incompatible if:



812 XVII. Forcing Axioms

either pΌ q is not a function or there are η G Dom(p), v G Dom(g) such that

p(ή) = q(v), and η and v are distinct but comparable, i.e. η <τ v or v <τ η.

Let (pi : i < ω\) be a sequence of conditions in Pp. By the usual Δ-system

argument we may assume that for all i,j < ω\ pi U PJ is a function, and we

may also assume that |Dom(pi)| = n for all i <ω\. We will now get the desired

result by applying the following sub claim n2 times:

2.4A Subclaim. If (77^ : α G Si), (η^ : α G 52} are lists of members of >ί

without repetitions, Si, £2 are uncountable, then there are uncountable sets

S[ C Si, £3 C £2 such that: α G S( , /? G S^ => T/^, 77^ are incomparable.

Proof of the subclaim. for £ = 1, 2 and ζ < α i, let:

Let (̂  = min{£ : i^(£) is uncountable}, and if all Li(ζ) are countable, let

ζι =ωι

We now distinguish 4 cases:

Case ^: ζi < ^2^ Since 1/2 (Ci) ig countable, for some 77 the set S{ = {a < ω\ :

lg(ηa) > Ci and η <τ ηl} is uncountable (as NI = cf(Nι) > K0), and as Lι(Cι)

is uncountable, Ŝ  ̂  {α < wι : ̂ g(^) ^ C and "'̂  <τ ̂ } is uncountable. So

SJ, Sr> as required. We are done.

Case 2: £2 < Ci' Similar.

Case 3: ζι = (2 < MI' By induction on 7 < ω\ choose /3(1,7) and ^8(2, 7) such

that:

) > Ci and τ/£(1|7) Ki ^ {rfβ(w ΓCi : V < 7, * = 1, 2}

) > C2 and 772

(2)7) ίC2 itfβW) ΓC2 : y < 7,^ = 1, 2}

and let Ŝ  - {/3(^,7) : 7 < ^i}> ^ = 1,2.

Case ^: ζι — (2 = ω\ and no earlier case. For ί — 1, 2, ζ < ω\ let

Λ^ = {77 G T : £g(τ?) = C and there are KI many α with η£

a\ζ = 77}, clearly

A\ ί 0.
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So T^ = Uc<α; ^c ιs a downward closed subtree of T, possibly only a single

branch.

Subcase 4a: For some £ and C, \Aς\ > 1. Without loss of generality \A^\ > 1.

Let ι/2 € ^ΛJ vι £ Aς\ {2/2}? for ^ = 1,2 we let 5̂  = {a < ω\ : vι <τ η^}.

Subcase 4b: For each £ = 1,2 the set Γ£ = \Jζ<ωι ^-ζ ιs a branch, say B^. If

ΐ( l) ^ ί(2) then we can again find z/i and z/2 as m case 4a. So let i = i(l) = i(2).

It is impossible that uncountably many η^ are on Bi (by the choice of A

in Definition 2.3), so we may assume that no η^ is on B». By induction we

can find uncountable sets S[ C SΊ, 5̂  C 5χ and sequences (z/^ : α G 5J),

(ί/2 : α G 52) such that: ι/£ G B<, i^ <τ r^, ^f(£g(ι/^) -f 1) φ B», and

{z/i : α G 5(} Π {ί/2 : α G 52} = 0. This shows that for α G S(, β G 5̂  the

nodes 77^ and ry^ are incomparable. So we have proved the subclaim and hence

2.4(2).

Proof of 2.4(3). Since T = \Jj<ωι Bj is a partition of T, we can for each y G T

find a unique j — j(y) with y G Bj. Let ft(ι/) = mmB'., , G A In VPτ we have

a generic function g : A —> α>, and we can extend it to a function g : T -^ ω

by demanding #(?/) = g(h(y)). Now let B* be an α i-branch of T in some KI-

preserving extension of yPτ. Clearly g\B* takes some value uncountably many

times, but g(yι) = g(y2) & yι <τ yz implies j(yι) = .7(2/2), so 5* C Bj for some

2.5 Fact. There is a family (775 : δ < ω\,δ limit) such that:

(A) ηs : ω — > ί, and sup{τ?<$(n) : n < α;} = δ

(B) For all limit 5ι, ί2 < ^i and m, n2 < α; we have: if ηδl (HI) = η§2 (n2), then

HI = HZ and ηδl \nι — η§2 \n2

(C) if m < I < ω and δ < ω\ is limit, then ηs(m) -h ω < ηs(£) + ω.

Proof. Easy. Let ff : ω>α;ι — > α i be a 1-1 map such that for all η G ω>ω\ we

have if (77) G [ maxRang(τ?), maxRang(?7) + ω) (and can add v < 17 =4> if(z^) <

Now for any limit ordinal 5, let αo < αi < be cofinal in 5, and define η$
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inductively by

ηδ(n) = H(ηδ\n~ (an)).

Π2.5

2.6 Definition. Assume that (ηδ : δ < ω\, δ limit) is as above.

(1) For η G ω>ωι, let Eη = {δ : η < ηδ}.

(2) Let Z = {η G ω>ωι : Eη is stationary}, C0 = {δ < ωι : (Vn < ω)ηδ\n G

Z}.

(3) Let Z* - {r/ G Z : (3Hlz < ωi) ηΛ (i) G Z}.

(4) Let C* - {ί G Co : (3°°n)^rn € Z*}.

(5) Let Z0 - {r? G Z : (Vfc < tg(η))η\k φ Z*}

2.6A Fact.

(1) Z is closed under initial segments, so Z is a tree (of height ω). Z* is the

set of those nodes of Z which have uncountably many successors.

(2) Z defines a natural topology on CQ, if we take the sets Eη as basic neigh-

borhoods.

(3) C0 and even C* contains a club of ω\.

(4) For every finite u C Z \ Z0 there is p G Z which is <-incomparable with

every η G u moreover p G Z \ ZQ.

Proof. (1) and (2) should be clear.

For (3), let χ be some large enough regular cardinal. If ω\ \ C* as stationary,

we could find a countable elementary submodel JV -< (#(χ),G) such that

δ d= Nnωi φ C* and (ηδ : δ < ωι limit) belongs to N (hence (Eη : 77 G ω>(ωι)),

Z, C0, Z*, C*, Z0 belong to TV). Assume that for some no < ω for all n G (no, ω)

we have 775 \n φ Z*. So the set

Y 1lf {i/ G Z : i/ < r/^no or. r/^no < i/ and (Vfc G (no,€g( ι/)))ι/Γfc ^ Z*}

is a subtree of Z with countable splitting, hence is countable. Let δ' = sup{z/(fc) :

v G F,fc G Dom(ί/)}. Since y G AT, also 5' G JV, but (Vk)[ηδ\k G Γ], so

ηδ(k) < δ' < 5, contradicting 5 = sup{τ7δ(fc) : fc < α;}.
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(4) So if u C Z \ ZQ is finite, let η G u be of minimal length and as η $ ZQ

there is v < 77, such that i/ G Z*, so for some z < ω\, p = v~ (i) G Z and p is

<-incomparable with every ηf e u and p <^ Z0 as ϊ/ <3 p, z/ G Z*. Cb.θA

Prom Z we can now define the forcing notion R±, to be used below:

2.6B Definition.

R4 = {(u, w) : w a finite set of limit ordinals < ω\,u a finite subset of

Z \ Z0, and u> Π Eη = 0 for η G u}.

with the natural order: (MI, MI) < (^2^2) iffui C ^2 & Wi C u>2.

Note that it; Π J^ = 0 just means that for all δ G w, η jd 775. Actually η = η$

never occurs as [77 G u> => ^g(r/) < ω] and [5 G u => ig(ηδ) — ω].

So we have that (u, w) and (ΐ/, ι</) are incompatible iff (u U u', w U u/) is not in

#4, i.e., either there is η G u, 5 G K/ such that 77 < 775, or there are such 77 £ u',

ί G κ;.

#4 produces a generic set 54 = |J{κ; : (3u)[(u,w) G Gβ4]} (i.e. this is an R±-

name) , which can easily be shown to be a stationary subset of ω\ (in V R* , see

2.6E(l))(actually V[S*] = V[GR4}).

2.6C Fact. ί?4 satisfies the NI-C.C.; in fact for every HI conditions there are HI

pairwise compatible (and more).

Proof. Let (u», ̂ ) G R± for i < ω\. Let t>; d=f U{Rang(ry) : η G iti}.

Thinning out to a Δ-system we may assume that there are a < ωi, w* C α,

v* C α, u* C ω>a such that for all i<ωι\a,

and for all i ^ j: Wi Π lϋ^ = ΊU* , ̂  Π ΐλj = υ* and u^ Π Uj = u* . So 77 G Uj \ u* =>

maxRang(τ7) > α. We may also assume that none of the Vi or Wi is a subset

of α, and thinning out further we may also assume that for all i < j we have

α < max(tί i) < min(vj \ α).

Now if i < j and (ui,Wi) and (uj,Wj) are incompatible, then we must have one

of the following:
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(a) (3η eui\ u*) (3δ G Wj) η < ηδ

(b) (3η G Uj \ u*) (3δ £Wi)η< ηδ

Now if if clause (b) holds for η G Uj\u* and δ G Wi, this implies δ <

min(vj \ α) < max(Rang(?7)) < δ. [Why? As δ G Wi\ by assumption above;

as 77 G Uj \ u*; as η < η$ and the choice of η§ (see 2.5(1)) respectively.] A

contradiction, so clause (a) must hold. Now we claim that: for each j < ω\ the

set Sj = {i < j '• Pi and PJ are incompatible} is finite.

Why? Assume not; by the above for i G Sj necessarily there are ηl G Ui \u*

and δi G Wj such that η1 < η^. But for i(Q) < z(l), both in s^ , we get

that 77*(°) and η1^ must be incomparable, since neither of Rang(τf(°)) and

Rang^1)) can be a subset of the other. Hence all the δi(i G Sj) are distinct

— a contradiction as Wj is finite. Π2.6C

2.6D Fact.

(1) If A C α i is stationary, n < α>, ί/ien there is 5 G A such that Eηδ\n Π >1 is

stationary.

(2) If β C cji is stationary, then also the set

B' d= {5 G B : (Vn < ω) [£?^rn Π S is stationary]}

is stationary, and in fact B \ B1 is nonstationary.

Proof. (1) Using Fodor's lemma we can find a stationary set Af C A and a finite

sequence 77* such that for all δ G A' we have η$\n — η*. So A' C A Π Eη* =

Ar\Eηδιn for all δ G A'.

(2) Let A ά= B \ B', An

 ά= {δ G B : Eηδ \n Π B is nonstationary}. By (1),

each An must be nonstationary, so also A = (Jn An is nonstationary. U2.6D

2.6E Fact. Let 54 be the jR4-name of a subset of ω\ defined in 2.6B. Then we

have

(1) 54 is stationary in VR*.

(2) If A C ωι is stationary in V, then in Vβ4 there is 77 G Z such that A(~]Eη

is stationary and Eη Π 54 = 0.
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(3) Every stationary subset of ω\ from V has (in VR*) a stationary intersection

with ω1 \ S4.

Proof. (1) Easy; for each p = (u, w) G #4 and club E G V of ωi, as u C Z \ Z0

is finite there is 77 G Z \ ZQ which is <-incomparable with every v G u (see

2.6A(4)) so Eη is stationary hence we can find δ G E Π Eη \ (sup(w) + 1), so

q = (u,wU {δ}) G #4, p < g and ? \\-R4 "S4 Π E φ 0". As R± satisfies the c.c.c.

this suffice.

(2) Let A be stationary. By 2.6A(3) w.l.o.g. A C C* and by 2.6D(2) we may

w.l.o.g. assume that (Vί G A) (Vra < ω)[Eηδ\nΓ\A is stationary]. Fix a condition

(i£, u>) 6 #4- Choose δ e A \ tu, then for some large enough n, .E^Γn Π it; = 0

and 775 fn $ ZQ, so (u U {η§ fn}, w) is a condition in #4 above (u, υ) £ ^4 and it

clearly forces 1̂ Π £?̂  f n Π 54 = 0.

(3) Follows from (2). D2.6£;

2.7 Definition of the iteration. We define by induction on ζ < K an RCS

iteration (see X, §1) Qζ = (Pi,Qj : i < ζ,j < ζ), and if C < «, Qζ 6 ίf(«),

which is a semiproper iteration (i.e. for i < j < ζ, i non-limit Pj/Pi is

semiproper but for a limit ordinal j the forcing notion Qj is not necessarily

semiproper) and, if ζ = 5, δ a limit ordinal, also P^-names, ^4^, T^ (of a tree),

and Pζ+i-name Wζ = (H^(a) : a G α G ̂ 4^}, as follows:

(a) Suppose C is non-limit, let Kζ < K be the first supercompact > |PJ, so

κ,ζ is a supercompact cardinal even in VFζ, and let Qζ be a semiproper

forcing notion of power Kζ collapsing κ,ζ to K2 such that I^PC*QC "any

forcing notion not destroying stationary subsets of ω\ is semiproper",

[it exists e.g. by Lemma 1.3 and X 2.8 but really Qζ — Levy(Nι, < Kζ) (in

VFζ) is okay, as

lhPς*Qc "Axωι[#ι -complete]"

and even Axi [Hi-complete] implies (by 1.1) the required statement.]

(b) Suppose ζ is limit, Qζ will be of the form Qa * Qb * Qc. Remember that

/* : K —> H(κ) is a Laver Diamond (see Definition VII 2.8).
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If /*(C) is a Pζ-name, lhpc "/*(() is a semiproper forcing notion", then let

Qζ = /*(C) If /*(C) is not like that, let Qa

ζ =the trivial forcing.

Qbς will satisfy the following property:

(*) If ξ < ζ, ξ is non-limit, A G Vp*, A C ωi, and A is stationary in Vp*
PC*Q?*Q£

(equivalently in V c) t/ien ^4 is stationary in V ~ ~ .

(This property (*) will follow from 2.6E, it will assure that the iteration remains

semiproper)

If C is divisible by α;2, we will let Qb

ζ = Q\ * Q2 * Q*. First in Vp< choose

(see 2.1, 2.3) Q]. = #ι * jR2 * Pτζ, where Tζ = {6 : 6 an initial segment

of some a £ Uξ<£^f} ordered by being initial segment (for the definition

of Aξ see the definition of Wξ below). From the generic subset of Qj (and

^C * Qζ) we can define, for each ωi-branch B of Γζ, a 2-coloring Ha(B) of

ωι : Ha(B) = \J{H^(a) : ξ e a € B and C > ξ > α and ίf|(α) is well defined}.

(See the definition of Wζ below, we can say that if Ha(B) is not a 2-coloring

of ω\ we use trivial forcing). Remember 2.4(3).

To define Q?, we need the following concept:

We will say that a function h : [ωi]2 —> 2 is almost homogeneous if there is

a partition ω\ = \Jn<ω An and an £ € {0,1} such that for all n the function

/ιf[An]2 is constantly = t. We may say h is almost homogeneous with value i.

We choose Q? G H(κ) such that

(g) if there is Q G Jϊ(κ) such that

(i) Q is a Pζ * Q£ * Q^-name of a forcing notion

(ii) For every ξ < ζ the forcing notion (Pζ * Qζ * Qj * Q)/Pξ+ι is semi

proper, (equivalently, preserves stationarity of subsets of α i)
PC*QJ*QJ

(iii) if, in V " " , B is a branch of Tζ cofinaF in C, # < ^i, then the
Pc*QJ*Qj*Q

coloring Ha(B) of α i, is almost homogeneous in V

then Q^ satisfies this.

Otherwise Q2 is trivial.

^ Note: members of £ are subsets of ζ with last element, so { max(α) : a G

B} is a subset of ζ.
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P ζ*Qς*Qj*Qζ
In V we now define a set Sζ, which is supposed to guess the

set S[G\. More on S will be said below (and see "overview").

We let a G Sζ if for all the α i-branches B of Tζ cofinal in ζ (i.e. such that

\J{a : a G £?,otp(α) a successor ordinal} is unbounded in ζ) the function

Ha(B) is almost homogeneous with value 1.

Now we let Q^ be the forcing notion which shots a club through the complement

of Sζ, unless Sζ includes modulo T>^ some stationary set from U^<c^P^' m

which case Q^ will be trivial. This completes the definition of Qbζ when ζ is

divisible by α;2, otherwise QΪ is trivial.

We let Qζ = Qa

ζ * Qb

ζ * Qc

ζ where Qc

ζ is the addition of (Kx + 2*°)vPζ

Cohen reals with finite support. Clearly for ξ < ζ, (Pζ/Pζ+i) * Qζ preserves

stationarity of subsets of ωι, hence it is semiproper (see (a)), so Qζ is o.k. An

alternative to (b): we can demand Q" forces SPFA. If ζ is not divisible by ω2

let Qζ be Qa

ζ * Qb

ζ * Qc

ζ, with Q£, Q£ trivial, Q°ζ as above.

(c) For ζ limit we also have to define Wζ (in Fp^+1).

(i) Wζ is a function whose domain is Aζ = {α : α C ζ+1, ζ £ α G FPc , and

α is a countable set of limit ordinals and £ G α = > α Γ Ί ( £ - f - l ) G Vp* }.

(ii) For α G Aζ, Wζ(α) = (H^(a) : a < otp(α)), where ff£(α) is a function

from [otp(α)]2 = {{jι,h} : j\ < J2 < otp(α)} to {0, 1} (where otp(o)

is the order type of α) .

(iii) For every ξ e a e Aζ (check definition of A ζ ) , a Π (ξ -h 1) G A^

and for α < otp(o Π (ζ 4- 1)), ίf|(α Π (ξ + 1)) is ίϊ£(α) restricted to

(iv) If α G Aζ, we use the Cohen reals from Q£ to choose the values of

Ha(a)({h,h}) when a = otp(α Π C) or jl = otp(α Π ζ) or j2 =

otp(αfΊ£) that is when not defined implicitly by condition (iii), i.e. by

fΓ| (not using the same digit twice (digit from the Cohen reals from

9c))
(v) ΓC(G Vp<) is the tree (\J{Aδ : δ < ζ a limit ordinal}, <Tζ), (<TC is

being an initial segment i.e. α < 6 i f f α = 6 n ( max(α) -hi)).

There is no problem to carry the inductive definition.
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Note that we can separate according to whether the cofinality of ζ in Vpζ

is NO or > NI (so for a club of ζ < K, we can ask this in V) and in each case

some parts of the definition trivialize.

2.7A Toward the proof: Clearly Pκ is semiproper, satisfies the /ς-c.c., and \PK\ =

K. In VQ = Vp« let T* = [J{Aδ : δ < K (limit)}, and let <τ* be the order:

being initial segment. Let T = {α : a an initial segment of some b G T*}.

So Γ is a tree, and the (α 4- l)'th level of T is {a G T : otp(α) = α + 1}.

The height of T is ωι (since all elements of T are countable) and all elements

of T have K = ^2 many successors and every member of T belongs to some

ωi-branch.

For every cji-branch B of T we get a family of ω\ many coloring functions

Ha(B) : [ωi]2 -> 2, by letting fΓ«(B)({Jι, J2» - Ha

m^(a\a)(jlJ2) for any

α G B with otp(α) > max^Ί,^,^) successor ordinal. Now we want to show

that PFA+ fails in VPκ. To this end, we will define a proper forcing notion R

and Λ-name 5 of a stationary set of ω\. R will be obtained by composition.

The components of R and of the proof are not new.

2.8 Definition of R. Let VQ = Vp*. Let R0 be Levy(Nι,N2) (in V0) In

Vi - Vo*0, let Rl be the Cohen forcing; in V2

 d= V^ let R2 be Levy(Nι, 2^).

Let V3 = V^2. Let (Bi : i < i*) € VΊ list the ωi-branches of T in Vi and

IQ < i* be such that i < i$ 4Φ K > sup[|J{α : α G B^}]. Easily in Vi, T has

cji-branches with supremum K (just build by hand) so really IQ < i*. Forcing

with RI * R<2 over V\ does not add α i-branches to T (by 2.2), hence in V$ it

has < HI α i-branches, so let us essentially specialize it (see 2.4(3)), using the

forcing notion R% = PT from 2.3. Let V^ — V^3. Let R^ be the forcing defined

in 2.6B, and let V5 = V/*4. In V5 we now define #5: it is the product with finite

support of R^i(θί < LJI,IQ < i < i*), where the aim of R^ is making ω\ the

union of NO sets, on each of which .Ha = Ha(Bi) is constantly 0 if α £ 54,

constantly I if a <£ S4 (remember Ha(Bi) was defined just before 2.8 and 54

was defined from Gβ4), see definition below. See definition 2.6B and Fact 2.6E.

Let VQ = V6

 5. So the decision does not depend on i.
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Now R^ai is just the set of finite functions h from ω\ to ω so that on each

h~l({n}) the coloring Ha is constantly 0 or constantly 1, as required above

(so some case for all n <ώ).

Lastly, let R = RQ * RI * RZ * RS * R± * #5. We define 5 such that

S4 C 5 C S4 U {7 + 1 : 7 < ωι} and, if G C R is directed and S[G] well

defined, then all relevant information is decided; specifically: for the model TV

of cardinality HI chosen below, for every jR-name a of an ordinal which belongs

to N we have (3p € G) [p forces a value to α] (i.e., what is needed below

including a well ordering of ω\ of order type ζa for α < u;2).

2.9 Fact. The forcing # is proper (in VQ).

As properness is preserved by composition, we just have to check each Ri

in Vi. The only nontrivial one (from earlier facts) is R$. For this it suffices

to show that the product of any finitely many R^ satisfies the KI-C.C. Let

m < ω, and let the pairs (α/,i/) for / < m be distinct (so aι < ωι,i$ < i\ < i*).

Note that each Bif (an ωi-branch of T) is from V\. So for some β* < ω\,

i£l ^ ii2 = >̂ Bitι,Bil2 have no common member of level > β*. Now we claim

that in F5 (on Hl

a

] see in 2.8):

(*) If for each I < m, (w^ : 7 < ωι) is a sequence of pairwise disjoint finite

subsets of ω\ \ β*, then for some 7(1), 7(2) < ω\, for each even £ < m

[x G w'ΊW & y e <(2) => fΓW({x,j/}) - 0]

and for each odd t < m

[x e *4(1) & j/ G <(2) =* H^({χ,y}) - 1].

Why? First we show that this holds in V\ (note: R§ € V\\). Because -Ro is

Ni-complete, it adds no new α -sequence of members of Vb, hence for some

C < κ,{(£,t/4> : 7 < ω,£ < m} belongs to Vp< and to ίf(C). Note that for

each £ < m, the sequence (w^ : £ < m, 7 < ω) is a sequence of pairwise disjoint

subsets of ωι \ /?* and remember the way we use the Cohen reals to define
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the Hf(ays. We can show that for any possible candidate {it/ : I < m) for

(w* : ί < m) or even just for a sequence (w£ : £ < ra), wi C wA

ε (for any

ε < ω\ large enough) for infinitely many 7 < u;, the conclusion of (*) holds for

(7(1), 7(2)) = (7, ε).

Clearly (*) implies that any finite product of R^ i satisfies the NI-C.C if it holds

in the right universe (V5). So for proving the fact we need to show that the

subsequent forcing by Rι,R>2,Rz, R± preserves the satisfaction of (*).

The least trivial is why R$ preserves it (as R<2 is Ni-complete and as R\ and

#4 satisfy: among HI conditions NI are pairwise compatible (see 2.6(C)).

Recall from 2.4 that for any sequence (pi : i < ω\) of conditions we can find

disjoint uncountable sets 81,82 such that for i G Si, j G 62 the conditions

Pi and PJ are compatible. (This is also true for RI and #4). We will work

in Vs. So assume that (w^ : 7 < ω\,t < m) is an #3-name of a sequence

contradicting property (*) in V3

 3. For 7 < ω\ let pΊ be a condition deciding

(w^ : ί < m), say p7 Ih w^ = *w^. Let Si, 52 be as above, 5̂  = {7^ : α < ω\}.

Let u^ = *w^ι U *u/2 for £ < m. By thinnings out we may without loss of

generality assume that the sets U^m^l f°r a < ωι are Paifwise disjoint,

so we can apply (*) in Vs. This gives us α(l), α(2) such that for all even £,

x ^ ul(i)' 2/ ^ ^1(2) ^ -ffα/ ({χ»2/}) — ^ and similarly for odd I we have

x e ui

a(i) & y G ul(2) ^ -ffαί'ίί^ί/}) = 1- Let 9 be a condition extending

p7ι and p72 , then q Ih "iLj) and 7^(2) are as required". D2.g

So R is proper in V Q ; as in Vs, 54 is stationary and #5 satisfies the NI-C.C,

clearly 54 is a stationary subset of ω\ in VQ too; hence, by the choice of S (just

before 2.9) we have \\-R "5 C cJi is stationary".

2.9A Claim. In Vp«, PFA+ fail as exemplified by R, S.

Proof. In VPκ, let x be e.g. 33(κ)+ and let N -< (H(χ), €, <J) be a model of

cardinality HI containing all necessary information, i.e. the following belongs

to N: i (if i < ωi), (#0,£ι,#2,Λ3,JR4,Λ5>, <Pi,Qj : i < κ,j < «), GP|C> 5
4

(but not 5!), / (see below), (Bi : i < i*),ij. Suppose that G G Fp", G C R is
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directed and meets all dense sets of R which are in AT. It suffices to show that

S[G] is not stationary. Note that N is a model of ZFC~ etc.

Let / € TV be the Re-name of the function from ω\ onto ft, then easily

f[G] is a function from ω\ onto some δ < ft, cf(ί) = HI, in VPκ. Note that

T[G\ e N[G\ is just Tδ, and if N[G\ \= "B[G\ is an ωi-branch of T cofinal

in ft", then J3[6?] is as ωi-branch of T§ cofinal in J, and similarly with the

coloring. We will now show how we could have predicted this situation in V Pδ :

Let h : ω\ x ω\ — > T be an J?-name (belonging to N) which enumerates all

ωi-branches of T (we use the essential specialization by #3) i.e.

i*}"

Then each set {h(i^j)[G\ : j < ω\} (for i < ω\) will be an ωi-branch of T§

(remember T$ — Uί^C C < ^ limit}), some of them cofinal in 5, and these

ωi-branches will be in VP**Q* , as Qb

δ (more exactly Qj, see 2.7) was chosen in

such a way that no α i-branch can be added to 7$ without collapsing NI. Also

all the ω\ -branches of T[G] = Tζ will appear in this list.

Now we can recall how the set S§ was defined: For each α i-branch B of T$ (in
P5*9?*Qj*Q5 Ps*Qs

V equivalently in V ) which is cofinal in 5, we have HI many

coloring functions Hα(B), and there are such ωi-branches. We let α G S$ if for

all these ωi-branches B the function Hα(B) is almost homogeneous with value

1.

Now note that the set G also interprets the names for the homogeneous sets for

the colorings H$ . These homogeneous sets exist in V Pκ hence in V Pί for ξ < ft
Ps*Qs*Ql

large enough, so in V ~ ~ there is a forcing producing such sets, which, for

every ξ < δ preserves stationarity of sets A, which are stationary subsets of ω\

in Vp*+l (the forcing is Q^ * Qc

δ * (Pκ/P$+ι)). Using the supercompactness of ft

we can get such a forcing in H(κ). But this implies that these sets are already
Pδ*Qs*Ql

δ*Q2

δalmost homogeneous in V ~ (see clause (b) in 2.7), so also S[G\ is in

ensures that 85 is not stationary.
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2.10 Lemma. We can reduce the assumption in 2.1 to "« is supercompact"

Proof. We repeat the proof of 2.1 with some changes indicated below. We

demand that every Q§ is semiproper. We need some changes also in clause

(b) of 2.7 (in the inductive definition of Qi), we let Q% = f * ( ζ ) only if: /*(£)

is a Pζ-name, lhpς "/*(0 is semiproper" and let Q* be trivial othervise. Let

Qb( be trivial except when for some Xζ < /ς, /*(£) G ίf(λζ), and ζ is

pc*9c
supercompact. In this case we let (in V " ), Qζ be defined as in the proof

of 2.1 except that the R^j are now as defined below, Q^ is a forcing notion of

cardinality (2*ι)yP'*9ζ*9ζ which forces MA. Now let Sδ G yPc*Qζ*9ζ*9c be as

described below, and Q* is shooting a club through ω\ \ S§ if Qΐ * Q\ * Q? * Q?

is semiproper, and trivial otherwise. Now Q£ = Qj * Q^ * Q^ Lastly Q£ is as

in the proof of 2.1 and Qζ = Qa

ζ * Qb

ζ * Qc

ζ, now clearly Qc G #p8(λc)). This

does not change the proof of 2.1. Now we let Qκ = shooting a club called E

(of order type K) through {i < K : V \= "cf(i) = NO" or V \= ui is strongly

inaccessible in V, λ^ well defined and i is D8(λζ)-supercompact"} (ordered by

being an initial segment). Now it is easy and folklore that, for such Q^, we have

V "*" κ ^SPFA, and show as before V ** - * |= -,PFA+.

Why the need to change Q?? As the result of an iteration we ask "is there

Q such that (i), (ii), (iii) of ®", and this may well defeat our desire that Qζ

hence Q\ belongs to H(2&(\ζ)). We want to be able to "decipher" the possible

"codings" fast, i.e., by a forcing notion of small cardinality, so we change R^^s

inside the definition of R, in Definition 2.8).
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We let 7α><7 be 0 if a 6 S4 and 1 otherwise, and let R^ be defined by:

&J = {(w, h) :w is a finite subset of ω\ and ft is a finite function

from the family of nonempty subsets of w to ω such that :

ifuι,υ,2 G Dom(ft) and ft(uι) = h(v,2)

then \u\\ = \U2\ and [ζ G ui \ u2 & £ G 1x2 \ u\ & C < ζ =>

(actually coloring pairs suffice).

2.10A Definition. 1) A function ff : [ωi]2 -> {0, 1} is called ^-colored (where

[-4]* = {α C A : |α| = K}) if £ € {0, 1} and there is a function ft : S<^0(ωι) — > α;

such that: if Uι,u2 are finite subsets of α i and ft(uι) = ft(n2) then |uι| = \u^\

and [C € ui \ ^2 & ί e u2 \ tii & C < ξ =» ff ({C, C}) = ]̂

2) Called /ί (as above) explicitly non-^-colored if there is a sequence (u7 : 7 <

ωι) of pairwise disjoint finite subsets of ω\ such that: for any α < β < ω\ there

are C G uα, ξ G u^ such that #({C,ξ}) 7^ ^

2.10B Claim. 1) 1-colored, 0-colored are contradictory.

2) If H is explicitly non-£-colored then it is not ^-colored.

3) If MA + 2H° > Ni, i < 2 and H : [ωι]2 -> {0,1} ίften if is ^-colored or

explicitly non ^-colored.

Proof. 1) Clearly H cannot be both 0-colored and 1-colored.

2) Note also that if H is ^-colored, and Uζ (ζ < ω\) are pairwise disjoint non

empty finite subsets of ω\ such that ζ < ξ =ϊ sup(u^) < min(ι^) then for some

ζ < ξ, H(uζ) = H(uξ) hence H \{{a,β} : a G uς,β G u^}} is constantly ί.

3) Use R defined like R^ from above.

If it satisfies the c.c.c., from a generic enough subset of RH we can define a

"witness" ft to if being ^-colored. If RH is not c.c.c. a failure is exemplified say

by (uζ : C < <*>i); without loss of generality it is a Δ-system i.e. C < ζ < ωi =>

uc n U£ = u*. Reflection shows that (uζ \ u* : C < ωύ exemplifies "explicitly

non-^-colored" . Eb. IOB
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The needed forcing Q^ is not too large (< λζ), and by 2.10B it essentially

determines the ^aj (i.e., we can find 7̂ - so that if we have an appropriate G,

the values of the 7^ will be Ίa,j)- °̂ we nave a^ most one candidate for S[G],

namely S$, and if ω\ \ 85 is not disjoint to any stationary subset of ω\ from

VPδ modulo P^15 we end the finite iteration defining Q$ by shooting a club

through ω\ \S§.

Why is Qs still semiproper? Clearly Qζ, Qς, Q^ are semiproper and so preserve

stationarity of subsets of ωi, and also Q^ do this and Qς satisfies the c.c.c.

So it is enough to prove that. Now use Rss (see chapter XIII §1 but assume

on δ (remember we should shoot a club through E) that we have enough

supercompactness for δ) to show that we still have semiproper = not destroying

the stationarity of subsets of ω\ for the relevant forcing.

This finish the proof that we can define the iteration Q as required. Lastly in

the proof of the parallel of 2.9A we use also E e N hence δ G E. Hb.io

2.11 Claim. If α(0),α(l) < ωl and |α(0)| < |α(l)|, then

Axa(G) [semiproper] Y- Axa^ [proper] (assuming the consistency of ZFCH-Ξ3 a

supercompact).

Proof. Similar. [Now the Laver Diamond is used to guess triples of the form

(Qto Qδ, (Si'.i < α(l))), Qs is a P^-name of a semiproper forcing, H-p^+Q^ "5i

is a stationary subset of u i". In (b) from the colourings corresponding to the

branches we decode a sequence (5* : a < α(2)) of stationary sets and try to

shoot a club through ω\ \ 5* for one of them such that Sf \ 5^ is stationary

for every i < α(l) (in addition to the earlier demands.] Cb.ii

2.12 Observation. Properness is not productive, i.e. (provably in ZFC) there

are two proper forcings whose product is not proper.

Proof. Let T be the tree (ωι>(ω<2), <); now one forcing, P, adds a generic

branch with supremum cj2, e.g., P = Γ (it is Ni-complete). The second forcing,

Q, guarantees that in any extension of V^, as long as HI is not collapsed, T
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will have no ω\ -branch with supremum ω% . Use Q = Q\ * Qz * Qs, where

Qι is Cohen forcing, Q% — Levy(Mι,2N l) in VQl (so it is well known that in

yQι*Qz ^ cf(ωrf) = cji, and T has no branch with supremum ω<2 and has no new

ωi-branch so has < MI ωi-branchs), and Q$ is the appropriate specialization

of T (like #3 in the proof of 2.1, see Definition 2.3). Since in VPxQ there is a

branch of T cofinal in ω^ not from V and VPxQ is an extension of VQ , HI

must have been collapsed (see 2.4(3)).

We could also have used the tree ωι>2, but then we should replace "no ω\-

branch with supremum ω^v^ by "no branch of T which is not in V". Π2.12

2.13 Discussion. Beaudoin asks whether SPFA h Ax\ [finite iteration of Mi-

complete and c.c.c. forcing notions]. So the proofs of 2.1 (and 2.2) show the

implications fail (whereas it is well known that already Ax(c.c.c.)=>Axι (c.c.c.)).

But Mi-complete forcing would be a somewhat better counterexample. We

have

2.14 Fact. SPFA h Ax i [Mi -complete].

2.14A Reminder. We recall the following facts and definitions (see XIII):

(1) If P and Q are Mi-complete, then Ihp "Q is Mi-complete".

(2) For (Ai \ i < ω\) such that Ai C ω\ we define the diagonal union of these

sets as Vz<u>! Ai = {δ < ω\ : (3i < δ)(δ G Ai)}.

If Ai C α i is nonstationary for all i < ω\, then Vi<ωι ̂  ̂ s nonstationary

(and if Ai is stationary for some i, then Vi<W l AΪ 2 -Ai\(ΐ+l) is stationary).

(3) If 5 C ω\ is stationary, then the forcing of "shooting a club through 5" is

defined as club (5) = {h : h an increasing continuous function from some

non-limit α < ω\ into 5}. We have ll-cιub(5) "ί^i \ S is nonstationary", and

for every stationary A C 5 we have H-ciuMS) "̂ 4 is stationary".

Proof of 2.14- Suppose V |=SPFA, and P is an Mi-complete forcing, 5 is a

P-name, and Ihp "S C ω\ is stationary". For i <ω\ let (Pi, Si) be isomorphic

to (P, 5), and let P* be the product of Pi(i < ω\) with countable support; so
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Pi <£ P*,P* is Ni-complete, and 5* is a P*-name and lhPί "P*/Pi does not

destroy stationarity of subsets of ω\n.

Let Ξ = {A e V : A C ωι,A is stationary and Ihp "5 Π A is not

stationary"}. Clearly if A G Ξ and B C A is stationary then B G Ξ. Let

{Ai : i < i*} C Ξ be a maximal antichain C Ξ (i.e., the intersection of any two

elements is not stationary).

So, by 1.12 i*\ < ω\, so without loss of generality i* < ω\ and define

Ai = 0 for i G [i*,cjι). Let A = Vi<ωι Ai. Then also Ihp "A = Vi<ωιAi\ so

we have:

(i) Ihp "5 Π A is not stationary", and

(ii) for every stationary B C ωι\A, for somep G P, we havep Ihp* "5(ΊB

is stationary".

Let 5 = ω\ \A. So 5 is stationary (as Ihp "5 is stationary"). Also,

clearly,

(iii) for each i < ωι, and stationary B C S for some p G Pi <£ P*, we have

p Ihp* "Si Π β is stationary".

As P* is the product of the Pi with countable support, P*/P^ does not

destroy stationarity of subsets of ωi, so we have

(iv) for every stationary B C 5, Ihp* "for some i, 5$ Π B is stationary".

Let 5* be the P*-name: Vi<ω1 §> d= {a < ωι : (3i < α)α G 5J. So lhP*

"for every stationary B C S (from V), we have B Π 5* is stationary".

In Vp* let Q* be shooting a club C through A U 5* (i.e., Q* = {h : h an

increasing continuous function from some non-limit a < ω\ into A\JS} ordered

naturally). Now Q* does not destroy any stationary subset of ω\ from V (though

it destroys some from Fp*). So P* *Q* does not destroy any stationary subsets

of ωι from V; hence by Lemma 1.3 it is semiproper. Now if G C P* * Q* is

generic enough, for each i < ω\,G Π Pi is generic enough such that Si[G] is

well-defined, and since C* = C[G] is a club set and C* C A U Vί^ £;[<?], we

have 5 Π C* C Vi<u;ι §i[G]. As 5 is stationary, for some i, 5^[G] is stationary

so the projection of G to Gi C P^ is as required, and we have finished. U2.14
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2.15 Remark. A similar proof works if P = Pa * P6, where Pa satisfies the

^i-c.c. and Pb is Ni-complete in VPa , if we use P* = {/ : / a function from

ωi to />,/(») = (pi.fc) € Fα * P6, |{i : Pi ^ 0}| < N0, |{» : <7i ^ 0}| < NI} Note

that necessarily even any finite power of Pa satisfies the KI-C.C. In short, we

need that some product of copies of P is semiproper, i.e:

2.16 Fact. [SPFA] Suppose Q is a semi proper forcing notion, and there is a

forcing notion P and a family of complete embeddings fa (i < i*) of P into Q

such that:

(a) for any p £ P and q € Q for some i, the conditions fa(p)^q are compatible

with Q.

(b) the forcing Q/fa(P) does not destroy the stationarity of subsets of ω\.

Then for any dense subsets Zα of P for a < cji, and S a P-name of a subset of

ωι , ^~P "S ζ ωι is stationary" there is a directed G C P, not disjoint to any

Tα (for α < α i) such that S[G] is a well defined stationary subset of ω\.

Proof. Like 2.14. We define A C ω\ satisfying for S and P the following

conditions (from the proof of 2.14): (i), (ii), hence (iii), (iv) (with Pi = fa(P)

D2.i6

§3. Canonical Functions for

3.1 Definition. 1) We define by induction on α, when a function / : ω\ — >

ordinals is an α-th canonical function:

/ is an α-th canonical function (sometimes abbreviated "/ is an α-th

function" iff

(a) for every β < a there is a /3-th function, fβ<f mod X^

(b) / is a function from ω\ to the ordinals, and for every f1 : ω\ — > Ord,

if A1 = {i < ω\ : /x(i) < /(*)} ^s stationary then for some β < a and

/3-th function /2 : ̂  -> Ord the set Λ2 d- {i e A1 : f2(i) = fl(i)} is

stationary,



830 XVII. Forcing Axioms

2) If we replace a "stationary subset of ω\" by "^ 0 mod D" (V any filter on

ωi); we write "/ is a (P, α)-th function". Of course we can replace ω\ by higher

cardinals.

Remember

3.2 Claim. 1) If a < ω^^ot — \Ji<ωι &i, (0,% : i < ωi) is increasing continuous,

each α; is countable, and /α(i) = otp(α^) then fa is an α-th function.

2) If for every α there is an α-th function, then T>ωι is precipitous; really "for

every α < (2Kl)+ there is α-th function" suffices, in fact those three statements

are equivalent.

3) If / is an α-th function; Q — U+λ = {A C ωι : A is stationary} (ordered

by inverse inclusion) then \\-Q "in Vωι/Gq, we have: {x : Vωι/Gq |= "x is an

ordinal < /α/Gg"} is well ordered of order type α" (remember Vωι/Gq is the

"generic ultrapower" with universe {f /Gq : f £ V and / : ω\ —> V} and Gq

is an ultrafilter on the Boolean algebra P(ωι)v).

4) Any two α-th functions are equal modulo Dωι.

5) Similarly for the other filters (we have to require them to be Ni-complete,

and for (1) - also normal).

Proof. Well known, see [J]. We will only show (1): Let A1 = {i : f ( i ) < fa(i)}

be stationary. So there is a countable elementary model N -< H(χ) (for some

large x) containing α, /, (α» : i < ωi) such that δ = N Π ω\ G A1. We have

f ( δ ) < fa(S) = otp(α5), and aδ = Ui6Nα^ - ^» so t^ιere is ^ G ̂  sucn tnat

/(5) - otp(α5 Π /3). Let A2 = {i G A1 : /(i) = otp(α< Π /?)}. Since A2 € N,

f e N, β £ N, (di : i < ωι) € AT and δ G A2, we can deduce A2 is stationary.

Π3.2

The following answers a question of Velickovic:

3.3 Theorem. Let K be a supercompact. For some ft-c.c. forcing notion P not

collapsing HI we have that Vp satisfies:



§3. Canonical Functions for ωι 831

(a) there is / € ωιωι bigger ( mod Pωι) than the first α;2 function hence

the Chang conjecture fails.

(b) PFA (so Pωι is semiproper hence precipitous).

(c) not PFA+

Outline of the proof: In 3.4 we define a statement (*)5, which we may assume

to hold in the ground model (3.5). We define a set 3%. C S<^l(χ) and we

show that if (*)g holds, then Sg is stationary (3.8). In 3.9 we recall that the

class of 5^-proper forcing notions is closed under CS iterations, so assuming a

supercompact cardinal we can, in the usual way, force Ar[5£-proper]. Finally

we find, for each α < α;2, an S^-proper forcing notion Ra such that Ax[.Rα] =>•

fa <τ>ω2 g

3.3A Remark. Remember that the first clause of 3.3(a) implies that Chang's

conjecture fails, so the negation of 3.3(a) is sometimes called the "weak Chang

conjecture".

Proof of 3.3A. Let M = (M, E,ω\,...) be a model with universe u;2 which

codes enough set theory. Assume that there exists an elementary submodel

N x M with \\N\\ = Ni, |ωf I = No- Let δ = ω? = ωl Π N. In M we have

the function / from 3.3(a) and also a family (fa,Ea : α < α;2), (/α is an α-th

canonical function, Ea C α i is a club set, fa\Ea < f\Ea) as well as a family

(Eatβ \ a < β < a;2) of clubs of ω\ satisfying fa\Eaβ < fβ\Eaβ. For α < /?,

α, ^9 G ΛΓ we have 5 G £?α,/3 Π f?^, so

(A) (Vα,/3eΛθ [α<^:

(B) (Vα G AT): [/α(ί) <

So the set {fa(δ) : a G N} is uncountable (by (A)) and bounded in ω\ (by

(B)), a contradiction. ΠS.SA

3.4 Definition. Let fa be the α'th canonical function for every α < ω2 (so

without loss of generality the fa are of the form described in 3.2(1)). Let
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g : ω\ — > Ord. We let (*)g be the statement:

(*)0 for all a < ω^ we have ->(g <vω fa)

By 3.2(4) this definition does not depend on the choice of (fa:a< ω^)-

3.5 Remark. It is easy to force a function g : ω\ — > ω\ for which (*)9 holds:

let P — {h : for some i < ωι, h : i — > ω\} ordered by inclusion. P is Kj-

complete and (2*°)+-c.c., so assuming CH we get \H\P = #Y and K%P = K% .

Let (fa : α < ω^) be the first ω2 canonical function in V, then they are still

canonical in Vp ', and it is easy to see that for any / : ωi — > ω\ in V we have

Vp \= ->(g <τ>ωι /) where g is the generic function for P.

3.6 Definition. 1) We call AT X (ff(χ),€,<J) 0-small (in short g - sm QΪ

more precisely (g, χ)-small) if AT is countable and otp(7V Π χ) < ^(A/" Π α i).

2) We let 5̂  d=f {α : α G «S<κ0(χ), α Π o^ is an ordinal and otp(α) < g(a Π ωι)}

3.7 Definition. We call a forcing notion Q g-small proper if. for any large

enough χ and N -< (ίf(χ), €, <*), satisfying \\N\\ = KQ, Q e N, p e N Π Q

such that TV is g-small there is q > p which is (AT, Q)-generic. We write g-sm

for ^-small.

3. 7 A Observation. 1) Any proper forcing is g-sm proper.

2) Without loss of generality g is nondecreasing.

Proof. 1) Trivial.

2) Let E = {a < ω\ : α is a limit ordinal such that β < a => <j(/3) < α and

(V/3 < α)(37)(/3 < 7 < α&^(τ) > ^)}, and let

Λ , v -
^ ^ ; ~ \ sup{p(/3) : β < a} otherwise.

Now, for our definition g' , g are equivalent but g' is not decreasing. 03.7,4
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3.8 Claim. 1) (*)<, holds

ifffoτ every x > ^2 the set S^ is a stationary subset of S<^l(χ)

iff S^ is a stationary subset of ^^(fr^)

iff for some χ > ^2, 5£ is a stationary subset of 5<^1(χ).

2) For a forcing notion Q and x > 2'^' we have: Q is g-sm proper iff Q is

S£-proper (see VI. 1(2)).

3) If (*)g holds and Q is g-sm proper then

\\-Q "(

Proof. 1) first implies second

Assume (*)p holds, x > ^2 is given, and we shall prove that S£ is a

stationary subset of 5<Nι(x) Let x G H(χι) and χι = 3s(χ)+( e.g x = Sg).

We can choose by induction on i < ω\,Ni -< ( H ( χ ι ) , G, <*J increasing

continuous, countable, x G A^ € A^+I. Clearly for each i we have δi = NiΓ\ωι

is a countable ordinal, and the sequence (δi : i < ωι) is strictly increasing

continuous. Now letting N = \Ji<ωι Ni, then ωι + 1 C N -< (Jf/(xi),G, <*J

and TV has cardinality HI, so otp(TVΓ)χ) = a for some a < ω^ let /ι : NΓ\χ — > α

be order preserving from TV Π x onto α.

Note: letting a] = NΪ Π x, α^ = rang(/ιfα^) we have: α is Ui<α; ai where

a,i is countable increasing continuous in i and /α+ι(i) = otp(α^) -f 1 is an

(α + l)-th function (see 3.2(1)). Also C = {i : δi = i} is a club of ω\

so by (*)p we can find i G C such that /α+ι(i) < g ( i ) , so otp(A^ Π x) =

otp(αj) - otp(α») < /α+ι(i) < ^(i) = #(<^) = ̂ W Π α i). I.e. for this i, Ni is

p-sm; easily Ni Π x G S£ and it exemplifies that S£ is stationary.

second implies fourth. Trivial

fourth implies third. Check, (note: for x > K2, otp(χΠTV) > otp^Π N)).

third implies first. Let a < ω<ι,θί — Ui<ωι

 a^ where α^ are increasing

continuous each α^ countable, so /α(i) = otp(a^) is an α-th function and let

C be a club of ω\. Let α = {α^ : i < ω\). Let x be regular large enough (e.g.
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>3j). Clearly

{N Π N2 : N is countable, N -< (if (x), G, <* )}

is a club of <Sκ0(N2) So by assumption for some countable N -< (if (x), G, <*)

we have C, ά G AT" and

(i) otp(AΓnN 2 ) <0(ΛΓΠϋ;ι).

But as α G TV also faeN and we have [j < TV Π ω\ =ϊ dj G N => α^ C AT]

hence |J{αj : j < A Γ ί Ί ω ι } C A / ' n α but this union is equal to α^nωXα is

increasing continuous:) so, as α G AT,

(ii) otp(aNΠωι) < otp(aNnωι U {a}} < otp(NΓ\ω2).

But

(iii) fa(NΓ}ωι) = otp(aNnωι).

By (i) + (ii) + (iii) we get fa(NΓ\ωι) < g(NΓ\ωι) and trivially NΓiωi e C,

but C was any club of α i, hence {j < ωι : f a ( j ) < g ( j ) } is stationary. As α

was any ordinal < ω^ we get the desired conclusion.

(2) This is almost trivial, the only point is that to check Sg-properness it

is enough to consider models AT -< (if (χ), e, <* ), but for sm-g properness we

should consider AT -< (if(χ0),^j<χ0) fof all large enough χ0 First assume Q

is g-sm proper, and we shall prove that Q is 5^-proper; and let %o be large

enough (say > Π2(χ)) Let M be the Skolem Hull of {α : α < 2'QI} U {Q,χ}

in (if(%o),e,<*0). Note ||M|| = 2\Q\ < χ hence otp(M Π χ0) < X and there

is an order-preserving h : M ( Ί χ — > (2'QI)+ < χ onto an ordinal belonging

to AT. Let AT be a countable elementary submodel of (if (χo) £> <£0) to which

x = (Q, x, M, h) belongs, and (AT Π x) G S9

χ. Let Af7 d= AT Π M, so ̂  Π ωι =

N Π ωi, Nf is a countable elementary submodel of (if (χ0), G, <*0) and

otp(ΛΓ' Π XQ) = otp(h"(Nf Π χ0)) < otp(AΓ Π Rang(Λ))

< otp(AΓ Π x) <

[Why? as h is order presserving; as N is closed under ft, ft"1 and AT' -< AΓ; as

rang(ft) C χ; as A/' Π x G 5 ;̂ as N1 = N Π M respectively]

Applying "Q is g-sm proper" to AT', for every p G Q Π AT' there is <? such that
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p < q G Q and q is (7V',p)-generic. But QnN = QnN' and [q is (7V',p)-generic

Φ> <? is (7V,p)-generic] as 7VΠ2 I Q I = 7V'fΊ2 l < 5 1 . As we can eliminate "x G Nn (as

some such x for some χ', /f(χ') G H(XQ) and χ' belongs to N) we have proved

Q is 5^-proper.

The other direction should be clear too.

3) Letχ = (2'SI)+.

By part (2) we know Q is ^-proper; by V 1.3 - 1.4(2) as Q is Sg-

proper, we have that Ihg U(S^)V C S<^1(χ)v is stationary". Clearly \\-Q

"(S%)v C (S^)yQ" hence lhQ "(5^)v° is a stationary subset of 5<Xl(χ)". So

by part (1) (fourth implies first), we have Ihg "(*)5" Π3.8

3.9 Claim.

Assume (*)p (where g G ωιωι). TΛen the property "(a forcing notion is)

g-sm proper" is preserved by countable support iteration (and even strongly

preserved).

Proof. Immediate by V 2.3 and by 3.8(2) above. D13.9

3.10 Claim. Suppose, g G ωια>ι, and (*)p holds, ft supercompact, L* : ft —»

7J(κ) is a Laver diamond (see VII 2.8) and we define Q = (P^, Qj : i < κ,j < ft)

as follows:

(i) it is a countable support iteration

(ii) for each z, if L*(i) is a P^-name of a g-sm proper forcing and i is

limit then Qi = L*(i), otherwise Qi = Levy(Kι,2H2), (in VPi, i.e. a

P^-name).

Then

(a) Pκ is ^-sm proper, ft-c.c. forcing notion of cardinality ft, and N^P^ =

ft

(b) Axωι [g-sm proper] holds in VPκ

(c) PFA holds in Vp«

(d) in VPκ for every α < ft,^ is above the α-th function (by <pα,1).

Proo/. Q is well defined by III 3.IB.
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Clearly \\-p. "Qi is g-sm proper" - by choice or as Levy(Ki,2H2)viPil is

tti-complete hence proper hence (by 3.7) g-sm proper. So by 3.9 the forcing Pκ

is g-sm proper; P satisfies /ς-c.c. by III 4.1 hence \\-pκ "K regular, N^ regular".

The use of Levy (tti, 2K2)vIPίl for i non-limit will guarantee K = K2 in Vp*.

Also \PK\ = K is trivial, so (a) holds.

The proof of (b) is like the consistency of lhp "Axωι[proper]", in VII 2.8

hence (by 3.7A(1)) we have lhP|ς "PFA" i.e. (c) hold.

So it remains to prove (d), so let α < N^'P*' = ft. This will follow from

3.10A, 3.10B, 3.IOC below together with (b) above. Let us define a forcing

notion Ra:

3.10A Definition. Ra = {{α^ : i < j) : j is a countable ordinal, each α^ is a

countable subset of a and (α^ : i < j) is increasing continuous, and for i a limit

ordinal otp(α^) < g(i)} The order is: p < q iff p is an initial segment of q.

We can assume g is nondecreasing (see 3.7A(2)).

3.10B Observation. Ra is #-sm proper.

Proof. Left to the reader.

3.IOC Observation. If G C Ra is sufficiently generic, then G defines an

increasing continuous sequence (α^ : i < ω\) with \Ji<ωι &i = OL and hence

defines an α-th canonical function below g. Πs.ιo,3.3

* * *

Answering a question of Judah:

Question. Does Ar[Countably Complete * c.c.c.] imply PFA?

3.11 Claim. The answer is no.

Proof. Countably complete forcings and c.c.c. forcings and also their composi-

tion are α -proper. So we have
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PFA =>Ax[α;-proper]=>Ax[countably complete * c.c.c.].

We will show that the first implication cannot be reversed:

3.12 Definition, c — (c(ϊ) : i < ωι) is a α -club guessing for ω\ means that

c(i) is an unbounded subset of i of order type ω for each limit ordinal i less

than α i, such that every closed unbounded subset c ofω\ includes c(i) for some

limit ordinal i < ω\.

3.13 Claim. (1) If c is a α -club guessing for ωi, and P is α -proper, then Ihp "c

is a α -club guessing for α>ι".

(2) φωi implies that there is a α -club guessing for ω\ (so a α -club guessing can

be obtained by a small forcing notion).

Proof. (1): Let C be a name for a closed unbounded subset of α i, p G P. We

need to find a condition q > p and some i < ω\ such that q Ihp "c(i) C C".

Let (ΛΓi : i < α i) be an increasing continuous sequence of countable models

Ni x (#(%),£<*), X large enough, {p,C,P} G ΛΓ0 Let ^ = Ni Γ\ ωλ. Let

(7* = {i < ω\ : i» = i}. Now C* is closed unbounded, so there is some i

such that c(i) C C*, say c(i) = {io,iι,...}, io < ii < — Let g > p be JVi£-

generic for all n < ω. So g Ih % = ^[G] Π α i = Ni£ Π α i", and clearly

Ih "^£[G] Π α i G C", so q Ih «c(i) C C\

(2) Should be clear. D3.ιs

3.14 Claim. Suppose c = (c^ : 5 < ω\) is such that: Q is a closed subset of δ

of order type < α*. Let

βg J: {(i,G) : i < α;ι,C is a closed subset of i + 1, such that for every

5 < i, sup(c<5 Π C) < δ},

order is natural. Let

IΊ

 d^f {(i, C) e R-c : 7 < max(C)}.

T/ien: βδ is proper, each IΊ is a dense subset of RC, and if G C Rc is

directed not disjoint to each IΊ, then C* = U{C : (i, C) € G} is a club of HI

such that: δ < ω\ => sup(C Π cδ) < δ.
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Proof. Straight.

For proving "flg is proper" denote q = (iq, Cq), iq = Όom(q), let N -< (ff (χ), G

,<*), N countable, p G N n βg, and {c,β5,α} G AT. W.l.o.g. Π^ < χ. Let

δ — N Ou i, and so we can find (TVj : i < <5), an increasing continuous sequence

of elementary submodels of (#p+), G), ΛΓ< C AT, TV Π #p+) - U;«5 #i and

p G AΓ0. So we can find IQ < i± < . . ., δ = \J^<ω it such that ω\ Π ΛΓ^+i \ JVί/ is

disjoint to Q. Let (τn : n < ω) list the .Re-names of ordinals from AT, and we

can choose by induction on n a condition pn, qn such that: p < p0 G -/Vi0+ι> ^Po

is Wio Π α i, and [ip,7Vίo+ι Π α i) is disjoint to Cp°, pn < qn G Rδ Π ΛΓirι+1, gn

force a value to r^ if ^ < n & r^ ^ -^ίn+ι> an<^ ^n < Pn+i) ^Pτl+1 — AΓ*n+ι Π α i,

and [ipτι+SAΓίτι+1 Π α i) is disjoint to cpn+1. Now (pn : n < ω) has a limit as

required.

Another presentation is noting:

(*) for each p* = (i*,C*) G #c and dense subset I of P, there is a club

E — Eq,ϊ of ωι such that:

for every α G E, α > i*, and there is (iα,Cα) G RC, (ia,Ca) >

(α,C*) > (i*,C*), (iα,Cα) is in J and iα < min(J5\ (α + 1)).

(**) if p e N ^ (ίί(χ),G,<*), AT countable, {c,#c,α*} G JV, and I G AT

a dense subset of RC, then Epj Π N has order type AT Π ω\ hence for

unbounded many α G N Γ\Epίχ, the interval [α,min(E\(α + l))) is disjoint

3. 14 A Conclusion. PFA=> there is no α -club guessing on ω\. On the other

hand "Ax[α;-proper]-f there is a α -club guessing" is consistent, since starting

from a supercompact we can force Ax[u;-proper] with an u -proper iteration (see

V3.5). D3.π

3.15 Remark. The generalization to higher properness should be clear: for α

additively indecomposable, Ax[α-proper] is consistent with existence of (c(i) :

i < ω\ and α divides i } as in 3.12 only the order type of c(ϊ) is a (for a club of

i's), for it to be preserved we use c — (c(ΐ) : i < α i, and α devides i) such that

for every 7 the set {c(ϊ) Π 7 : i < ω\ divisible by a and 7 G C(ϊ)} is countable.
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On the other hand Ax[α-proper] implies there is no (c(i) : ί < ω\, aω divides

i) such that: c(i) is a club of i of order type aω and for every club C of ω\ for

some i, c(i) C C.

§4. A Largeness of Ί>ωι in Forcing Extensions of
L and Canonical Functions

The existence of canonical functions is a "large cardinal property" of ω\, or

more precisely, of the filter Ί)ωι. For example, the statement "the α-th canonical

function exists for any α" will hold if Vωι is K2-saturated, and it implies that

the generic ultrapower Vωι /Gq (see 3.2(3)) is well-founded. If we know only

that ω\ is a canonical function, we can conclude that the generic ultrapower is

well-founded at least below ω\.

It was shown by Jech and Powell [JePo] that the statement uωι is a

canonical function" implies the consistency of various mildly large cardinals.

Jech and Shelah [JeSh:378] showed how to force the N2-th (or the 0th, for any θ)

canonical function to exist (this is weaker than "ωi is a cannonical function").

After this paper Jech reasked me a question from [JePo]: "if the function ω\ is a

canonical function, does 0# exist?" We give here a negative answer. Our proof

which uses large cardinals whose existence is compatible with the axiom V = L,

is in the general style of this book: quite flexible iterations, quite specific to

preserving NI. We thank Menachem Magidor for many stimulating discussions

on the subject. Subsequently Magidor and Woodin find an equiconsistency

results with different method.

This section consists of two parts: First we define a large cardinal property (*)j^

and show (in 4.3)

Conf (3G) \V = L[G] + G C ωι is generic for a forcing in L + (3λ)(*) j l),

assuming the existence of 0^ or some suitable strong partition relation. Then

we show (in 4.6, 4.7) that (*)^ implies that there is a generic extension of the



840 XVII. Forcing Axioms

universe in which ω\ is a λ-function, and make some remarks about possible

cardinal arithmetic in this extension.

We think that the proof of 4.6 is also interesting for its own sake, as it gives a

method for proving large cardinal properties of T>ωι from consistency assump-

tions below 0#.

4.1 Definition, λ ->+ («)μω means that for every club C of λ and function F :

[\}<ω -> μ there is X C C,otp(X) = K such that: uι,u^CX\j min(X), \uι\ =

\u2\ < NO, MI n mm(X) = u2Π mm(X) implies F(UI) = F(u2). Let λ -> (κ)<%

mean: if F : [\}<ω -> λ, F(u) < min(uU{λ}), then for some X C λ, otp(X) = K

and Ff[X]n constant for each n.

By the known analysis

4.2 Remark. 1) If λ is minimal such that λ —> (κ)μω then λ —> (ft)<5\ and λ

is regular and 2^ < λ for θ < λ, from which it is easy to see λ —>+ (κ)μω- Such

λ's are Erdδs cardinals, which for ft > ω\ implies the existence of 0# so implies

V 7^ L. But of course it has consequences in L.

2) Remember A^ = {b : 6 C A, \b\ = n}.

3) Of course μ > 2 is assumed.

4) λ —>+ (κ)μω implies λ is regular, μ < λ, and λ —>+ (κ)μ? f°Γ any Mi < λ.

4.3 Claim. If in V: λ —>+ (^)«ω and K is regular uncountable, (hence λ > 2K)

then in yLevy(No,<«0 an(j even in ^LβvyίNo^/c) (the constructible universe after

we force with the Levy collapse) (*)J is satisfied, where:

4.4 Definition. For λ an ordinal, (*)^ is the following postulate:

for any χ > 2λ, and x G #(χ), there are ΛΓ0, Λ^i such that:

(a) Λf0, A^i are countable elementary submodels of (ίf(χ), G, <*)

(b) xeNo^Nί

(c) otp(7V0 Π λ) = otp(7V"ι Π ωι)

(d) in NI there is a subset of Levy(K0, ΛΓ0 Π ωι) generic over NQ.
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(e) The collapsing map / : NQ Π λ —» ω\ defined by f ( a ) = otp(7V"o Π α)

satisfies:

whenever u G N0, u C λ, \u\ < NI, then f\u G NI (note f\u is /ί(u(Ί7V0)).

Proof of 4..S. Straightforward: let G C Levy (No, < ft) be generic over V hence

it is also generic over L (note: Levy(N0, <ft)y = Levy(N0, <κ)L) It is also

easy to check that V[G\ |= "λ ->+ (tt)<ω and even λ ->+ (ft)^" because

|Levy(N0, < κ)| < λ, see 4.2.

Let x > 2λ, in L[G] and we shall find N0,Nι,f as required for L[G],x G

#(χ)L'G' (because L[G?] is the case we shall use, V[G] we leave to the reader).

In V we can find a strictly increasing sequence (α^ : i < K) of ordinals < λ,

indiscernible in (H(χ)L^G^ G, λ, G), each α$ G C* = {a < λ : a belongs to any

club of λ definable in (#(χ)LIGl, G,λ,G)} (so each α4 is a cardinal in L[G]).

We define, by induction on n, in, </Vo,nj ι̂,n such that

(α) α; < in < in+ι < α i, ίn is limit, z0 = α;

(^) AΓ0,n is the Skolem Hull of {x} U {̂  : i < in} in (H(χ)L^G\ G, λ, G)

(7) 7V1?n is the Skolem Hull of ΛΓ0,n U U{otp(#o,n Π λ) + 1} U {/n : u G 7V0,n is

a set of at most KI of ordinals < λ} where fu : u Π A^o,n ~~* ^2 is defined

by fu(a) = otp(7V0,n Π α) in the model (H(χ)LM,e, λ, G).

(£) in+ι = otp(JVι,n Π α i).

There is no problem to do this. Let i^ = sup{in : n < ω}.

Finally let Λ^0 = Un<ωΛΓo,n and NI = \Jn<ωNιtn. Now N^NiJ are not

necessarily in L[G] but we now proceed to show that they satisfy requirements

(a)-(e) from (*)]v. Clauses (a) and (b) are clear, since the models TVo and NI

are unions of elementary chains and N% -< N^ and x G A^,n

Clearly NιίTL Π K is an initial segment of K (as V[G] \= K = NI), so A/"1>n n «

is an initial segment of -/Vι>n+ι Π «. Hence otp(AΓ! Π K) = sup{otp(A^ι)n Π K) :

n < ω} = sup{in : n < ω} = i^. Since {α^ : i < i^} C A^0 and the α^ are

strictly increasing, we have otp(AΓ0 Π λ) > otp{ia : a < \Jn<ωin} — *oo So

otp(AΓ0 Π λ) > otp(7Vι Π K).

For the converse inequality, note that 7Vo)Tlnλ is an initial segment of 7Vo,n.f i Πλ

(as the OLi are indiscernible and in C* and see Definition 4.1) so otp(7Vo Π λ) =
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sup{otp(ΛΓo,n Π λ) : n < ω] < sup{otp(A/i,n+i Π ω\) : n < ω\] < otp(Nι

So (c) holds.

Next we have to check (d). Note that NQ is the Skolem Hull of {c^ : i < i^}.

Let δ = NQ Π ft; by the previous sentence also δ = 7Vo,n Π ft, and even NQΓ\LK =

7Vo,n Π Lκ. Let G = (Ga : α < ft), so (J Gα is a function from ω onto α. Define

Q = Levy(N0, ̂ ι)N°, P - {JΠ Q : 7V0 μ "J is a dense subset of Q}". Now in

V[G], we see that Q is Levy(N0,5) and P is a countable family of subsets of

Q. Hence for some a < ft, Q and V belongs to V[(Gβ : β < a ) ] . Without loss

of generality α > 5, and a is divisible by δ x δ and without loss of generality

Oί G Nιtι (this is a minor change in the choice of the ΛΓ0)n, Λ/ι)n's). Define

/ : α — > 5 by /(5i + j) = j when j < 5, now / o (\J Gα) is a function from ω

onto ί, is generic over V[(Gβ : /? < α)] (for Levy(Ko,α)) hence is generic over

NQ and it belongs to Λ/i, so demand (d) holds (alternatively we can demand

(α^ : i < ft) G V and proceed from this.)

Finally clause (e) follows as Λ^o,n Π λ is an initial segment of TVo Π λ hence

defining / : NQ Π λ — > ft by f(a) = otp(No Π α), used in clause (e) we have:

for u e AΓ0jn, \u\ < NI, u C λ, we have u Π AΓ0jn = u Π AΓ0)n+1 = u Π NQ (by the

choice of the α^'s) and /u (defined is clause (7) above) is f\u (i.e. f\(u Π NQ))

which we have put in -/Vι jn+ι.

So NQ,NI,/ are as required except possibly not being in L[G], But the

statement that such models 7V0, NI exist is absolute between L[G] and V[G].

Π4.3

4.5 Claim. 0# implies that if N0 < K < λ (in V) then LLev^^<^ satisfies

Mi-
Proof. Left to the reader as it is similar to the proof of 4.3. D4.5

4.6 Main Lemma. If (*)^, λ = cf (λ) > NI, and 2^° = NI ίften for some forcing

notion P:

(i) P satisfies the b^-c.c and has cardinality (λ^1)"1".

(ii) P does not add new ω-sequences of ordinals.



§4. A Largeness of T>ωι in Forcing Extensions of L and Canonical Functions 843

(iii) Ihp "α i (i.e. the function (ω\ \ a < ωι}) is a λ-function".

(iv) Ihp "2*1 - |P| - [(λKl)+Γ' (so for μ > ^ we have

(v) in Vp, for large enough χ and x G H(χ) and stationary S C α i there

is a countable A/" -< (#(χ),G), x e N such that TV Π ω\ G 5 and

(V/ G ΛO[/ G #&/ G ^ωi =» (Ξα G λ Π TV) [TV Π ω, G eq(/tt,/)]],

where eq(/Q,, /) = {i < ω\ : fa(i) — f ( i ) } , and fa is an α-th function

(and (fa : a < λ) G N).

4.6A Remark, (a) Let us call a model N -X (#(χ),G,<*) "good" if (V/ G

N Π ωιωι)(3α G λ Π N) [N Π ωi G eq(/α,/)] (where / - (fa : a < λ) is as

above); note that this implies eq(/α, /) C ω\ is stationary.

Let, for x G -ff(χ),

Λ^x 1lf { JV Π 2Hl : TV is good and, x G TV}

Note Λ^x Π My — <M{Xίy}. So (v) can be rephrased as:

(v)' The family (Mx : x G H(χ)) is a base for a nontrivial filter on

<S<Kl(2Hl) (i.e. on the Boolean algebra (5<Nl(2Kl)).)

(b) Note that 4.6(ii) implies IhpCH, and (i) and (ii) together imply that P

does not change any cofinalities.

(c) 4.6(v) implies almost 4. 6 (iii): for some β < λ, {c^i : a < ω\) is a β-th

function.

Proof of (c). Let / : ω\ — » Ord, 5 — {i : /(i) < α i} is stationary, and assume

that for all a < X and α-th function fa the set eq(/, /α) Π S is nonstationary

(if there is such a fa) say disjoint to the club set Ca. Let N be a model as

in (v) containing all relevant information. Let δ = N Π ω\ so δ G S. Then for

some a € N we have 5 G eq(/, /α) Π 5 where /α G TV is an α-th function. But

as α G AT we also have δ G Cα, a contradiction.

4.7 Conclusion. 1) If in V we have λ ->+ (κ)<ω (or just 0# G V, N0 < « < λ

are cardinals in V or just V = LLevy(No><Ό and V f= (*)];), #*en in some generic
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extension Vp of L, 2H° = K = N]' and 2μ = λ+ when /ς < μ < λ, 2^ - μ+

when μ > X and cji is a λ-th function (and (v) of 4.6).

2) We can, in the proof of 4.6 below, have α* = 7 if cf (7) > λ, 7 divisible by

|7| and |7| = ^l^1 (just more care in bookkeeping) so Ihp "2Kl = |7|" is also

possible.

3) If e.g. (1) above, and we let Q - Levy(N2,λ+)yP then in VP*Q we have

2*° = HI, 2Hl = N2 (and conditions (iϋ)+(v) from 4.6 hold but λ is no longer

a cardinal) and Vp ', yp*^ has the same functions from ω\ to the ordinals.

4) We can have in 4.6(1), that Vp satisfies 2μ = λ for μ G [«, λ) and 2Hl = λ

(and 2μ — μ+ when μ > X and u i is a λ-th function).

We shall prove 4.7 later.

Proof of Lemma 4.6. We use a countable support iteration Q = (Pa, Qβ ' & <

α*,β < α*), such that:

(1) α* = (λ^)+

(2) if β < λ, then Qβ is adding a function f£ : ω\ — > ωi :

Q/5 = {/ : for some non-limit countable ordinal i < ω\,

f is a function from i to

order: inclusion.

(3) if β = λ 4- λβi -f $2 where βi < βz < X then Q/5 is shooting a club to

on which /^ is smaller than /^2 :

Q^ = {α : for some i < ω\, a is a function from {j : j < i} to {0, 1}

such that: { j < i : a(j) = 1} is a closed subset of sm(/^, /^2)

where s m ( f , g ) d= {i < ωι : f(ί) < g(i)},

order: inclusion.

(4) if β < (λHl)+, β > λ2 and for some g, A and 7 < β and p we have
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®σ A 7 p 3 ιs a P-γ-name of a function from ω\ to u i, A is a P7-name of a

subset of ωι and p e Pβ:

p \\-pβ "A is a stationary subset of α i, but for no α < λ,

is eq[#, /QJ] Π ^4 stationary"

then for some such (^,^,7^,^), with minimal 7/3, the forcing notion

Qβ is killing the stationarity of Aβ, that is: Qβ = {a : for some i < α i, α is

a function from {j : j < i} to {0,1} and {j : j <i and a(j) = 1} is closed

and if p£ G GP^ then α is disjoint to A*β}

order: inclusion

(5) if no previous case applies let Aβ = 0,7/3 = 0,0/3 = Oωι, and define Q/? as

in (4).

There are no problems in defining Q. Let P = P(λ«1)+.

Explanation. We start by forcing the /α's, which are the witnesses for the

desired conclusion and then forcing the easy condition: fa < fβ mod Ί)ωι for

α < β < λ. Then we start killing undesirable stationary sets. Note that given

/ G VPί, maybe in FPί we have S = {a < λ : eq[/,/α] is stationary in VPί}

has cardinality λ, and increasing i it decreases slowly until it becomes empty,

so it is natural to use iteration of length of cofinality > λ e.g. λ^1 x λ+ (ordinal

multiplication) is O.K. The problem is proving e.g. that NI is not collapsed.

Continuation of the proof oj 4.6.

The main point is to prove by simultaneous induction that for α < (λHl)+

the conditions (a)a — (e)a listed below hold:

(a)a forcing with Pa adds no new α -sequences of ordinals.

(b)a Pa satisfies ^2-c.c.

(c)α the set Pa of p G Pa such that each p(β) is an actual function (not just a

P^-name) is dense.
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Before we proceed to define (d)a, note that for each β < a (using the

induction hypothesis),

\\-pβ "CH and \Qβ\ = NI and Qβ is a subset of

H = {h : h G V is a function from some ί < ω\ to ω\\ G V

ordered by inclusion".

So (as Pβ satisfies the N2-c.c.), the name Qβ can be represented by NI maximal

antichains of Pβ : ((Pζ^ '• ζ < ^i) : h G if), i.e. for each ζ < ωiιPζjh forces

h G Qβ or forces ft ^ Q/?. So, u£ = \J^£ Dom(p^) is a subset of β of cardinality

< NI (all done in V). We may increase u*β as long as it is a subset of β of

cardinality < N x . W.l.o.g. p£h G P£.

Call u C α closed (more exactly Q-closed) if /? G u implies: u*β C u and

g'βiAβ are names represented by KI maximal antichains C P^ with union of

domains C u*β and Dom(p^) C u*β. W.l.o.g. each u£ is closed. For a closed

u C α we define Pu by induction on sup(u) : let Pu = {p G Pα: Dom(p) C u

and for each β G Dom(p),p(/3) is a Pnn/3-name}. Let P^ = Pu Π Pf

a. Lastly let

(d)a Pu <$ Pa for every closed u C α; moreover

(e)a if it C α is closed, p G P^ then:

(1) p fu G P^ C P^ and

(2) pfiz < g G P^ implies q U [pf (Dom(p) \ u)} is a least upper bound of

P,g(inP^).

Of course the induction is divided to cases (but (α)α is proved separately).

Note that (e)α ==»(d)α.

Case A: α = 0 Trivial

Case B: a = β + 1, proof of (6)β, (c)α, (d)α, (e)α.

So we know that (ά)β — (e)β holds. By (d)β (as noted above), Qβ has power

NI. So we know P^ satisfies N2-c.c., and lhP/9 "Qβ satisfies the K2-c.c." hence

Pα satisfies the H2-c.c., i.e. (b)a holds.

If p G Pα, then p(/3) is a countable subset of ω\ x ωi from Fp/3, hence by

(α)^ for some / G V and q we have p\β < q G Pβ and ς lhP^ αp(/3) = /". By
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(c)0 w.l.o.g. q is in P'β. So q U {{/?,/>} is in Pα, is > p and is in P^; so (c)α

holds.

As for (d)α and (e)α, if p G P«, we can observe (e)α(l) which says:

"p\u G Pu C Pα". [Why? lϊ β φ u, it is easy, so assume β e u; now just

note that pΓ(/3 Π u) G P^πn <> -Pα by the induction hypothesis, now p\β \\-Pβ

"p(β) £ Qβ\ but Q0 is a P^nn-name, P^ <> P^ (as u is closed and the

induction hypothesis), so by (d)β we have (p\u)\β lhPwn/3 "p(β) G Qβ

n\ so

ptu G PQ, and as Dom(pfu) C u we have p\u 6 Pu.]

Next (e)α(2) follows (check) and then (d)α, (e)a follows.

Case C: α limit cf(α) > N0, proof of (6)α, (c)α, (d)α, (e)α.

Clearly Pα = U/3<α ̂  (as the iteration is with countable support), hence

(c)α follows immediately; from (c)α clearly (6)α is very easy [use a Δ-system

argument, and CH], and clause (e)α also follows hence (d)α.

Case D: a is limit cf (α) = NO, proof of (6)α, (c)α, (d)α, (e)α.

As in Case (C), it is enough to prove (c)α. So let p e Pα. Let χ be

regular large enough; TVo -< NI be a pair of countable elementary submodels of

(ff (χ), G, <*) to which Q, α, λ,p belongs, satisfying (a)-(e) of (*)\ in Def 4.4.

We can find an ω-sequence (um : m < ω) such that:

(i) each um is a member of TVo, and is a bounded subset of α of power

< NI which is closed for Q\a

(ii) um C um+ι

(iii) if u G A^o is a bounded subset of a of power < NI closed for Q Γα ίΛen

for some m we have u C um.

There is no problem to choose such a sequence as the family of such n's is

directed and countable. Let (Im : m < ω) be a list of the dense open subsets

of Pα which belong to NQ.

Note that in general, neither (um : m < ω) nor (Jm : m < ω) are in Λ/I.

Let ί d^f TVo Π ωi and note that δ € NI. Let R be LevyίNo,^)^, the ω-

th power of Levy(N0,5) with finite support, so R is isomorphic to Levy(No,5)

and it (and such isomorphisms) belongs to NI so there is G* G NI, a (directed)

subset of R, generic over N0. Note that from the point of view of TVo, Levy(N0, δ)

is Levy(N0,N!) hence ((Levy(N0,Nι)Γ)No = (Levy(N0, <*))", so G* is an ^o-
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generic subset of (Levy(N0)Nι)ω)No Let G* = (G| : I < ω). Note that

N0[G*} N ZFC- and ΛΓ0[G*] C NI.

By the induction hypothesis PUm <£ PUτn+ι <$ P(supum+ι)+ι ^ -Pα f°r every

m. Now we choose by induction on m < ω,pm and Gm C Pα Π NQ such that:

P<Pm <Pm+l,

Jm n NQ

G Gm

Gm C ΛΓ0 Π P^m is generic over Λ^0

U Gic Gm,
^<m

Gm G 7Vχ, moreover Gm € N0[(GJ : £ < m)].

Why is this possible? Arriving to m(> 0) we have P^m_1 <£ Pα, ^m-i £

Pύrn_l Π JVo is generic for Λ^o, we can choose pm as required (pm G Xm Π NQ

and pm_ι < pm and pmίum_ι G Gm_ι). Also P'Urn = PUm Π P'a belongs to

TVo, (as Q,P^, and um belongs), now it has cardinality HI (and of course all

its members are in V as well as itself), so some list (r^m : ζ < ω\) of the

members of P'Ujn of length ω\ belongs to NQ. So as 6 = NQ Π ω\ G Λ/Ί, clearly

P^m Π A^o = {r^m : C < ^} belongs to A/Ί and N\ "know" that it is countable.

As G^ is a subset of Levy(N0, ̂ 1)^° = Levy(K0, ^)N0[(Gί:έ<m)]9 generic

over NQ[(G£ : t < m)} there is in N[(G| : ί < m>] a subset of P^m Π 7V0 generic

for {Z : Z G 7Vo[Gm_ι] and T C P^ and Z is dense in Pn} extending Gm_ι.

So in A/i and even AΓ0[(G| : ^ < m)] we can find Gm C PUrn Π 7V0 generic over

NQ with pm tum G Gm and Gm_ι C Gm.

Note: as PUrn <> Pum+i we succeeded to take care of "Gm C Gm+ι". Let

G = (Jm Gm, J — NQ Π ωi. We define q — qo, a function with domain α Π NQ:

for β e UmΓϊNQ let

</£r(/3) — Uir(^) : f°r some m < ω we have r G Gm and r(/3) is an actual

(function not just a P^-name) }

qG(β) is: ^(/?)U{{5, otp(7V0n^)}} if β < λ, and q'G(β}Ό {((5,1)} if ̂  > λ.

Clearly g is a function with domain αΠ7V0, each q(β) a function from <5-f 1

to ω\. (Here we use the induction hypothesis (c)^.)
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If q G Pa then we will have q G P'a and q is a least upper bound of

Uτn<cj Gm and of {pm i 771 < ω}. Hence in particular q > p thus finishing the

proof of (c)α, hence (as said above) of the present case (Case D). Now we shall

show:

® Q Nm £ NI for each m < ω

Clearly ς£?Γwm € Λ/i as Gm G N! (and P'Um G NI), hence to prove

<g> we have to show that {(β,(qc(β))(S)) '• β G um} belongs to NI. Now

{(β, (q(β)W)) β £ umπN0\λ} is {<£ i ) : β G umnN0\λ} - (umnN0\λ)χ{i}
belongs to NI as um G N0 -< NI and as said earlier, as TVo Π ω\ G N^

NQ N |u0| < KI we have um Γ\ NQ G A^i and λ G NQ -< Λ/Ί. Next the set

{(/3,g(/3)(ί)} : /? G um Π 7V*o Π λ} is exactly /fu m , where / is the function from

4.4(e).

So by Claim 4.8 below we finish.

Case E: α nonzero, proof of (α)^.

So by cases (B), (C), (D) we know that (6)α, (c)α, (d)α, (e)α holds.

Now we imitate the proof of Case (D) except that in (i) and (iii) we omit

the "bounded in α". So now PUrn <£ Pα" is justified not by "(c)β for β < α"

but by (c)α + (d)a. We can finish now, by using again 4.8.

4.8 Claim. If

(a) 7V0 ^< NI -< (if(χ),G,<*) are countable, Q is as in the proof of 4.6,

Q G JV0,
α = ^δ(O) G NO, 5 = AΓ0 Π ωι, otp(λ Π ΛΓ0) = otp(JVι Π α i), and

part (d) of (*)]; of Definition 4.4 holds.

(b) G CPanNQ,G is directed,

(c) there is a family Z7 such that:

(a) iϊ u e U then n G NO, u C o; is closed (for Q i.e. α G u =Φ u* C u) of

power < ^i,

(β) (Jiu ' ueU} = N0Γ}a,U is directed (by C) and if u G NQ is closed

(for Q) bounded subset of α of cardinality < NI then u G U.

(7) if u G U then G Π Pu is generic over NO

(δ) if u G £7 then G Π Pu G NI



850 XVII. Forcing Axioms

(d) q — qc is defined as in case D of the proof of 4.6 above, i.e. Dom(g) =

and

q'(β) — U{r(β) f°Γ some u £ U , r G Gm, r(/J) an actual function}.

q(β) is: ?'(/?) U {{5, otp(JV0 Π £)}} if β < λ, <?'(£) U {{ί, 1)} otherwise.

Then

(i) q is in Pα (and even in P^)

(ii) q G P^ is a least upper bound of G.

Proof. We prove by induction on β G AΓ0 Π α that <?|7? G Pα (hence G P^).

This easily suffices.

TVoίe. if u G TVo is closed and C u7 G U then we can add it to U.

Case 1: /? = 0, or β is limit. Trivial.

Case 2: /3 = 7 + 1, 7 < λ. Check.

Case 3: /3 = 7 + l ,/3> λ.

We should prove q\j \\-pΊ

 uq(y) G Q7". Recall that u* is the subset of 7

(of size NI) which was needed for the antichains defining Q7, and ί = ΛΓo Πωi.

Clearly u* and u* U {7} belongs to U (being closed bounded and in NQ). As

G Π Pu*u{-γ} is generic over JV0, clearly

q\Ί "~P^ "^(7) is a function from 5-1-1 to α i, such that

for every non limit ζ < δ we have 4(7) \ζ G Q7" .

Noting (^(7)) tC, where C < ^j is of the right form; and 7 > λ ^>

(ς'(7))~1({l}) is closed and by the choice of q ( j ) ( δ ) , clearly it is enough to

prove that:

<8>α if λ < β < λ2 and β = X + \βι 4- /32,/?ι < βi < λ

thenq\β\\-Pβ

 uf^(δ) < f^(δ)n

(8)b if λ2 < β < tg(Q) then q\β Ih "p^ e GQβ =ϊ δ £ A*β

n .

Now ®α holds as ς' \\~PQ "(/*(5) : 7 G NQ Π α) is strictly increasing" (just

see how we have defined qc(l) in clause (d) of 4.8 above).

So let us prove (8V, remember Qβ is a Pn*-name and (i^ being closed)

Aβ,g*β are Pu* -names, p*β G AΓ0 Π P^. If gΓu£ Ih "ί ^ Aβ or p^ ^ ^PU*" we
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finish. Otherwise there is r, q\u^ < r G Pu* and r Ih "δ G Aβ & p^ G Gp^";

w.l.o.g. r G P^*. AsG\Pu* G A^i by the proof of (g> in 4.6, case D (near the end),

also q\u*β G 7VΊ, and remembering β e NQ => Pβ e NQ and £ G NI, and Pn*,

P^* G NI and A/?, p£ G NI, clearly w.l.o.g. r £ NI. As β € N^g*β £ NQ C NI is

aPn*-name and δ G Λ/Ί, w.l.o.g. r forces a value to #£(£), say Ih "g*β(δ) = £(*)".

Now £(*) G NI hence £(*) < otp(7Vι Π ωι) < otp (NQ Π λ) (here we are

finally using 4.4(c)), hence there is 7 G λ Π NQ such that £(*) = otp(7Vo Π 7).

But now (see definition of Qβ) we have r \\-pβ "e<?[<7J3,/7] Π Aβ is not

stationary, so it is disjoint to some club C^ of ω\n where C*β is a P/3-name and

w.l.o.g. C* G NQ.

[Why? As gβ,fj,Aβ G AΓ0 there is a P/3-name C*β such that lhP/3 " if

eq[<7|, f * ] Π A^ is not a stationary subset of ω\ then C£ is a club of α i disjoint

to this intersection, otherwise C£ = ωι"}.

So Ih "(70 is a club of α i". By the induction hypothesis for β (in particular

(b)β from the proof of 4.6 which says that Pβ satisfies the ^2-c.c.)' f°Γ some

Q-closed bounded u C /?, |u| < HI, u G AΓ0 and C^ is a Pn-name.

By the induction hypothesis q\β G P^; now by the construction of

4, q \β ^Pβ "C*β Π δ is unbounded in 5" hence (ςr f/3) U r [i.e. r U (ς \(β Π Dom(^) \

u^))] is in P^, is an upper bound of q\β and r and it forces 5 G C^, hence 5 G

eQ[dβjf^] => δ £ A*β. But the antecedent holds by the choice of r, 7 and £(*).

So we finish the proof. U4.8

Continuation of the proof of 4.6: So we have to check if conditions (i)-(v) of

4.6 hold for P = Pα*. Now (i) holds by (6)α* + (c)α* (α* is the length of the

iteration- (λNl)+); condition (ii) holds by (α)α*. Condition (iii) should be clear

from the way Qα(λ < a < α*) were defined (see the explanation after the

definition of Qa). Prove by induction on 7 < λ"1" that

(*)7 if g is a P7-name of a function from ω\ to α i, A is a P7-name of a subset

of ω\ and p* G P7 then:

if p* Ih " for every α < λ the set AΓιeq(g, fa) is not stationary subset

of α i"

thenp* Ih "A C ω\ is not stationary".
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Arriving to 7 let ( ( g ζ , A ζ , p ς ) : ζ < λ) list the set of such triples (their

number is < λ as |P7| < λ = λHl and PΊ satisfies K2-c.c. and the list includes

such triples for smaller 7*3). For each ζ we can find a club Eζ of λ+ such that:

if α < β e Eζ, then for some Pβ-name Ca,Aζ,9ζ we have

lhpλ+ "if Aζ Π eq(gζ, /α) is not stationary

then it is disjoint to CΌ:,Aζ,0ζ"

ll~pλ+ "Ca,Aζίgζ is a club of ωι".

For any δ £ ΠC<A ^C which has cofinality > HI, we ask whether when choosing

(gβ,Aβ,jβ,pβ) do we have a candidate (#, A,y,p) as in <8)p,A,y> V < 7

If for every such 5 the answer is no, we have proved (*); if yes, we get easy

contradiction.

For finishing the proof of condition (iii) note that we can let f\(ϊ) — ω\,

and prove by induction on α < λ that /α, is an α'th function as follows:

β < a < λ => fβ <T)^ fa (see Qλ+λ/3+α's definition) and if S C ωι, f G ωιωι,

S Π eq(/, /α) not stationary for every a < X we get S is not stationary by the

definition of Qβ (for β G [λ2, α*)) so if g <τ>ωλ fa then for every β G [α, λ) the

set eq[#, fβ] is not stationary and compare the definition of the o 'th function

and the definition of the forcing condition).

Lastly clause (iv) of 4.6 holds as a* = (λ^1)*, each Qa has cardinality HI,

and Pa* is a dense subset of Pα*. Finally, condition (v) follows from 4.8.

Π4.6

4.9. Proof of 4.7. l)By 4.3, (*)λ holds in lLevy(K0,</0 and λ is regular hence

λ*ι - λ. By 4.6 we can define a forcing notion P in LLevy^<κ\\P\ =

[λ+]L[Levy(No,<κ)] = λ+ ag required.

2) Iterate as above for α* with careful bookkeeping.

3) Left to the reader.

4) Lastly over Vp force with Levy(λ, λ+) such that 2*1 = λ. D4.7
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4.10 Discussion. 1) Can we omit the Levy collapse of λ"1" in the proof of

4.7(4) and still get 2*1 = λ (and (ωι : i < ωι) is the λ-th function)? Yes, if we

strengthen suitably (*)];. (e.g. saying a little more than there is a stationary

set of such λ' < λ, (*)v)

2) In 4.6 we can add e.g. that in Fp, Ar[proper of cardinality KI not adding

reals as in XVIII §2]. We have to combine the two proofs.

3) Suppose V \= "(*)\", and for simplicity, V |= "G.C.H., λ is regular -<(3μ)[λ =

μ+ & μ > cfμ < NI]". (E.g. lLevy(K0,</0 when Q# exists, K is a cardinal of

V.) For some forcing notion P, |P| = λ+, and in Vp we have: ω\ is an ω3-

th function, Ihp "Ni - NJ^Na = (N 2)V,N 3 = λ, N4 = (λ+)y and CH and

2^ι = N4", (so we can then force by Levy(H3, H4) and get 2Kl = H3).

Proof. 3) Let R — Levy(K2, < λ), R is N2-complete and satisfies the λ-c.c. and

\R\ = λ, so forcing by R adds no new α i-sequences of ordinals, make λ to N3.

Let P^* be the one from 4.6 (or 4.7(2)). As R is K2-complete, also in VR we

have: P^* satisfies the ^2-c.c., and P^* has the same set of maximal antichains

as in V. So the family of P^-name of a subset of ω\ (or a function from ω\ to

ωι) is the same in V and VR. So clearly P£* x R is as required. ^4.10

Problem. Is ZFC + "0 is an α-th function for some a (for D^)" 4- -Ό#

consistent? For θ G {^i, N^i) °r any preassumed 0? (Which will be < 2N l.)




