
VII. Axioms and Their Application

§0. Introduction

In the first section we introduce the κ-e.c.c. (ft-extra chain condition). We prove

that if we have an iteration of length < K of (< ct>ι)-proper forcing notions

which do not add reals, and if, moreover each forcing used is B-complete for

some simple Ni-completeness system D, then the limit satisfies the κ-c.c. . This

helps us e.g. in iterations of length ω^ of forcings among which none add reals,

but each adds many subsets of HI.

In the second section we deal with forcing axioms; essentially our knowl-

edge is good when we want 2H° = 2Hl = ^2 and reasonable when we want

2^° = HI and even 2N° — H2. In the third section we discuss applications of

the forcing axiom which is consistent with CH as just mentioned. In the fourth

section we discuss the forcing axiom which is consistent with 2^° = 2**1 = ^2?

and in the fifth section we give an example of a CS iteration collapsing HI only

in the limit. See relevant references in the sections.

§1. On the κ>Chain Condition, When Reals
Are Not Added

When we prove various consistency results by iterating proper forcings, we

often have to check that the H2-chain condition holds.
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Remember, we deal with a CS iteration Q — (P^, Qi : i < a) where Qi is a

Pi-name of a proper forcing (in VPi), Pa = {/ : Dom(/) is a countable subset

of α and i G Dom(/) implies 0 Ihp. u f ( ι ) e Qi" , i.e. /(i) is a P^-name of a

member of Qi}. So, Pα is proper by III 3.2. Here, we concentrate on the case

when no real is added, in fact when we have a sufficient condition for it. The

case without this restriction will be discussed again in VIII §2 .

Remark. Note that even if \\-pi "IQ1] - NI", still may be |P2| = 2N l, as there

may be many Pi-names of elements of Q\.

1.1. Lemma. If K is regular, (Vμ < κ)μ"° < K and Vp" N "|Qα| < K" then Pκ

satisfies the /ς-chain condition.

Proof. See III 4.1.

1.2. Definition. P satisfies the ft-e.c.c. (ft-extra chain condition) provided that

there is a two place relation R on P (usually £>#<? is intended to mean that "p

and q have a least upper bound") such that:

A) for any pi G P (for i < K) there are pressing down functions fn : K — > K (i.e.

(Vα)/n(α) < 1 4- α) for n < ω such that: Q < i,j < K and /\n<ω(fn(i) =

fn(j)) imply piRpj.

B) if in P we have PQ < pi < p2 < < Pn < Pn-f i < Pα; and ^o < Qi <

^2 < < ^n < Qn+ι < Qω and l\npnR(ln, then there is an r such that

f\nr>pn& f\nr>qn

1.2A Remark. This is very similar to the condition used in [Sh:80] (and

similar to a work of Baumgartner, see VIII 1.1, 1.1A(1)). The real difference

is the absence of NI -completeness. The fact that there (in [Sh:80], clause (C)

there is a parallel to clause (A) here) we use only one function and closed

unbounded C, and demand i, j G C, cf(i) = cf(j) = HI, is just a variant form

which was more convenient to represent there. The role of pω,qω is just to

show that {pn : n < ω] and {qn : n < α;}, each has an upper bound (so
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for a Ni-complete forcing they are not needed, hence, also £g(Q) < ft is not

needed). Even closer is Stanley and Shelah [ShSt:154], [ShSt:154a]. We can

ask in (A) only that there are p( (for i < K) such that P \= pi < p\ and

[0 < i,j < K,Λn(/n(0 = /nW)

1.3. Lemma. Suppose V N 2^° = NI while (Vμ < κ)μ*° < K and K is regular.

Suppose further that Q = (P^, Qi : i < QQ < ft) is a CS iteration.

In addition:

(a) Each Qa is (< ωι)-proper (= α-proper for each α < ω\)\

(b) Each Qa is D-complete for some HI -completeness system from V (see

definition in V §7) and, for simplicity, the set of elements of Qa is a subset

of λ = 2 | p«ol and λ > κ;

(c) Each Qa satisfies the κ-e.c.c.

Then Pαo satisfies the ft-c.c. (— tt-chain condition).

1.3 A Remark.

1) Compare with Theorem 7.1 from V. We add part (c) to the hypothesis

(and αo ^ *0> and get the /t-c.c. of Pao. In fact, to prove 1.3, we shall

repeat the proof of V7.1, after an appropriate preparatory step.

2) We can weaken Definition 1.2 so that the proof of 1.3 still works, e.g. by

strengthening the hypothesis on the pn,qn in clause (B). For example,

we could have demanded that qn+ι G Z[qn], Pn+ι € 3Γ[pn] where for

r G P we have that I[r] C P is a dense subset of P (or even <?n+ι €

3) Note that when P is Ni-complete, 1.2(B) is satisfied for R = "having a

least upper bound". Also 1.2(A) can be weakened by e.g. demanding the

conclusion to be true only for i,j G A, for some A in some appropriate

filter on K x «, or for some A which is not in an appropriate ideal which is

precipituous.
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Proof. As in the proof of Lemma III 4.1 we can conclude that if the Lemma

holds for each αo < ft, then it also holds for αo = ft. So, w.l.o.g. α0 < ft. Let

Ri be (a Pi-name of a 2-place relation ) exemplifying Definition 1.2 for Q;. Let

Pa £ Pa0 (a < ft) be given. We now define, by induction on n < ω, countable

models N£ (for all α < ft simultaneously) such that:

i) NS x (tf(λ),e),Pao € NS,Q e N^Pa e N°a, \\N£\\ = K0, and α € N°.

ii) N™ -< ΛΓ™+1, and the additional conditions below are satisfied.

For n — 0, choose any N® satisfying (i).

If we have defined N% for n, let N£ Π Pαo - {p^t :£<ω}, p^Q = POL.

For i < αo and I < ω, consider the sequence (p^^i) : α < ft) (if

i 7^ Dom(p^^) then we are stipulating p^(i) = 0Qj In VPί it is a sequence of

length ft of elements of Qi. But Qi (in VPί) satisfies the ft-e.c.c., so there are

ω-sequences of functions /^ = (f^k : k < ω) exemplifying that condition (A)

from Definition 1.2 holds. In V we have P^-names ft^ for /^.

We now define N£+l such that N$ -< N%+1 -< (ff(λ), G), and

iii) ((/n : i < α0), (P^ : Ί < K) : t < ω) e Λ£+1,Λ£ 6 TV^1 and
~M

{7V^ : /? < ft) G TV^1.

Now, using that (V7 < ft)7^° < ft and that ft is regular, we can easily find

i < j < ft, and h such that:

a) h is an isomorphism from N? onto Nf such that Λ(i) = j.

b) /ι is the identity on NfίΊNf (so it maps to themselves: (pa : a < ft), (p£,/ :

α < κ > , « / ^ : i < α 0 > : « < α ; ) ) .

c) 7V7 n ft c j.

d) A^ Π (α0 -hi)- N? Π (α0 + 1) = {<*(£) : C < fo < ^i}, «(0 increasing.

Also N? n j = N? n i = TV/ n i

Now we choose countable Nς X (#(λ), G) for C < ξo such that h 6 A^0, and

]V7, ΛΓ/ € AΓ0, (AΓα : α < C) € NC+I.

We now repeat the proof of V 7.1, more exactly:
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1.4. Claim. Suppose that 0 < ξ < ζ < &, Ni(i < &), N? G AΓ0, N? G ΛΓ0,

are as above, r G Pα(0, G* C (AΓ^ u AΓ^) Π Pα(ξ), G* Π N? is generic for

(N?,Pa(ξ)) (i.e. G* ΠΛ^ is directed and if I G Λ^> and J is pre-dense in PαK),

then J Π G* Π AΓ^ φ 0), and h maps G* Π AΓ^ onto G* Π ΛΓ^. In addition,

every element of G* is < r, r is (]Vε,Pξ)-generic for any ε satisfying ε = 0 or

e < ε < ίo, ̂ * € Nξ and Pί Γα(0, Pj KO e G* and G* G 7Vξ+1.

T/ien there is a G C (AΓ^ u Nf) Π Pα(c) with G* C G, G G 7VC+1, G Π AΓ^ is

generic for (AΓt

ω, Pα(C)) such that Λ maps GΠAΓ^ onto GΓ\Nf and r/\/\qeG q^$

(Boolean intersection). In other words: r H-pα(O "G has an upper bound "in

P<*(ζ)/G <*(£)"'

Proof. The proof is as in V 7.1. The only difference is the case ζ — ξ + 1, here

we use clause (B) of Definition 1.2: necessarily G* "tells" us the functions have

the same values, as they are pressing down. Dι.4

Continuation of the proof of 1.3 From Claim 1.4, it follows that pi and PJ are

compatible in Pαo, for i and j that we fixed earlier.

Πι.3

Remark. Note in Lemma 1.1, if the iteration is defined such that we have a

support of power < μ, and (Vχ < κ)χμ < K, K regular, still Pκ satisfies the

ft-c.c. (On free limits, see IX §1,2)

1.6. Lemma. We can replace (in 1.3) "Ki-completeness system" by "No-

completeness system".

Proof. Using V 7.2 instead of V 7.1.

1.7. Remark. We can even replace "Ki-completeness system" by "2-complete-

ness system", using VΊΠ 4.5, 4.13.
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§2. The Axioms

AXIOM I.

1) 2*° - 2Hl - K2 and:

2) if |P| = N2,P proper, J^ C P pre-dense (for i < ω\), then there is a

directed G C P, Λ i < W l G n u ^ 0.

2') Moreover if |P| = N2,P proper, !» C P pre-dense (for i < ω2), P =

Ui<α; ^ where Pi are increasing and |P;| < MI, £ήen there is an α < u;2,

cf (α) = ωi and a directed G C Pa such that:

3) If |P| = NI,P is proper iff forcing with P does not destroy stationary

subsets of (jj\.

AXIOM II.

1) 2H° - NI and 2Nl - K2.

2) If |P| < 2**1, P is α-proper for every α < α i, and P is D-complete for some

simple No-completeness system B, J^ C P ( for z < α0 < 2^α) and each Ti

is pre-dense, ί/ien there is a directed G C P, such that, Λ^<α0 G Π X j / 0

(we can also define 2X like we did in Axiom I.).

AXIOM If [S]. (S C ω\ stationary, costationary)

Similar to AXIOM II, but B-completeness refers only to those N for which

N Γ\ωι £ S (i.e. we have (D, 5)-completeness) also in the definition of (< ω\)-

properness we can demand NiΓ\ωι φ S provided we add properness to the set

of hypotheses.

2.1. Theorem. Suppose CON(ZFG + "K is 2^-supercompact"). Then

CON(ZFC+ Axiom I).

Proof. We start as in III 4.3, defining (Pi,Qi : i < «). Given P^, define Qi by

induction on i < K (K is 2Λ- supercompact in V), as usual.
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Case I. If i is not strongly inaccessible, Qi is the Levy collapse of (2'Pίl)v

to N ι : Qi = { f : |Dom(/)| = «0, Dom(/) C c^, Rang(/) C (2\p*\)vP*}.

Case II. If i is strongly inaccessible and, in VPi, there is a proper forcing

P, with universe i and 1$ C i (for j <ϊ), each Jj pre-dense, and {j : there is

a G C j, directed by < and Λ£<J G ΠZξ ^ 0} is not stationary (subset of i),

then Qi — P i.e. Qi is one of those P's.

Case III. not I nor II - proceed as in Case I.

Now Pκ is proper, has density < K and satisfies the ft-c.c. (by Lemma 1.1), so

in Vp", 2H° = K = N2 (Why? K < N2 by case I, 2H° < K as PΛ satisfies the

K-c.c., has density ft and K is strongly inaccessible, N2 < 2H° as clause (2) of

the axiom I holds, as is proved below). So clauses (1), (3) of Axiom I hold -

as in III 4.5 and clause 2) follows from clause 2'), so we are left with proving

clause 2') of Axiom I.

Suppose in the end that R, Ia(a < K) are Pκ-names of a counterexample

to 2').

Let E be an ultrafilter over S<K(2K) exemplifying that K is 2^-supercompact;

and we code PΛ, jR, Ia(a < K) on K. Let 50 = {A G <S<Λ(2K) : P(A Γ\ K) C A,

A is closed under reasonable operation, and A Π AC is a strongly inaccessible

cardinal}. Clearly S0 € Έ

Then, for A G 5o, the forcing notions PΛ Π A = PAΠK an<i R\A are proper

(see the definition of proper for a discussion of this: in 2'p' we can get a witness

for properness etc). So, we have proved that i — A Π ft, Pi = PAΠK and,

RΓ\A, (IaΓ\A : a e AΠK) are candidates for the case II in the definition of Qi.

So, if A G SQ, then i = A Π K, is inaccessible and there are some P l,Zj(j < i)

which we have actually chosen.

By the properties of E, there are such i(0) < i(l),Pΐ(0) C P'U)^0) =

I* Π ΐ(0) for j < i(0) and we almost get contradiction to the choice of P^1)

Using such i(£), ξ < λ,i(λ) = λ < K which form a stationary subset of λ

we get a contradiction. D2.ι

Remark. We essentially use the proof that ()κ holds for K measurable, which is

well known.
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2.2. Theorem.

1) CON(ZFC -f K is 2*-supercompact) implies CON(ZFC 4- Axiom II +

G.C.H.).

2) In both cases (2.1, 2.2(1)) we can relativize to 5 (S C ω\ stationary,

costationary). If in Axiom II we assume \P\ < 2K l, no large cardinality is

needed.

Proof.

1) Similar.

2) Just note that the same iteration works. D2>2

2.3. Discussion. In almost all the applications we need a weaker version of

the axioms for whose consistency we do not need a large cardinal.

Usually our task is to show that for every A C iΓ(Nι) with \A\ = HI, there

is B C f f(Nι) such that

where for Axiom II, φ is any first order (or LωiίUl) sentence, and for Axiom I,

φ should have quantifications on A, B only.

So we iterate ω2 times only, each time forcing a B for a given A, till

we catch our tail in ω2 steps (we can have \A\ — N2 and visit A Π VPa for

stationarily many a < α;2,cf(α) = ω\).

So, only Consis(ZFC) is needed.

For Axiom I part (3), K inaccessible suffices (see III 4.1,2,3), whether it

is necessary is still not clear. We can get Axiom I without inaccessible in the

cases above, when we are able, provably, to find QA in an intermediate V. For

Pω2 to satisfy the N2-c.c. we need \QA\ — NI With K inaccessible, QA should

just have a cardinality smaller than AC.

For \P\ = HI, if P £ VP w2, P is proper in VPωz, and for arbitrarily large

β < α, Qβ = Levy (Hi, 2H l), then P is proper in VPa for every α large enough,

(by III 4.2 though not vice versa). So Axiom I 2) for \P\ = NI comes under the

previous discussion.
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There may be applications where we really have to use information on

VPa(a < ω%) to build Qα, mainly like in Axiom I, when we want to build

a forcing giving B for a given A (see above) and we want to use CH or 0^

for the building. But with Axioms I, II (or the versions we can get with an

inaccessible) we can use the axiom: collapse 2^° , building a forcing and look at

the composition (see §3, Application G).

Sometimes we use properties of Pa (like ^ω-boundedness) which we usually

demand from each Q^, and from P in the axiom, and we have to prove that Pa

satisfies it, (see Chapter VI).

However still Axioms I, II look like a reasonable choice. We shall use them,

and can remark, for suitable applications, that only CON(ZFC) is needed.

As we mentioned (see III 4.3) CON(ZFC-h K inaccessible) implies the

consistency of

AXIOM Ia:

If \P\ — MI, P does not destroy stationary subsets of ω\ and 1$ C P pre-dense

(for i < u i), then there is a directed C C P, such that

We can ask whether we can get something like Axiom I for 2^° = N3.

Roitman (see [B]) proved that this is difficult, by proving that:

2.4. Theorem. (Roitman)

1) If Q — (Pn,Qn : n < u;} is a CS iteration, Qn nontrivial (i.e. above every

element there are two incompatible ones) then LimQ does not satisfy the

2^° -chain condition.

2) If Q = (P»,Qi : i < ωι) is a CS iteration, Qi nontrivial, 2N° > N1 ? then

LimQ collapses 2N° to NI.
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2.5. Question.

1) What kind of axioms can we get with:

A) 2*° - N3?

B) with Ni <2*° <2H l?

2) Can we define properness so that it works for higher cardinals (e.g, for

SH.)?

3) Similar to (1), but we ask about iterations.

For 1), a solution for particular problems appears in [AbSh:114].

2.6. More Discussion. In connection with the beginning of the previous

discussion, there is no problem if for A C ίf(Nι), \A\ = NI, we need to force

by some QA of large cardinality to get some B C Ord. We iterate up to the

first larger cardinal. Baumgartner and Mekler have improved Theorem 2.1 as

follows.

2.7 Theorem.

1) (Mekler) In 2.2(1) we can weaken the hypothesis on ft to πl-indescribability

(the advantage of this property is that if ft satisfies it in V, it satisfies it

inL).

2) (Baumgartner) If ft is supercompact in some forcing extension V^ of V,

*v* = KV,K^ = ft, 2*° = N2 and if

(*) P is a proper forcing, and Si(i < ω\) are P-names such that Ihp "Si

is a stationary subset of ωi",

then there is a directed G C P, and stationary Si C α i (i < α i) such

that for every j, i < ωι, for some p G G,p Ih "j G SV' and j G 5», or

p l h "j^5<" and j ^ 5*.

Proo/.

1) For simplicity assume V = L.

We define the CS iteration (Pi,Qi : i < ft), such that |P<| < ft, and each

Qi is proper, and Qi is the first P^-name of a counterexample for "VPi \= "Qi

satisfies the axiom"". If Pκ is not as required look at {(P,Q, (Ii : i < ωι)) :
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p G Pκ,Q,Ii are Pκ names, p Ih ζ), Ii (for i < ωi) form a counterexample}.

Choose the first (by the canonical order of L) member (p, Q,J). Now use

indescribability.

2) By Laver [L], w.l.o.g. ft remains supercompact if we force by any ^-complete

forcing. Force by {Q : Q is a CS iteration of proper forcing of power <

ft> ^g(Q) < ft}> ordered by being an initial segment. The generic object is,

essentially such Q of length ft, so force by limQ. U2.7

Probably better is the following:

2.8 Definition. Let ft be a supercompact cardinal. We call / : ft — •> #(ft) a

Laver diamond if for every cardinal λ and x G ff(λ), there is a normal fine

ultrafilter D on S<K(H(\)) such that the set

AD(X) = {a e S<K(H(X)) : x G α, α Π ft G ft, and in the Mostowski collapse

MCα of α, x is mapped to /(α Π ft)}

is in D.

By Laver [L] , if ft is a supercompact cardinal, we can assume that a Laver

diamond for it exists.

2.9 Lemma. Suppose ft is a supercompact and /* is a Laver diamond for it.

Define Qi by induction on i < ft, as follows:

If f * ( ϊ ) is a Pi-name, \\-pi "f*(i) proper" , i limit, then Qi = /*(ΐ).

Otherwise Q =

Then \\-Pκ "(*) of 2.7(2) , i.e. Axωι [proper] " (see Definition 2.10 below).

Proof. By the proper ness iteration lemma, Pκ is proper, and also it satisfies

the ft-c.c. Let Q be a PK-name for a proper forcing, and λ a regular cardinal

IQI
such that Q G ff(λ); without loss of generality \\-pκ "2 " < λ". We use the

formulation of Definition 2.10: Axωι [proper] . Let Ii(i < ω\) and Sβ(β < ω\)

be given as in Definition 2.10 (i.e., they are P^-names of such objects). Apply
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\PK*Q\
Definition 2.8 to x — Q and λ such that Q G H(X) and even 2 < λ, and

get D as there. Choose a G AD(X) such that (Ii : i < ωι) and (Sβ : β < ω\)

belong to α, (α, G) is isomorphic to some (if(χ), G) and letting MCa be the

Mostowski Collapse of α (i.e. the unique isomorphism from (α, G) onto ( H ( χ ) , G)

and μ = a Π K G ft, we have f(μ) = MCa(Q). Note MCa(Q) is a Pμ-name of a

proper forcing etc. Easily, Qμ = f*(μ) in VFμ , and Qμ is isomorphic to αΠ Q,

so we can finish.

2.10 Definition. (1) Let α < ωi, y? a property of forcing notion, λ a cardinal.

Then Axa)p[φ, λ] means:

</

(1) P is a forcing notion satisfying φ and P G H(\).

(ii) Zj is a pre-dense subset of P for i < i* < β.

(iiΐ) Si is a P^-name of a stationary subset of u>ι, for z < α.

ί/ιen there is a G such that:

G is a directed subset of P,

G is not disjoint to T^ for i < i*

5f [G] = {ζ <ωι : for some p G G we have p lhP "C in 5 '̂},

is a stationary subset of α i for each i < α.

(2) If λ = K2 we omit it. If β = ωι we may omit it. If a = 0, we omit it.

Ax+[φ, λ] is Axι[φ, λ].

§3. Applications of Axiom II (so CH Holds)

3.1 Application A. Axiom II implies SH(= SH^J, in fact - every Aronszajn

tree is special. (See V. 6.1.) Alternatively, see Application F.

3.2 Application B. On isomorphisms of Aronszajn trees on a closed un-

bounded set of levels, etc, see U. Abraham and S. Shelah [AbSh:114].
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3.3 Application C: Uniformization. Axiom II implies: If η$ is an increasing

α -sequence converging to 5, for any limit δ < ω\ then for every F : ω\ — » ω there

is a g : ω\ -> ω such that: (Vί < ωι)[δ limit -> (3n)[n > F(J) & n = g(ηδ(k)}

for all but finitely many fc < ω]]

/. Let 775 for limit 5 < ω\ be given. Let PF = {/ : Dom(/) is an ordinal

< α i, Rang(/) C ω, and for every limit δ < Dom(/) the condition above holds}.

The order on Pp is the extension of functions. Now, α-properness is very easy.

We prove D-completeness for a simple K0-completeness system B .

We have to note that if TV is a countable elementary submodel of (ίί(λ),

G), PF G N, NΠωi = δ, p e N and r/^F1^), . . . ,η%,Fn(δ) are n "can-

didates" for 775, F(δ), then we can choose at < δ (for £ = l , . . . , n ) and

77i > Max£=ι)nf^(ί), such that A = U^(Rang(77|) \ aι) has order type ω and

is disjoint to Dom(/), and find a q > p, q is (AT, PF)-generic, g f A is constantly

771.

More formally, (see V. 5.2, 5.3), we shall define D(jv,prw,p)> as a filter on

A0 = {G C P Π N : p G G, G is directed not disjoint to any I G JV, J C P, J

pre-dense} such that it depends only on the isomorphism type of (AT, P,p). Let

The filter will be generated by AJJ j p, where for n < ω,η an α -sequence

converging to 5, A^p = {G C AQ : for some fc < ω, and fc > n, for every q G G

and e<ω,\f η(i) G (Dom(ςf) \ Dom(p)), then ς(ry(ί)) = fc}. D3.3

A conclusion is the following:

3.4 Application D. G.C.H. /> Φ^°. (For a definition - see below).

But we know (2H° < 2H l) =^ Φ^ (Devlin and Shelah [DvSh:65], or here AP

§1).

3.4A Definition. The statement ΦJ is defined as: For every G : Λ >2 — > «; there

is an F : X — » « such that for every p G Λ2 we have {i < λ : G(^tz) = F(i)} is

stationary.
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Question. Does G.C.H. -* Φ^? (See the next chapter.)

3.5 Application D*. Axiom II implies: If (η§ : δ < ωi, limit} is as above, and

cδ e ωω, then there is an / : ωι -> ω such that (Vί)(3°°n)[/(^(n)) = cδ(n)}

(this was proved in U. Abraham, K. Devlin and S. Shelah [ADSh:81]).

There an application of this to a problem of Hajnal and Mate on the

coloring number of graphs is given.

Proof. Easy by now. Π13.5

3.6 Application E. Fleissner showed:

Φ^° =Φ> (topological statement A) => not there is a tree Φ = (ηg : δ < ωi),

with Dom(τ7$) = ω, for each 5, and ηs(n) (for n < ω) are increasing with

δ — |Jn η§(n), such that:

(V/i : ωi —> ω)(3f : ω\ —> ω)(3/ι' : α i -> α;)(V limit 5 < α i)

(3 m* < α;)(Vn > m^)[/i(J) < f(ηs(n)) < h'(δ

For a definition of the topological statement A see 3.20(3), 3.25A, 3.25B.

Clearly we can choose any Φ and then use application C to see that this

Φ satisfies the conclusion above:

So Axiom II => not (topological statement A) and Axiom II is consistent

with ZFC + G.C.H, so

3.7 Conclusion. G.C.H. ^> (topological statement A) (again CON(ZFC) suf-

fice) .

3.8 Application F. Fleissner asks about the consistency of the following with

G.C.H. (*#) there is a special Aronszajn tree T such that letting T^ = {t e T :

ht (t) limit} (where ht (t) is the level or height of t) we have (we may assume

that T = (α i, <τ) with i-th level [α i,α i + ω), and we may write x < y instead

x <τ y}'
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<8>r (V/ : Γ -> ω) [(Vt € Γt)(3a; < t)(Vy)[z < y < ί -» /(y) < /(ί)]

(3p : Γ -* ω)(Vί 6 Γt)(3x < ί)(Vy)[a: < y < ί -»

(This is sufficient for the existence of some examples in general topology, see

the end of the application and 3.25 below; we can add (Vy)(/(y) < g ( y ) ) . )

Again CON(ZFC) suffices (as Claim 3.19 F10 holds), i.e. we prove:

Claim. [Axil] Every Aronszajn tree T satisfies 0τ (remembering that Axil is

consistent with G.C.H. and implies that every Aronszajn tree is special, we get

the desired answer).

The proof is quite similar to that of Application A, see V 6.1. However,

here we have to do more; an incidental point is that here we have to find a

g : T — > ω, not from a club of levels but from all of them.

Let T be an Aronszajn tree and /* : T — » ω be such that:

(Vί € Tt)(3x < t)(Vy)(x < y < t -> /*(y) < /*(*)).

Let F = {(g,C) : for some countable ordinal i we have Dom(g) — T<i =

Uα<iτ*ι Rang(<?) C ω (and, if you like, (Vx G Dom(^))[/*(x) < g(x)]),

C C(i + l},C closed, i € C, and

(Vt € Γt n T<<)(3x < t)(Vj/)[z <y<t^f*(y)< g(y) = g(x)]}.

For (^, C) G F, let i(#) be the unique i such that Dom(^) = \Ja<i Ta. We order

Fby

(0ι, CΊ) < (^2,C2) iff ̂  C ̂ 2,d - C2 Π (i(^) + 1).

A generic subset of F gives g as required, but F not only is not necessarily

Ni-complete but may collapse NI, or add reals.

So what do we do? We add obligations.

3.9 Fl Definition. / (more formally (/, C, m)) is called an obligation for

(T, /*) if C — C(ΐ) is a closed unbounded subset of α i, m — m(I) < ω and:
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a) 7 C U{(^)m(/) : α > Min(C)} and

(αι,...,om (/)) G /=> /\
k€[l,m(

b) if Min(C) < α < /?, and (αi, . . . , αm(/)) G (T0)
mW Π 7, then

(of course for α £ T/j, αfα is the unique 6 £ Ta such that 6 <τ α),

c) if α = Min(C), then (Tα)
m^7^ Π / has K0 pairwise disjoint members,

d) if α e C, (αj, . . . , α^(/)) e (Tα)mW Π J and β e C, α < /3, then

m(J)

{(αι,. . . ,α m ( / ) )€(Γ / 3 ) m ( J )nJ: f\ aέ\a = afi
1=1

contains NO pairwise disjoint members,

e) there are nt(I) < ω (for ί = 1, . . . ,m(/)) such that: if a e In (Tα)m(7),

6 6 / Π (Tβ)
mW and α,/? € C,α < /3 and ά < 6 (see below), ί/ien

n/(J) > Max{/*(ί) : α^ < t < be} < ω.

Notation. If α G (Γα)mW, then α(ά) d= α.

3.10 F2 Definition. For α,6 € /,α < 6 holds i/ α G (Tα(ά))m(/), 6 6

(Γβ(δ)r(J),α(ά)<α(6),and

m(J)

Then we say 5 extends α or 6 is an extension of α.

Let θίξ(I) be the ξ-th element of C7(/), in the increasing enumeration of C(I).

3.11 F3 Definition, (g, C) fulfills the obligation 7 if a), b) and c) below hold,

where:



388 VII. Axioms and Their Application

a) i(g) G C(I\ i(g) > αι(J) and C \ α0(/) C C(J).

Subdefinition (F3i). We say that g is /-good for α € / if 'α(α) < i(#) and

< y < a£ -> /(j/) <

moreover (W)(Vτ/)[l < I < m(I) & aέ\aQ(I) < y <

b) There are άw G /Π^^)^7),^ G /Π (Γαo(/))
m(7), (fc < ω,£ < ω) such

that: α/c < α^^; {α^ : A: < ω} are pairwise disjoint and for each k we have:

{άk,£ '. i <ω} are pairwise disjoint and g is /-good for each α/-^.

Subdefinition (FSii). We say (#, (7) is /-very good for ά ifa(ά) G CΠC(/),

and for any /?, α(α) < ^ G C Π (i(^) -f 1), δ has K0 pairwise disjoint

extensions in / Π (Tβ)m for which ^ is /-good.

c) If α < β < 7 are in C Π C(J), α G / Π (Ta)
mW and, (^, C) is /-very good

for ά ί/ien α has K0 pairwise disjoint extensions in / Π (Tβ)m^ for which

(g, C) is /-very good (7 appear just to make β not of maximal level as

then /-very good is meaningless).

3.12 F4 Definition. P(τ,/*) = {(0> ̂  5) : (0» C) G F, ̂  a countable family of

obligations for (T, /*) which (#,(7) satisfies}.

For short, we may write PT for

3.13 (F5) Claim. I< d= {(g,C,B) G P(τ,/ ) : * < i ( g ) } is a dense subset of

(f°r eacn ί < ωι)

Proof. Let (^, (7, £?) G -P(τ,/*) and * < ^i

As 5 is countable, ΓΊ/££<7(/) is a closed unbounded subset of ωi. So we

can find a ξ such that: ξ > i, i(^) and ξ G C(/) for every / G β. We let

Ct-CU{^}, Bt = jg.

Now we shall define #; (such that (</, C f, fit) > (̂  c, 5) and (p7, <7f, βt) G

J^ will exemplify the desired conclusion).
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The nontrivial part in defining g' is to satisfy Definition (F3)(c). There,

the nontrivial case (and it implies the others) is β = i(g),Ύ = ξ. So, for each

a < β (= i ( g ) ) and / G B, a G C(I) Π C and ά G (Ta)
mW Π / such that (g, C)

is /-very good for α, we have to provide NO pairwise disjoint 6 > α such that

b G (:7»m(/) ΓΊ/ and (g1, &) is /-very good for b. (Hence (g1, C f) will be /-very

good for ά.)

Let {(/fc,θ!fc,άfc) : k < ω} be a list of all triples as above. As (g,C) is

//--very good for αjt, there is a set of pairwise disjoint sequences {bkte t <

ω} <Ξ (T0)m(/fc) Π /£ such that g is /^-good for 5^ and ά& < 6 .̂

Now we can easily find an infinite S^ C ω (for k < ω) such that £ι G 5^,

^2 € 5/e2, fci / &2 =^ δjfej ^j Π 6fc2 ̂ 2 = 0 (more exactly, the intersection of their

ranges is empty). Also for fc, ί < ω we can choose cj^ G (T7)
m(/fc)n/A; for m < ω

such that: 5W < ̂  and m(l) ̂  m(2) =* Rang(c^1}) Π Rang(c^2)) - 0;

remember 7 — ξ.

Let 6M - (6fe^,e : 1 < e < m(/fc)} and ̂  - (c ê : 1 < e < m(/fc)}. Let

7M(i)>m(2) ^f Maχ{C : c^grC = <SrC}, so by Ramsey theorem and basic

properties of trees for any fc, I < α;, e G [1, m(/fc)], either (37)(Vm)[7^ e = 7]

or 7J^g e does not depend on m(2) and is strictly increasing in m(l).

Now we have to define g'\(\J{Tζ : i(g) <ζ< ξ}). If t G \J{Tζ : i ( g ) <ζ<

ζ}, bkt£lG <t< c™^ e, then note that by clause (e) of 3.9

Max{/(5) : 6Mιe < s < t} < ne(/fc),

in which case we let g f ( t ) = ne(Ik) (by the above choice of bkj there is no

contradiction, as bk&e = bk^i^ei => k = ki&zl = li&ze = eι).

By the assumption on the cj^e's, if t G IJί^C : ^(d) < ζ < ζ} an<i '̂(0 is not

yet defined ί/ien: g'(y) is not yet defined for any large enough y < t or t φ T^.

Let {tn : n < ω} be a list of all t G \J{Tζ : ϊ(0) < C < f}, such

that for arbitrarily large 5 < t we have that #'(s) is still undefined and the

height of t is a limit ordinal. We can easily define by induction on n, sets

An C \J{Tζ : i ( g ) < ζ < ξ}, such that: on every t G An, #7(ί) is undefined,

An are pairwise disjoint, each An is linearly ordered, each An is convex (i.e,
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x,y G An ί\x < z < y =Φ z G An), and for every ίn, for some xn < ίn, and

n' < n we have {y : xn < y < tn} C An/, and Supx€Λτι/*(x) < ω (see the

hypothesis on /*;An may be empty).

Define g'(t) for £ G An as MaxxG^τl/*(^) Complete #' to its required

domain Uα<ξ Ta by g'(t) = f * ( t ) if #'(£) not already defined. It is easy to

check (0',£7t) G Fj (0',ct,βt) G p(T|/φ) and (0,C,B) < (0',Ct,βt). Π3.i3

3.14 F6 Claim. If (g, C, B) G P(τ,/*), ί > *(0)» ί G Π/GB ̂ ί7) is a limit ordi-

nal and ti, . . . , tn are branches of (Jα<ξ T^, and j/i, . . . yn are <τ-incomparable,

yt € t^, y€ ^ Dom(^), n^ > Max{/*(x) : x = zt oτ yι < x e t*}, tten

there is a (^^t,^) G pτ such that i(0t) = ξ,(^,C,B) < (^^t,^) and

ye<x-> g'(x) = nέ).

3.15 Remarks. By the demand on /* we know that n^, yt always exist, if tι

have distinct an upper bound in T (in particular the Max is well defined).

Proof. Same proof, assuring bk^e φ fy. Πs.i4

3.16 F7 Claim. If λ is large enough (2Hl should be o.k.), {P(T)Γ),T,/*} G

N -< (ίf(λ),G), \\N\\ = K0,δ
d= α ; ι Π 7 V a n d t ι , . . . , t n are (distinct) 5-branches

of N Π Γ = \Ja<δ Γα, (p, C, B) G PT Π AT, J G AT a maximal antichain of PΓ,

2// ^ t£, 2/1, . . . , 2/n are pairwise <τ-incomparable, ̂  G U*<i(p) Ti and for everv

£ and z, 7/£ < z G t^ we have

m > Max{/*(z) : yέ < z G t/, ht (z) > i ( g ) }

and

nι = ^(y^) = fl^(^) when yt < z e it, ht (z) < i(p)

(remember, ht (z) is the height of z in the tree), then there is a (#', C^, βt) G

PTΠA^ such that (g', &,B]) > (g, C, B) and (#', C f, βt) is above some member

of J and (Vx G
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Proof. Suppose not. Define

7o= f {(αι,...,αm) : for some β< ωι,β > %),αι, .. . ,αm G Tβ,

at > Ϊ£\i(g) = the unique x G it Π Γ^),

(so necessarily 01, . . . , αm are distinct), β G P| C7(/),

/€S

/\(Vx)(x <at/\xφ Όom(g) =* /*(x) < n*)

^
and there is no (#', C f, 51) > (#, C, 5) such that:

a) i(g') < β

b) (</, C,B^) is above some member of J
m

c) /\ (Vx)[x < at & ht (x) > i(g) & ht (x) < i(g')

1=1

Clearly /o G A/", and if α^ G t^ Π T^ (for I — 1, . . . , m) are distinct (and for

/? € [*(#)> ^) there are such α^) (aι is determined by t^, /?), then (αi, . . . , αm) G

/o, provided that i(0) < β G f|/eB ^W Note: a G ^o => α(α) G f| C[7]
/€B

But in TV, the set Π/eB ^(Ό ^ ̂  is unbounded below J.

So JV N "for arbitrarily large /? < c^i there is an α G /0 Π (Tβ)
m" . So by

TV's choice this really holds.

We now define, by induction on ε < (2Kl )+, a set Iε. /o was already defined.

For limit ε, we set Iε = Γ\ζ<ε ^O an(^ ^ ε = C + 1 then α G 7e iff α G /ζ and

for arbitrarily large 7 < ω\ we have: there is b G (T7)
m such that α < 6 G /ζ.

Clearly, if α < b are in / and b G /e then α G 7ε; also for some ε(*) < (2Nl)+ we

have ε(*) < ε < (2Nl)+ => /e = /ε(*) For α G 70 let ε(ά) = Min{ε : ε = ε(*),

or α ^ Iε+ι} Returning to t^'s, easily ε((tι\β : I = 1, . . . , n)) is nonincreasing

with β for β G ( i ( g ) , TV Π α i), hence eventually constant, hence is constantly

ε(*). So (tέ\β : ί = 1, . . . ,n) is in 7ε(5(e) for β G (ϊ(0),ί), hence /e(j|c) ^ 0.

By the proof of Theorem III 5.4 (as in V §6), there is a closed unbounded

C* C Π/6B ̂ 00 \ (*(^) ~^~ ^ ) sucn that there are NO pairwise disjoint members of

7e(*) in (T^)771, moreover there are N0 pairwise disjoint members of 7ε(#) in (T^)771

which are above ά, if α G (Γ^)771, α G 70, ̂  < δ, δ G C* and α G (T^)m Π 7e(s(£).
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Define / d= {α : for some 7 we have 7 > β > Min(C*), α G (l»m,δ G

I e W n(T 7 Γ,7eσ*,α<5}.

Then / ( more formally (/, C*, ra)) is an obligation for (Γ, /*). By a variant

of 3.14 F6 we can find a (gf,C^ J?ΐ), where gf > g,i(g) = &i(I) = second

element of C*, C1" = CU{αoCO» αι(/)}, #f = B U {/}, such that for infinitely

many pairwise disjoint α G J(Ί (T"αo(/))m, for infinitely many pairwise disjoint b

we have ά < 6 € / Π (Γαι(/))
m and Λ*Lι(Va;)[z < bt Λ ht (x) > *(0) -» 9'(x) =

So, there is a (0",C",B") > (^C^βt) in P(τ,/*) which is above a

member of J. As / G βt, clearly i(ρ;/) G C* = C7(J), and there is an α e

7 Π (?i(0"))m for which g" is /-good. This contradicts the definition of /o? I

3.17 F8 Claim.

1) PT is proper

2) PT is α-proper for every a <ω\.

Proof.

1) If AT is as in 3.16 F7 and δ d= N Π α>ι, while (y0, CO, BO) e P(τ,/*) Π ΛΓ, let

{ Jn : n < α;} be a list of maximal antichains of PT which belong to N. We

define (gn, Cn, Bn) G P(τ,/*) Π AT which are increasing, (<jn, Cn, βn) is above a

member of Jn-\ (when n > 0) and "on the side" we all the time have more

comitments of the form that appear in 3.16F7. More specifically, together with

(<7m Cf

n, Bn) we have t^, y^, m^, for ^ = 1, . . . , fcn, such that t^ is a branch

of Γ Π AT with an upper bound in Tδ, yt G t€, y^ G Ui<»(p) T*> (^Nί^n) : ^ =

1, . . . , fcn) are pairwise distinct, ^ < y G t^ Π Ui<i(P) T< ^ ̂ (y) < n^ and

n^ > Max{/*(5) : yt < s G t^} and if ί̂  G T§ is the upper bound of t^ then

^ > f*(te)- We can continue by 3.16 F7 in order that in the end we get a

condition. We have two kinds of tasks:

A) for every t G T$, there is an x G Uj<«5 Tj,x <t such that

(V3/)(x < y < t -> /* (y) < (y(j/) - ̂ (x) & /* (t) < (/(x))
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If our promise until now is t ι , n ι , τ / ι . . . , t^,n^,^ we let fy+i = {x : x <τ t},

ni+i = Min{n : for some z G fy+i, for every y, z < y < t =Φ /(y) < n} and

then choose ye.+ι appropriately.

B) for every / 6 Bn, α G Cn Π C(/), α G (Tα)
m Π /, (gn, Cn) is /-very good for

α, and A; < ω, we want that there will be A: pairwise disjoint 6's in (T^)771 Π /,

so that (U<;n, UCn) will be /-good for 6.

(As we do this eventually for every A;, we can get K0 pairwise disjoint δ's.)

This is again quite easy.

We have only K0 tasks, so there is no problem. Having defined ((gn,Cn,Bn} :

n < ω) it is straightforward to find an upper bound (#*, C*, B*) G P^j*}, with

i(g*) = ί, which is (N, P(^j*))-generic and is above (#o,Q),5o)

2) A similar proof. D13.17

3.18 F9 Claim. PT is D-complete for some simple KI-completeness system D.

Proof. As in the proof of 3.17 F8 above, we have to prove that z/for one N

(with δ = N Π ωi) we are given countably many possible pairs

(Tδ, (I Π (T5)
m : / G N an obligation for (T, /*)})

then we can define a sequence ((gn,Cn,Bn) : n < ω) which is appropriate for

all of them at once. This is trivial as in the proof of 3.17 F8 we do not actually

need to assume that te has an upper bound in T$ (i = 1, . . . , fcn), just that it

is well defined as a 5-branch of T§ with sup{/*(t^fα:) : α < δ} < ω. DS.IS

The following is not needed for applying Axil, but is needed if we want to

use the weaker variant equiconsistent with ZFC.

3.19 F10 Claim. Pτ satisfies the N2-e.c.c. (see §1).

Proof. Trivial: define h : PT -» ω\ such that

h(g,C,B] = Λ(0',Ct j Bt) iffg = g
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(this is possible as 2*° = NI). Let (g, C, B)R(g' , C^B^) mean (g, C) = (#',

and in Definition 1.2(B) let

Remember that (0, C, B), (p, C, βt) have a lub: (g, C, B |J fit). D3.ι9,3.8

3.20 Discussion.

1) The proof here is appropriate for Application A; the small gain is that we

directly find a function specializing T rather than finding one specializing

a closed unbounded set of levels, and then using a theorem saying this is

equivalent.

2) In applications A and F, compared to Jensen's CON(ZFC 4- G.C.H. +

SH), we can get also CON(ZFC + CH + SH 4- 2Nl=anything of cofinality

> HI) using Lemma 1.3, and iterating ω2 times, each time specializing all

Aronszajn trees. The same proof works for all the relevant cases.

3) Fleίssner's Question. It is unknown whether ZFC h " there is a countably

paracompact non normal Moore space" . (Equivalently, there is a countably

paracompact not hereditarily countably paracompact Moore space).

Such spaces can be constructed by Wager's technique from normal non-

metrizable Moore spaces.

Application E gives the first example of such a space not constructed in

this way.

Application F shows it can even be a Jones road space - a more traditional

space than the space constructed in §3 E] see more in 3.25.

3.21 Application G. Ax II implies: There are no Kurepa trees. Moreover,

every Ni-tree (a tree of height ω\ with all levels countable) is essentially spe-

cialized, i.e. there is an / : T — > Q (rationale) such that: t < s => f ( t ) < /(s),

and t < sι,t < s2,/(t) = f(sι) ~ f(sz} =^ (5ι ^ 52 or $2 < sι) (Why does

this imply that T is not a Kurepa tree? On any ω\ -branch B, f is eventually

constant, so choose the minimal x G B, f\{y G B : y > x} is constant, call it

x(B). Then BI ^ B2 ωi-branches => x(Bι) ^ x(B2), so T has < HI branches.)
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3.22 Remark. Here Con(ZFC -f 3 inaccessible) is sufficient (and necessary).

Proof. First, let PQ be a Levy collapse of H2 to HI (which is HI-complete).

In Vrp, by Silver (or see III 6.1), T has at most HI many ωi-branches. Let

{Bi : i < ωι} be a list of the ωi-branches of T, w.l.o.g. they are pairwise

disjoint (choose B\ C Bi pairwise disjoint end segments by induction).

Now Q is a forcing (in Vp) which specializes Γ as in Application A, but

on each Bi the function is constant. The proof is the same.

So P * Q essentially specializes Γ and so guarantees that T has < HI

branches. A directed G C P * Q defines the function / which essentially

specializes T if it meets the following HI dense sets:

Xt = {p : p |h "/(ί) = q" for some q € Q} for t <E Γ.

So by Axiom II there is a G as required, provided that P * Q is (< ω\)-

proper and D-complete for a simple HI-completeness system D.

For (< α>ι)-properness: P obviously is, Q - as in Application A, (in Vp)

and so by III 3.2. applied to (< ωι)-properness, P * Q is (< ωι)-proper. The

task of checking for D-completeness is left to the reader. Πs.21

3.23 History for G. Baumgartner Malitz Reinhart [BMR] prove MA +-Ί CH

=Φ every Aronszajn tree is special.

Silver proves that by Levy collapsing κ=first (strongly) inaccessible to H2

one obtains that there are no Kurepa trees (this includes the lemma we quote).

Devlin proved: CON(ZFC + MA + 2N° = H2+ no Kurepa trees).

Shelah [Sh:73] used essential specialization function as the function above

and showed that we can use HI-C.C. forcings to essentially specializes HI-trees

with few branches (the proof uses more particularly unnecessary information).

Baumgartner [B3], using proper forcing, defines essential specialization and

strengthens Devlin's result to: CON(ZFC + MA + every tree of power HI and

height HI is essentially special). Independently, Todorcevic proved these results

too.

It is well known that for such a consistency result an inaccessible cardinal

is necessary.
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3.24 Application H. Assume Axiom Π'[S]. For δ G S let η§ be an u -sequence

converging to δ. Then (η§ : δ G S) has the No-uniformization property. See

[Sh:64], and [Sh:98]; this result should be an exercise to a reader who arrives

here (but you may want more refined results as in [Sh:98], then proofs there

are still of interest).

3.25 On Countable Par acompact ness. Some general topologists consider

suspiciously application F. So, let us give the derivation of the solution of the

original problem.

3. 25 A Problem. Is the existence of a countably paracompact regular space

which is not normal consistent with G.C.H.?

3.25B Definition. A topological space X is countably paracompact if for

every family of open sets Un of X (for n < ω), which forms a cover (i.e.

satisfies X — [Jn<ω Un), there are open U'n (n < ω) which refine Un (n < ω)

(i e Λn VnX £ ^m) and form a cover of X (i.e. X = \Jn<ωU^ which is

locally finite (i.e. for every x G X, {n : x e U'n} is finite).

3.25C Definition. We shall consider a tree T as a topological space as follows:

the set of points of the space is the set of nodes of T, for t £ T its neighbourhood

basis is:

if ht (t) non limit.

I {y : x <τ y <τ t} x <τ t j if ht (t) is a limit ordinal.

3.25D Fact. For a o^-tree T we have:

(*) as a topological space, T is Hausdorff (use the normality of the tree) and

even regular. IU3.25D

3.25E Claim. If T is an u i-tree satisfying ®τ (the conclusion of 3.8(=Appli-

cation F)) above, then, as a topological space, T is countably paracompact.

Proof. Let Un C T be open with T = \Jn<ω Un. Define a function / from T to

ω by: f ( t ) = Min{n : t € Un}.
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First check that / satisfies the antecedent of <8)τ, i.e. (Vt G

t)(Vy)[x < y < t => /(y) < f(t)} (the order is of the tree).

So let t G Tt, i.e. t G T, t € T$, δ a limit ordinal. For some n, n = /(t) so

t E E/n, hence for some x < t, {y : x < y < t} C [7n, hence x < y < t => /(y) <

n = /(t), as required. So by ®τ there is a function g : Γ — > ω satisfying the

conclusion of ®Γ, i.e. (Vt G Γ^)(3x < ί)Vy[x < y < t -> /(y) < #(y) = #(x)].

Now, without loss of generality as asid above we can force it, still we derive it.

[Why?

(*) /(*) < 9(t) for every t G T.

Let ί G T"ΐ, so for some x\ < t we have:

(*)ι xι<y<t=>f(y)<f(t)

(this is true, as we have verified the antecedent of <S>τ)

and for some x2 < t

(*)2 z2 < V < t => /(y) < ff(y) - fl(x2)

(this is possible by the choice of g) .

Now ifyeAt d= {y :y <t,xι <y,x<2 < y}, then /(y) < f ( t ) (by (*)i),

< 9(t) (by (*2), by the "/(y) < ί/(j/)w there) and g(t) = g(x2) (by (*)2,

by the ug(y) = g(xιY there) and g(x2) = g(y) (by (*)2, by the "g(y) =

^(x2)" there). Together, y G At =» /(y) < y(y). So, {t : f ( t ) > g(t)} is

necessarily a set of isolated points with no accumulation point. Hence we

can change the values of g on it while not harming the conclusion of <8>τ] .

Define U'n^ = {x G Un : g(x) = ί} (for n < ί < ω). First, clearly

U'n £ C Un. Second, each U'n ί is also an open set: if t G Γ^ Π U' ^ let x2 < t be

such that x2 < y < t => /(y) < ^(y) = p(x2) = ^(*)> so X2 < y < t ^> g(y) =

i — g(χ2) (there is such an x2 by the choice of g). Let Xi < t be such that

xι<y<t=>y£Un (there is such an x as we have verified the antecedent of

<8>τ) and choose an x < t, x > xι,x > x2, clearly {y : x < y < t} C E7n,£. If

t G T \ Tt, obviously {t} C U'n^

Third, T = \Jn<£<ω U'n έ because if t G T, then for some n, we have that

t €Un\ Um<n Umi hence by the choice of /, f ( t ) = n and for some t we have

g ( t ) =t,sote U'nj and n < £ as n = f ( t ) < g(t).
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Fourth, {Untι : n < ί < ω} is locally finite: if t G Γ, Γ = 0(ί) then (Un,t n <

£<ω,te Un,t} C {Unt£ :n<ί = e*} which has £* + 1 members. D3.25E

It was proved in [DvSh:85] (using the weak diamond) that

3.25F Claim. (CH) No special Aronszajn-tree is normal (as a topological

space, in the topology we considered). Πs.25F

So we can solve Watson's problem:

3.26 Conclusion. Axil (which is consistent with G.C.H.) implies that every

Aronszajn ωi-tree T is special and (8>τ holds. Hence, we have a countably

paracompact, non normal, regular topological space which is an Aronszajn

tree. In fact, it suffices to use a weaker version of Axil, for whose consistency

(even with GCH), CON(ZFC) suffices. D3.26

§4. Applications of Axiom I

4.1. Claim. P is proper and even α-proper for every α < ω\ if at least one of

the following holds:

1. P satisfies the NI-C.C.

2. P is tti-complete (then P is even strongly proper and ^ω-bounding)

3. P is Sacks forcing, or Silver forcing, or Gregorief forcing, or a product with

countable supports of such forcings (then P is even strongly proper and ωω-

bounding) for definitions see Lemma VI 2.14(2); Remark VI 4.1A; Definition

VI 4.1(1) and VI 4.1A, Definition IX 2.6, Definition V 4.1 respectively).

4. P is Laver forcing (P = {T : T C ω>ω, T non empty closed under initial

segments, no XX-minimal element and for some η € T such that: TΓ\^η^ω —

{η} and η < v G T => (3*n)(z/Λ (n) € Γ)} ordered by inverse inclusion).

Proof. An exercise. Q14.1
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4.2. Discussion. Baumgartner [B3], independently of the author's work on

proper forcing, and at about the same time, introduced Axiom A forcing defined

below. It covers a large part of the application of proper forcing, but to many

it seems easier to handle.

P satisfies Axiom A if there are partial orders <n on P such that:

i) <o is the usual order <,

ii) x <n+1 y =» x <n y,

Ίii) if f\n xn <n Xn+i then {xn : n < ω} has an upper bound in <,

iv) if T is a name of an ordinal, p G P, n < u>, then there are q G P,p <n q

and a countable A C Ord, A G V such that <? Ihp "r G A"

Baumgartner proved "P satisfies Axiom A =Φ P is proper"; in fact "P

satisfies A => P is (< u>ι)-proper". Which forcing notions are equivalent to

ones satisfying Axiom A? See XIV 2.4.

4.3. Discussion. Baumgartner [B3] found many applications for proper forc-

ing: new ones and simplified proofs for the old ones (see proofs there). It is a

matter of taste whether to deduce them from Axiom I, or build a forcing doing

it. Some of them are:

4.3A. Pα, the forcing giving finite information on the enumeration of a closed

unbounded subset of GUI, is proper.

Remark. But Pα is not ω-proper, so this shows proper ^ ω-proper.

This club does not include any old infinite sets. So if we iterate ω^ times (by

Axiom I or any variant) we obtain that for any HI infinite subsets of ω\ there

is a club which does not include any of them. So this statement is consistent

with 2N° = ^2- In fact 2^° can be anything, since if Pω2 is the forcing for doing

the above, its product with adding κ; Cohen generic is also O.K.

U. Abraham proved the consistency of a similar assertion for N2 (with CH).

4.3B. Every tree of height HI and power HI is essentially special.
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See §3 Application G. Only before forcing with P, add a Cohen real. Here

the forcing specializing T consists of finite information, but the first part is the

same (see history there, more exactly in 3.23).

4.3C. CON(ZFC -|- no ^2-Aronszajn trees) (originally proved by Mitchell and

Silver). We use K, weakly compact.

4.3D. Laver's consistency of BoreΓs conjecture: Baumgartner iterates ^2 times

the forcing P = {A : A C ω is infinite}, ordered by A <p B iff B <ae A for

adding a Ramsey ultrafilter, and Mathias forcing for those ultrafilters (note

that we can use the preservation of the Laver property (see Definition VI 2.9

and Conclusion 2.12)).

4.3E. CON(ZFC -f "there are no K2 subsets of HI of power NI, with pairwise

countable intersection"), originally proved by Baumgartner.

4.4. On isomorphism of Aronszajn trees see Abraham and Shelah [AbSh:114].

§5. A Counterexample Connected
to Preservation

5.1 Example. If we iterate forcing which does not destroy stationary subsets

of ωι we may destroy NI.

Proof. For every α < ω^, let α = \Ji<ωι Af where Af are countable, increasing

and continuous in i and let ha(i) = the order type of Af.

Let Ί) — Vωι (the filter of closed unbounded subsets of ω\). Then g\ <χ> g%

means {α < ω\ : g\(ot) < g^a)} G 2λ

Then α < β => ha <τ> hβ. Suppose

(*) (Vα < ω2,)[ha <τ> g] for some g : ω\ —> ω\ (g exists e.g., if V = L).
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Define Pg = I (/ι, s,F, T) : h is a function from some i < ω\ to ωι,i is

a successor ordinal, s is a characteristic function of a closed subset of i, and

h <s g, which means s(j) — 1 => /ι(j) < g(j), F is a countable subset of

{ha : a < 6^2}, T is a function from F to the set of closed subsets of i such

that ha G F& j G T(ftα) => Λα(j) < /ι(j)}.

We call z the domain of the condition.

The partial ordering is obvious. Pg is not necessarily K

5.1 A Fact. If CH, then Pg satisfies the ^2-chain condition (moreover there is

a function h : Pg — > ω\ such that if h(p0) = h(pχ) then p0, Pi and a lub).

Proof. For the first phrase find a Δ-system then take the union.

(For the second let h((Λ,s,F,Γ)) code (h,s).) D5.ιΛ

5. IB Fact. Forcing with P^ does not destroy stationary subsets of α i and does

not add reals.

Proof. Let S C cji be stationary, p G PG and C a Pp-name of a closed

unbounded subset such that p \\-pg "C is disjoint to S" .

First take N x (if(N7),G,P,C,S,p), | | JV | | -Hi such that ωl -h 1 C ΛΓ.

Let TV Π ω2 = ε, so ε = {C(^) : z < α i}, and without loss of generality TV

is such that N — \Ji<ωι Ni,Ni -*.N,Ni are increasing continuous, \\Ni\\ = HO,

and (Nj : j < i) G M+i-

Now /ιe <χ> f̂ by the assumption on g. So let C0 be a closed unbounded

set such that i G CQ => hε(i] < g ( ϊ ) .

For each i < ωι,ζ(i) < e so ft^) <p hε. So let C* be a closed unbounded

subset of ωi such that j G C1 => hζ^(j) < hε(j).

Let Ci C α i be closed unbounded such that

Now

C d= {i e Co Π Ci : (V? < ί)i G
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is known to be closed unbounded subset of ω\. Choose a δ G C and let

δ = LUn,jn < δ.

Now, by induction on n < ω, define pn G Pg Π N§,p — po, Pn < Pn+i such

that jn C Dom(/ιpτι),pn+ι Ih "7n G C" for some 7n, jn <jn<δ.

Now (J pn can be extended to a condition p* G Pp by adding δ to
n<ω

the domain because δ G C and hε(δ) can serve as the value of h(δ) i.e.

p* - (hp* ,sp* ,Fp* ,Tp*) is defined by: Dom(/ιp*) = <S 4- 1, h*\δ = (J /ιp"
n<ω

(well defined as jn C Dom(/ιpτι)), and hp* (δ) = he(<5), sp* is a function with

domain J + 1, sp* \δ = \J sp" and sp* (δ) = 1, F** = |J FP» (which is C TV
n<ω n<α;

as each pn belongs to N) and lastly if ha G Fp* let n(α) = Min{n : ha G Fpτι}

and let Tp* (ha) = ( \J Tp- (Λα)) U {5}. Why p* G Pp? As ί G C0, we have
n6[n(α),u;)

Λe(5) < flf(ί) and ζ e J V n α ; 2 = > C = CW> ^or some * < ^> hence Λζ(J) < Λe(5)

(as δ G C) but hβ(ί) < ^(ί) so hc(ί) < g ( δ ) . Now p* Ih "J G C" as C is closed

and δ = \Jnjn = \JnΊn and pn+ι "~ "7n G C". But δ G 5, so p cannot force

that C is disjoint to 5. Also, if r G NQ is a P5-name of a real then we can

arrange that pn+ι forces a value to r(n) hence p* Ih "r = r" for some old real

r D5.is

Pp in general is not proper. Now if G C Pg is generic, we can find a generic

function h such that

(Vα < ω<2)ha <χ> h <χ> g .

So Ph is well defined.

If we iterate ω-times (taking any kind of limit) we necessary destroy ω\ .

Why?

We get / i o , f t ι . . . functions from ω\ to ω and ftn+ι <χ> Λn (any closed

unbounded subset of ωi remains closed unbounded), contradiction. (Note: the

kind of limit we take at ω is irrelevant.) D5.ι




