ITI. Proper Forcing

§0. Introduction

In Sect. 1 we introduce the property “proper” of forcing notions: preserving
stationarity not only of subsets of w; but even of any S C S<y,(A). We then
prove its equivalence to another formulation.

In Sect. 2 we give more equivalent formulations of properness, and show
that c.c.c. forcing notions and N;-complete ones are proper.

In Sect. 3 we prove that countable support iteration preserves properness
(another proof, for a related iteration, found about the same time is given in
IX 2.1; others are given in X §2 (with revised support) and XII §1 (by games)).
Also we give a proof by Martin Goldstern (in §3).

In Sect. 4 it is proved that starting with V with one inaccessible «, for
some forcing notion P: P is proper of cardinality k, do satisfy the k-c.c. and
IFp “if Q is a forcing notion of cardinality N;, not destroying stationarity of
subsets of wy and Z; C Q is dense for ¢ < wy, then for some directed G C @,
N <o, GNI; # (”. For this we need to give a sufficient condition for LimQ to
satisfy the k-c.c. (where Q = (P, Qi : i < k) is a CS iteration of proper forcing
such that for each i < k we have I-p, “|Q,-| < K”). For this we show that the
family of hereditarily countable conditions is dense in each P, so i < k = F;

has density < &.
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In sections 5, 6 we present known theorems on speciality of Aronszajn
trees.

In Sect. 7 we prove: for V satisfying CH there is an Rs-c.c. proper P such
that IFp “ if for i < wq, the set A; C w; is countable with no last element and
otp(4;) < sup(4;), then for some club C of w; we have i < w; = sup(CN4;) <
sup(4;)”.

In Sect. 8 we prove the consistency of the Kurepa hypothesis (first proved
by Silver [Si67] and see more Devlin). This is a proof from the author’s lecture
in 1987.

§1. Introducing Properness

1.1 Discussion. When we iterate we are faced with the problem of obtaining
for the iteration the good properties of the single steps of iteration. Usually,
in our context, the worst possible vice of a forcing notion is that it collapses
N;. The virtue of not collapsing X; is not inherited by the iteration from its
single components. As we saw, the virtue of the c.c.c. is inherited by the FS
iteration from its components. However in many cases the c.c.c. is too strong
a requirement. We shall look for a weaker requirement which is more naturally
connected to the property of not collapsing N;, and which is inherited by
suitable iterations.

We shall now study a certain generalization of the concepts of a closed un-
bounded and a stationary subset of w;. They were introduced and investigated

by Jech and Kueker.

1.2 Definition. For A uncountable let Sx,(A4) = {s : s C A,|s| < Ro}. Let
W C S, (A) be called closed if it is closed under unions of increasing (by C of
course) w-sequences. W C Sy, (A) is called unbounded (in Sx,(A)) if for every
s € S, (A) there is a t € W such that t 2 s. If W C Sy, (A), the closure of W
is cl(W) = { U sn:8sn € W and s, C sp41 for n < w}, (clearly W C cl(W)

n<w

and cl(W) is closed).
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1.3 Lemma. The intersection of Xy closed unbounded subsets W;, i < w, of

Sx, (A) is a closed unbounded subset of Sy, (A).

Proof. Since each set W; is closed, the intersection N;<, W; is obviously closed
too. Let us prove now that N;<,W; is unbounded too. Let s € Sx,(A); we have
to prove the existence of a set t D s such that t € N;<,W;. We shall define
a sequence (s, : @ < w?) of members of Sy,(A) as follows. Let so = s, for
a>0, a=uw-k+ £ choose s, as an arbitrary member of W, which includes
Ug<aSs € Sxo(A); it exists as W, is unbounded. We take now ¢ = Ug<w28a-
Obviously t D so = s. For a fixed i < w and every a < w?, let @ = w-k+£ then
a < w(k +1) + 1, hence, by the definition of s, (k+1)+s We have sq C Sy (k41)+i-
Therefore t = Ugcw25a = Ugk<wSw-k+i- The sequence (Sy.k+i @ k < w) is a C-
increasing w-sequence of members of W;, and since W; is closed also its union

t is in W;. Thus t € N;<,W;, which is what we had to prove. O3

1.4 Definition. By the last lemma we know that the closed unbounded subset
of Sx,(A) generate an Rj-complete filter, namely the filter of all subsets of
Sy, (A) which include a closed unbounded set. We denote this filter with Dy, (A)
or Dcy, (A) or D(A). A subset of Sy, (A) is called stationary if it meets every
closed unbounded subset of Sx,(A), i.e., if it meets every member of Dy, (A).
We shall now present the lemma which says that for |A| = Ry, Sx,(A) and
Dy, (A) do not differ significantly from w; and the filter D,,, generated by the

closed unbounded subsets of wj.

1.5 Lemma. A subset of w; is a closed unbounded subset of w; (in the usual
sense of a closed unbounded subset of an ordinal) iff it is a closed unbounded

subset of Sy, (w1)-

Proof. Easy. Ui

We shall now introduce a more restricted set of generators for D(A).
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1.6 Definition. M will denote an algebra, with universe A, and with countably
many functions. Let

Sm(M) = {s:s C A,|s| < Ro, s is closed under the operations of M}, i.e.,
Sm(M) is the set of countable subalgebras of M. Now Sm(M) is obviously a
closed unbounded subset of Sx,(A) (even if M is a partial algebra).

A subset of Scy,(A) of the form Sm(M), is called an Sm-generator of
D(A).

1.7 Lemma. For every closed unbounded subset W of Sy,(A) there is an
algebra M on A such that Sm(M) C W.

Proof. We shall define, for every finite sequence @ = (ao,...,an-1) of mem-
bers of A, by induction on the length n, a set s(@) € W such that s(a) 2
{ao,...,an-1} and s(a) 2 s({ag,...,an—2)) when n > 1 (of course if n = 1
(ao,...,an—2) is the empty sequence). This is obviously possible because W
is unbounded. We define now n-place functions F}*,¢ < w, for all n < w such
that s({ao, - -.,0n-1)) = {Fg(ao,--.,an-1) : £ < w}. Let M = (A, F})ncw t<w-
Let s = {ao,a1,...} be a subalgebra of M. Denote s, = s({ao,...,an-1)) =
{F}(ag,...,an-1) : £ < w}. We have:

a) s, C s, since s is a subalgebra.

b) sn C Sn+1, by definition of s((ag,...,an)).

) an € Sn+1, also the choice of s({(ag,...,an-1))
d) s, e W.

By (a) and (c) we have s = Up<wSn; by (b) and (d) we get s € W. Thus we
have shown Sm(M) C W. U7

We have now seen that the filter Dy,(A) is generated by the family of sets
Sm(M) where M is an algebra on A as above. We shall now see one use of this

fact.

1.8 Theorem. Let P € V be a forcing notion which satisfies the c.c.c., let A

be an uncountable cardinal, and let G be a generic subset of P over V. Every
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closed unbounded subset B of Sx,(A)(V[CD in V[G] includes the closure of a
set which is a closed unbounded subset of Sx,(A)(") in V. In fact Dy, (1)(VICD
is generated by the closures of the Sm-generators of Dx,(\)(V) (for any Sm-
generator (Sm(M)Y of D(A)(V) in V, its closure in V[G], is an Sm-generator
of DAV in V[G], as it is (Sm(M))VIED).

Proof. By what we have proved above we have the following in V[G]. There is
an algebra M = (A, F}*)n e<w such that Sm(M) C B. In V the function F}
has a name F} (moreover we have in V the sequence (F} : n < w,f < w)).
W.lo.g. IF “F} is an n-place function from A to A\”. Because of the c.c.c., by
Lemma I. 3.6 (ii) for all ag,...,an—1 < A we know in V that the set of possible
values of F}(ayp, ..., 0n-1) is countable and not empty. We define the functions
Fgy for k < w so that these < Ng values are {F;"k(ao,...,an-l) t k< w}.
So we know, for all n,{ < w and ag,...,a,—1 < A that in V[G] we have
Fp(oo,...,an-1) € {Fe’fk(ao,...,an_l) ik <w} So N = (A F)nek<w is
an algebra in V and (in V[G]) every subalgebra of N is clearly a subalgebra
of M. We have Sm(N)(Y) C Sm(N)VICl C Sm(M)VIED C B and Sm(N)V)
is a closed unbounded subset of S,(A)(Y) in V, and the closure Sm(N)Y in
V[G] is Sm(N)VI¢l C B. Ois

A consequence of this theorem is that in a c.c.c. extension V[G] of V every
stationary subset of Sy,(A\)(Y) in V is also a stationary subset of Sr,(MV)VIED
in V[G]; in short, the extension does not destroy the stationarity of stationary
subsets of S,(A). We shall use this property to define the concept of proper
forcing. While it is a consequence of the fact that Dy, (A\)VIC] is generated by

the closures of the members of Dy, (\)V is does not seem to require as much.

1.9 Definition. A forcing notion P is called proper if for every (uncountable)
cardinal A, forcing with P preserves stationarity modulo Dyg,()\). We shall
denote this condition for A with Con(A) (more exactly Con;(), P) but we
omit P when, as usual, P is clear from the context). Note that Con;(R) is
meaningless, or trivially true if you like.

Note that properness is preserved by equivalence of forcing notions.
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1.10 Theorem. 1) P is proper if the following condition holds for each
cardinal A.

Cony(A) = Cong(A, P) : Assume that {p;; : j < a;,i < a} C P is
such that @ < XA and a; < )\ for i < o, and such that for all i+ < a the set

{p:ij : 7 < a;} is pre-dense in P. Then for all p € P:

{s €8x (N) :(3¢€ P)[g>pand {p;;:j < ,j € s} is pre-dense

above g for any i € 5,1 < a]} € Dy, (N).

2) Moreover, for any A > |P| + Ry, Conq()) is equivalent to Cony()); and if P
is a complete Boolean algebra without 1 then Con, () is equivalent to Cong ()

for every uncountable .

Proof. We assume first ~Cony()), i.e., there are a < A, a5 < X for i < a,
{pi,j : 7 < a;} which is pre-dense in P and p € P such that the set

< {s € Sxy(A): for no g € P do we have: ¢ > p and {p;; : j < 4,j € s} is
pre-dense above ¢ for any ¢ € 5,1 < a} is stationary.

Let G C P be a generic subset of P such that p € G. Now G meets every pre-
dense set hence there is in V[G] a function f on o such that p; ;) € G foralli <
a. For the algebra (), f) we have Sm((), f)) = Sm((), £))VI6] € Dy, (\)(VIED,
We shall show that 7N Sm((A, f)) = @ thus T which is stationary in V' is no
longer stationary in V[G]. Assume s € T'N.Sm((A, f)), then, as T € V, clearly
s € V. Since s € Sm((), f)) clearly s is closed under f hence V[G] F (Vi € s)
(i<a— (3jes)(j <ai&pi; €G)), hence some r € G forces this statement.
Since G is directed and p € G there is a ¢ € G such that ¢ > p,r hence
qlrp “Vies)i<a— (Fj€s) (j <a;&pi; € Gp))’. Therefore for every
i € s, such that 1 < a we know {p;; : j < a;&j € s} is pre-dense above g

* is incompatible with each

(if this were not the case then for some ¢* > ¢, ¢
member of {p; ; : j < a;&j € s} for some i € s, i < o, and for a generic G
which contains ¢* we cannot have (3j € s)(j < a; &p; ; € G)). Thus s satisfies
exactly the condition of not belonging to T', which is a contradiction.

We have proved that ~Cony(\) implies ~Coni(\). We shall prove that

Cony()\) implies Cony(A) for A > |P| + Ry, or for all A > R, if P is a complete
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Boolean algebra without 1. This suffices to finish the proof of part (2) (of
1.10). It also suffices for part (1) i.e. for proving that (VA)Cony()) implies
(VA)Coni () since, as we shall now see if X\ > p > Ry, Con; ()) implies Cony (i)
(see 1.13, note that by 2.1 if A > u, Cony () implies Conga(u)). For this purpose
we shall prove the following lemmas (1.11, 1.12, 1.13 and then return to the
proof of 1.10).

1.11 Lemma. For any sets D, E we denote by DUFE theset {zUy:z € D&y €
E}. For all disjoint uncountable sets A, B we have: W is a closed unbounded
(or stationary) subset of Sy,(A) iff WUSy,(B) is a closed unbounded (or
stationary) subset of Sx,(A U B).

Proof. We can deal separately with the case any of the sets is empty, easily, so
w.l.o.g. they are not empty. The proof that if W is closed unbounded in Sy, (A)
then WUSy,(B) is closed unbounded in Sg,(A U B) is trivial. Now assume
that W is stationary in Sy,(A), and suppose WUSy,(B) is not stationary
in Syo(A U B). Then there is a model M = (AU B, F}')p ¢<. such that
(WUOSg,(B)) N Sm(M) = (. We can assume, without loss of generality, that
the set of functions {Fp : n,£ < w} is closed under substitution. We define a

function I:_'[‘ for n-tuples of members of A as follows:

F[”(ao,...,an_l) ifFe"(ao,...,an_l)GA

F}(ao,...,an-1) =
£(a0; -, an-1) {any member of A otherwise

Let M = (A, F})n <o We shall see that if s € Sm(M) then for some ¢ €
Sxo(B), sUt € Sm(M). Let t be the subalgebra of M generated by s; we
have to prove that ¢\ s C B. Let b € t\ s, then since the set {F}' : n,£ < w}
is closed under substitution, b = Fj*(ag,...,an—1) for some n < w, £ < w
and ag,...,an-1 € s. If b € A then by the definition of F‘;‘ we know that
F?(ao,...,an_l) = b, and since s € Sm(M), s is closed under F?, clearly
b € s, which cannot be the case since b € t \ s. Therefore b ¢ A, hence b € B
and we have proved t\s C B. We claim that WNSm(M) = 0, contradicting our
assumption that W is a stationary subset of Sy, (A). Suppose s € W N Sm(M),
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then, as we have shown, for some ¢t € Sy,(B) we have sUt € Sm(M). However
sUt € WUSy,(B) contradicting (WUSy,(B)) N Sm(M) = 0.

Thus we have proved the “only if” part. The “if” part can be proved
similarly or by applying the “only if” part to Wi = Sy, (4) \ W. 0111

1.12 Claim. (1) If f is a one-to-one function from A into B, then for X C
Sy, (A): X is a stationary subset of Sx,(A) iff {a € Sx,(B) : f~1(a) € X} is a
stationary subset of Sy, (B).

(2) If f : A — B is one-to-one onto, then f induces a mapping from P(Sx,(B))
onto P(Sx,(A)) preserving Boolean operations and stationarity.

(3) If V C V1 are models of ZFC, A,B € V, V F “A| = |B|”, then the
stationarity of some X C Sy,(B)V is destroyed in V1 iff the stationarity of
some X C Sy,(A)Y is destroyed in V1 (where X € V of course )

Proof. Note that {a C Sy, (AUB): ify = f(z) then z € a & y € a} €
'DNO(AUB).
The proof is left to the reader. U112

1.13 Claim. If A > u > R; then Con;()) implies Con; (p).

Proof. Let W be a stationary subset of S, (1)". Then, as we have proved in
1.11, Sy, (M \ w)VOW is a stationary subset of Sx,(A)V. Since Cony(A) holds
Sx, (A\ )V OW is also a stationary subset of Sy, (1)VI¢) in V[G]. We claim that
W is a stationary subset of Sy, ()Y [¢! in V[G]. If this is not the case then there
is a closed unbounded subset C of Sy,(1)VI[¢ in V[G] such that C N W = 0.
By Lemma 1.11 Sy, (A \ 1)VIC10C is a closed unbounded subset of Sy, (\)"[¢]
in V[G]. Since CN'W = § we have (Sx,(A \ p)VIF10OC) N (Sxe (A \ )V OW) =0
contradicting what we got that Sy, (A \ u)OW is a stationary subset of
Sro,(M)VIG in V[G]. Oi.13

Continuation of the Proof of 1.10. We return now to the proof that Cona(\)
implies Con;()) for any uncountable A > |P| 4+ R or for all A > R, if P is a
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complete Boolean algebra without 1. Let T be a stationary subset of Sy, () in
V. To prove that T is also a stationary subset of Sx, () in V[G] we have to prove
that for every P-name M = (X, F})¢,n<w of an algebra, @ I-p “TNSm(M) # 0.
Let p € P, we shall prove that there is a ¢ > p such that g IFp “T'NSm(M) # 0”.
Let h : “>X — X be a one-to-one function. We denote the restriction of h to
n-tuples with h™. Let hy, for £ < w be a function such that for n > £ we
have he(h™(Bo, . ..,0n-1)) = Be. For each i < X if i = h(n, ¥, Bo,...,Bn-1) let
7Z; be a maximal antichain of P of conditions which force definite values for
F7?(Bo, .- Pn-1). If |P] < A then clearly |Z;| < A. If P is a Boolean algebra
without 1 (and the order inherited from the Boolean algebra, not the inverse, so
“z, y incompatible means F xUy = 1), then for each 8 < A we can put in Z; the
minimal condition (equivalently the lub in the Boolean algebra of all conditions)
which force F} (B, . ..,0n-1) = B, if there are such conditions and then Z; will
be a maximal set of conditions which force definite values on F} (B, ..., Bn-1)
and |Z;] < A and Z; is a maximal antichain. We define for i < A the ordinal
a; and the set {p;; : j < a;} so that {p;; : j < a;} = Z;. Let ~(4,5) be
such that p; ; IF “F}(Bo,...,Bn-1) = 7(i,5)”. Let M* = (A\,h™, hp, ¥, 0)n<w,

then Sm(M*) € Dy,(A). Let W € {5 € Swo(N) : (3¢ > p) [{piy : j €

a; N s} is pre-dense over ¢ for all i € s]}; we know that W € Dy, (\) by
the assumption Cong (). Since T is a stationary subset of Sy,(\) there is an
se TNSm(M*)NW. Since s € W let ¢ > p be such that {p;; : j € &; N s}
is pre-dense above ¢ for each i € s. Assume fy,...,0,—1 € s. By definition of
M* and since s € Sm(M*), w C s. Thus n,£ € s and since s is closed under
h"*2 also i = A" 2(n, £, Bo, - .., Bn-1) € s. Since {p; j : j € a; N s} is pre-dense
over ¢, every generic filter G which contains ¢ contains some p; ; for j € a; N s,
and therefore F*(Bo, ..., Bn-1) = 7(i,7) in V[G]. Since i,j € s and since s is
closed under the function v we have Fj*(fo,...,0Bn-1) € s. Thus we have in
VIG] that YnVe(YBo, . ., fu—1 € 5) [FF(Bo, - - -, fn-1) € 5], hence s € Sm(M).
Since this holds for every G which contains g we have ¢q I+ “s € Sm(M)”, i.e.,
g - “TNSm(M) # 0" (since s € T). So T is still stationary in VP, as required.

Ui.10
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1.15 Observations. It can be seen, by means of Cong()) that in order that
the forcing P be proper it suffices to require Cong()), or Cony() for some
A > 2Pl (see Lemma 2.2). We can also replace, equivalently, a,; < A in
Cong(A\) by a = a; = A, and we can replace the pre-dense sets by maximal
antichains and 2!F! by the number of the maximal antichains (see Lemma 2.2

in the next section). Uiis

1.16 Lemma. If P is a proper forcing then in V[G] every countable set of
ordinals is included in a countable set of ordinals of V (and hence R} is

uncountable in V[G]).

Proof. Let a be a countable set of ordinals in V[G], then for some cardinal A we
have a € Sy, (\)VI%; now the set {s € Sy, (A\)VIG : s D a} is obviously a closed
unbounded subset of Sg,(\)V[¢! in V[G]. But Sg,(\)" is a stationary subset
of Sx,(A\)V in V, hence, since the forcing P is proper, it is also a stationary
subset of Sy, (A)VI[¢! in V[G]. Thus Sx,(\)Y N{s € Sx,A\)VI : s Da} £ 0
and X has a subset countable in V' which includes a.

An alternative proof is that if s € Sy, (A\)VIC], then Wy = {t : s C t €
Sk (M)} € Dy, ()) in V[G], but in V we have Wy = S, (A)V € Dy,()\),soin V
Wy is stationary, hence it is stationary in V[G] hence Wy, N W1 # 0 which is
just what we need. Ur1e

As a consequence, if « is an ordinal such that cf(a) > Ro in V, we have
also cf(a) > Rg in V[G].

§2. More on Properness

Discussion. It is worth noticing that one can use for a set of generators of
Dy, (A) not only the set {Sm(M) : M is a model, the universe of M is A and
M is an algebra with Ry operations } but also a somewhat wider set {Sm(M):
M is a model, the universe of M is A and M is a partial algebra with Rg

operations }. This can be done since if M is a partial algebra, i.e., an algebra
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whose operations are not necessarily defined for all arguments, then Sm(M) is

also a closed unbounded subset of Sy, (4).
2.1 Claim. For u < A, Conz(A, P) = Cona(u, P).

Proof. To see that let {p; ; : j < a;,i < a} be as required by Congy(u), i.e.,
a < pand a; < pfori < a. Since p < A we can apply Cona()\) and obtain
p¥ {s € Sxo(A) : Jglp < g€ P& (Vi€ snNa) [{p,; : j € sNa;} is
pre-dense above ¢|]} € Dy,(A). Since a; < p for i < o and @ < p we have
D = (DN 8y, (1))USx, (A \ 1) (where AUB = {zUy:z € A&y € B}). By
Lemma 1.11 for T' C Sy, (A), if TOSy,(B) € Dx,(A U B) then T € Dy, (A).
Therefore D N Sy, (1) € Dy, (1) which establishes Cong(u) since D N Sy, (1) is
exactly the set required for Cong(u). Oa 1

2.2 Lemma. Cony(2/F!) = (VA > Rg)Conz()), and hence, since u < A and
Cong()) = Cong(p), therefore (3o > 2IP1)(Cony(0)) & (YA)Cona(N).

Proof. It clearly suffices (see 2.1) to prove that for A > 2/F! we have Cony(2!F)
= Cong(A). Let p, (pij : j < as,1 < o) be as in Cong(A). Let Z; denote the
subset {p;; : 5 < a;} of P. Let (J; : i < 2/Pl); be a listing possibly with
repetitions of all pre-dense subsets of P. Let (g;; : 7 < ;) be a listing of
the members of J;, then we can have §; < |P|. We define a partial function
F : X — 2Pl by F(i) = the first v such that J, = Z;, for i < a. We
define also two partial functions G and H on A x A, into A by G(i,j) =
the v such that p;; = qp(;),, for i < a, j < a;, and H(i,j) = the least v
such that p; , = qp(),;, for i < a, j < Bpg;. Since Cony(2'P1) holds the set
AY (s e 8,2P): (3¢ > p)(Vi € s)({gi; : j € sN Bi} is pre-dense above
q)} is in Dy, (2!F!). Therefore there is a partial algebra M with universe 2!7!
such that A O Sm(M). Let N be the partial algebra whose universe is A and
whose partial operations are those of M together with F, G and H (which were
defined above). We shall show that for every s € Sm(N) there is a ¢ > p such
that for all i € sNa, {p;; : j € sNa;} is pre-dense above q. This will establish
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Congz () since the set which is required by Conz(A) to be in Dy, (A) has been
shown to include Sm(N) which is in Dy, (A).

Let s € Sm(N); since N contains all the partial operations of M we have
sN 2Pl € Sm(M). Since Sm(M) C A we have s N 2Pl € A; therefore there is
a g > p such that

® (Vi€ sn2P({g;;:j € sNB;} is pre-dense above gq).

We shall show that for this ¢ we have (Vi € sNa)({pi; : j € sNa;} is
pre-dense above ¢), which is all what is left to prove. Let i € s N o, since s
is closed under F also F(i) € s N 2Pl (since Rang(F) C 2!P!) hence, by ®,
{ar@,; + 3 € sN Bi} is pre-dense above q. We shall see that {qp(;,; : j €
sN B} = {pi; : 7 € sNa;} and this will establish that {p;; : j € sNa;} is
pre-dense above q. For j € sN B; we know qri),; = Pi m(i,j) by the definition of
H. Since i,j € s also H(i,j) € s and H(i,j) < a; by the definition of H. Thus
qr(),j = Pi,H(,j) € {Pij * J € sN a;}. In the other direction, for j € s N ay
Pij = 4F(:),G(i,j) € {aFr@) : J € s N B}, since s is closed under G. Oo.2

2.3 Theorem. Let M = (|M]|,...,) be a model with countably many relations

and functions, if M is uncountable then:

{IN] € Sxo(IM]) : N < M} € Do (|1M]).

Proof. Let M' be an algebra with universe M and with Skolem functions of
M as operations (their choice is not unique, but is immaterial; we can e.g.
expand M by a well ordering <* of its universe, and use all functions definable
in (M, <*)). Then, as is well known, Sm(M') C {N € Sx,(|M]) : N < M}.
Since Sm(M') € Dy, (|M]) also {|N| € Sx,(|M|) : N < M} € Dy, (IM]). Oa3

2.4 Definition. For a cardinal A we denote with H()) the set of all sets whose
transitive closure is of cardinality < A. For a regular uncountable A we know
that (H(X), €) is a model for all axioms of ZFC except maybe for the power

set axiom. If not said otherwise we assume ) is like that, for simplicity.
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2.5 Definition. Let N be an elementary substructure of (H()),€) and let
P € N be a forcing notion. For ¢ € P we say that ¢ is (N, P)-generic, (or
N-generic if it is clear which P we are dealing with), if for every subset Z of P

which is pre-dense and is in IV the set ZN N is pre-dense above q.

2.6 Lemma. A condition ¢ is (N, P)-generic if for every T which is a name
of an ordinal in the forcing notion P, if 7 € N then ¢ IF “7 € N” (i.e., if the
name is in N then g forces the value to be in N) iff for every P-name 7 € N,

qlF “if 7 € V then 7 € N”.

Proof. We prove only the first “iff”, the second has the same proof. Assume
that g is N-generic and let 7 € N be a name of an ordinal. Let Z = {r € P : r I
“r = ”, for some ordinal a}. Z is obviously pre-dense. Z is definable from P
and 7 in (H()\), €), hence Z € N. Since ¢ is N-generic, ZNN is pre-dense above
g. Let f be the function on Z defined by f(r) = that a for which r I+ “7 = o”,
then f is definable in (H()\), €) from 7, hence f € N. Since ZN N is pre-dense
above ¢, ¢IF “GpN(ZNN) #0”, ie., gk “(3r € IN N)r € Gp”. Therefore if
G is a subset of P generic over V and ¢q € G then 7[G] = f(r) holds in V[G],
where r € (ZNN)NG. Since r € N, also f(r) € N (as f € N) thus 7[G] € N
in V[G]. Therefore ¢ IF “T € N”.

Now assume that for every P-name 7 of an ordinal, if 7 € N then ¢ I+
“r € N”. Let T € N be pre-dense in P. There is an f € H(A) which maps |Z|
onto Z, hence there is such an f in N. We take 7 = Min{i : f(i) € Gp}. Since
f, P € N and 7 is definable from f and P in (H()A),€), also 7 € N, and T
is obviously a P-name of an ordinal. By our assumption ¢ I “7 € N”, hence
q - “(3i € N)(f(i) € Gp)”. Since f maps the members of N N|Z| to members
of NNZ, being in N, we have ¢ I+ “(3r € TN N)(r € Gp)”. Therefore ZN N

is pre-dense above ¢, which is what we had to prove. Os6

2.7 Remark. For A > |P| it does not matter in Cong(A) whether we require
that for each i < a the set {p;; : j < o;} is pre-dense or whether this set is

pre-dense above p. Why? on the face of it the version where we require the set
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{pi,j : 7 < a;} to be pre-dense is weaker since it makes a stronger assumption,
but we now prove from it the stronger version. Suppose each {p;; : j < o;}
is pre-dense above p. Blow each such set by adding to it all members of P
incompatible with p, to get the set {p;; : 7 < B;}. Since |P| < A we know
|B;] < X so we can apply the weak version of Congy()) (3; may be > X but since
only the cardinality figures here it is O.K. as long as 3; < A*). We obtain a set
A in Dy, (A) such that for s € A we have a ¢ > p for which for each i € sNa the
set {pi,j : 7 € sN B} is pre-dense above q. For o; < j < f;, ps; is incompatible
with p and hence also with g, therefore also the set {p;; : j € sNa;} is pre-
dense above ¢ which establishes the stronger version of Cong(A). For P being
a complete Boolean algebra with 1 omitted it suffice to add -p for p € P, p not

minimal, so A > Ny suffice.

2.8 Theorem. (1) Let A > 2/P! X regular and assume P € H()\) (this adds
little since H () contains an isomorphic copy of P). P is a proper forcing notion
iff for every countable elementary substructure N of (H(A), €) satisfying P,
p € N there is a condition ¢, p < q € P such that ¢ is (N, P)-generic.
(2) For A > 2Pl P ¢ H()\), P is proper ifft {N : N < (H(\), €) is countable
and there is an (N, P)-generic ¢ > p } € Dy, (H (X)) for every p € P.

Proof. (1) We first prove that “if” part, i.e. suppose the condition of the
theorem holds, and we shall prove Cony(2!F!) (suffice by 1.10 and 2.2). Let
(pij i < a,j < ;) be as in Cony(2!F!). Let N < (H()), €) be such that
Pp, (pij:i<oj<a)eN ForieN T %Y {p;:j<a}e N since
it is definable in (H(X),€) from (p;; : i < a,j < ;) and 4. Let ¢ > p be
(N, P)-generic; since {p;; : j < o;} € N and it is pre-dense we have that
;NN = {p;; : j € NnNoy} is pre-dense above g. Therefore to establish
Cony(2!P1) it suffices to prove that the set A = {NN2PI : N < (H(\) €),
and p,P,(pi; : @ < a,j < ;) € N, |[N| < RN} is in Dy, (2'F!). The set
AT = {N € Sy,(H(X)) : N < (H(\),€) and p, P, (p; j : i < a,j < a;) € N}

t We do not strictly distinguish between the set of N’s and the set of their

universes.
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is in Dy, (H(A)) by Theorem 2.3. This implies that also A € Dy, (2!F!), by the
technique of using a model with operations closed under composition which we
have already used several times, or more exactly by 1.12(1).

Now we prove the other direction of the theorem, so let p € P, {p, P} C
N < (H(M),€), N countable and we shall find ¢ as required. Assume that
P is a proper forcing, i.e., Cony(2!Pl). Since A > 2/P| in H()\) there is a
sequence (p;; : 1 < a,j < ;) where a; < |P|, o < 2Pl such that for
1 < « the set Z; def {pij : j < a;} varies over all the pre-dense subset
of P. By Cony(2!P!) there is a partial algebra with universe 2Pl such that
Sm(M) C {s € Sx,(2'P) : (3¢ > p) (Vi€ sNa)[{p;; : j € sNa;} is pre-dense
over q]}; necessarily M € H(A). Since there are such (p;; : 1 < a,j < o)
and M in H () there are such also in N. N obviously contains all the natural
numbers. Since M is given as a mapping of w on all partial operations of M, all
these operations belong to N and hence N is closed under them (if you prefer
to see M as (|M|, F), F a function with domain the vocabulary of M, which is
countable, it works as well). Therefore N N 2/P! € Sm(M) and therefore there
is a ¢ > p such that (Vi € NNa)({pi; : 7 € NN} is pre-dense over q). Let 7
be any subset of P in N which is pre-dense in P. Since in (H(A), €) it is true
that “for every pre-dense subset of P there is an ¢ < a such that Z = Z; “ (since
this is the way we get (p;; : © < o,j < o5) in (H()),€)) and this sequence
belongs to N; clearly this is true in N. Therefore Z = Z; for some i € N N a.
For this ¢, if j € N N «; then also p; ; € N (since (p;; : j € N Na;) can be
taken to be one-to-one, if p; ; € N also j € NNa;). Thus {p;;: j € NNy} =
{pij :i<a}NN=I;NN =INN and we know that this set is pre-dense
above ¢ ( since 1 € N N ). Thus we have shown ¢ > p to be (N, P)-generic.

(2) Left to the reader. Oss

2.9 Discussion. We shall now present another proof of the fact that if P
satisfies c.c.c. then it is proper. We shall prove that if 7 is a name of an ordinal,
N < (H()\),€) and 7 € N then @ I+ “7 € N”. There is a maximal antichain 7
of P such that for each p € Z, p I “7 = o” for a unique a. Because of the c.c.c.

|Z| < Ro so we can take Z = {p; : i < a}, & < w. The sequence (p; : i < o) is
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in H(X\) and its properties can be formulated in (H(A), €). Therefore there is
such a sequence in N. Since w C N we have p; € N for every i < w, and if o is
the ordinal such that p; I “7 = o;”, then «; is defined in (H (), €) from P, 7
and p; hence a; € N. As {p; : i < a} is a maximal antichain in P we conclude
DIF“Te{oy:ie€a}’, but {a;:i <a} C N (see above) so @ I- “7 € N”.

So for P satisfying the c.c.c., for A, p, N as in 2.8(1), we have: p is (N, P)-

generic.

2.10 Theorem. If the forcing notion P is N;-complete then it is proper.

Proof. Let X be large enough, i.e., A regular and A > 2Pl let p,P € N <
(H(X),€), IN| = Rq. Let (Z; : © < w) be a list of all pre-dense sets which are in
N. We define the sequence (p, : n < w) of members of N N P by induction on
n: po = p and ppy1 > pp, Ty for some r, € Z,, N N. There is such a p,4; € N
since “p, is compatible with some members of Z,,”; Z,, being pre-dense in N.
By the R;- completeness of P there is a ¢ such that ¢ > p, for all n < w. Now
q is (N, P)-generic since for every pre-dense subset Z, of P in N, Z, N N is
pre-dense above ¢ since g > 1, T, € Z, N N. (Remember a set Q is pre-dense
above q if for every p > ¢ there is a member of Q which is compatible with p,

but does not have to be > q). Us.10
Though the following is simple it has misled some.

2.11 Theorem. Let P € N < (H()\),€), and let G be a generic subset
of P (over V). Let N[G] = {7[G] : 7 is a name &7 € N}. Then we have
N[G] = (N[G],€) < (HVIED(X), €) (and N C N[G] of course).

Proof. By repeating the Forcing theorems for N and H(\), Claim I 5.17 implies
N[G] € HM\)VICl = H(\)[G). Let ¢(z,y1, .. -,yn) be a first order formula. We
shall prove that if (H()),€)VIS! £ (3z)p(z,y1,- .., yn) for some y1,...,yn €
N|[G] then there is an z € N[G] such that

HX), )" E o(z,y1,. ., yn)-
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Then, by the Tarski-Vaught criterion we shall have N[G] < (H()\),e)VIG],
Since yi1,...,yn € N[G], let 71,...,7, € N be P-names such that y; =
T1[G)s- -+, Yn = Tx[G]. So

VIG] = “(H(),€)V 9 E (3n)p(z, 71, ..., Ta).

By the “existential completeness” of the forcing names (see I 3.1) there is a
P-name ¢ such that

DI “g e H(\) and (H(), €)@

E (Hx)W(xy T1y--- yl-'n) - So(gv T1y--- 7In)”'
By I 5.17 and I 5.13, there is a name 7 € H(X) such that 0 I+ “g¢ = 77,

therefore § I “(H(\),€)' € & (32) (@, T1,...,72) = G171, Ta),

where 7 € H()). Forcing statements relativized to HVI[G(\) can be defined
ViG]
-

(Bzp(z,T1y---,7n)) — (7,71, -, In)]”]- By the Tarski-Vaught criterion for

in (H(\),€), hence (H(\),€) £ (3 a P-name 7) [(z) F “(H(\),€)

N < (H(A), €) there is such a name 7 € N. Thus V[G] satisfies:
(H()‘)7 E) |= “(3:1:)(/7(:8, II[G]v cee 7In{G]) - QD(I[G]?TI [GL cee ’In[G])”'

We finish as 7¢[G] = yg for £ =1,...,n and 7(G] € N[G|. Os.11

2.11A Remark.
Do we have, in 2.11, also (N[G], N, €) < (HVICI()\), H()), €)? This holds
iff N[G]N H()\) = N.

2.12 Theorem. Under the assumptions of the last theorem, the following three
conditions are equivalent.
(a) G N N is N-generic, i.e., for every Z € N which is pre-dense in P,
INNNG#0.
(b) N[G]NOrd = NnOrd
(¢c) N[GInV=NNV
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(d) replace in (a) pre-dense by dense

(e) replace in (a) pre-dense by maximal antichain

Proof. (a) = (c). Let z € N[G] NV. We shall prove z € N. Since z € N[G],
z = 7(G] for some 7 € N. Let T & {peP: 3Tyt “T=y@ley))Vpl-
“r¢V’}={peP:(Fye HA\)pIF “r=9")Vplk “r ¢ HN)"]}.

(Remember that by Claim I 5.17, if 7 € H(\) and p IF “T = %, then
y € H(X).) T is obviously pre-dense in P. Since Z is definable in (H()), €)
from 7, P and 7, P € N also Z € N. By (a) there is ap € ZN N N G. Since
V(G| E “7[G] € V” we cannot have p I+ “7 ¢ H())”, hence for some y € H()\),
plF “T = y” and as p,T are in N and y is definable from them, necessarily
yeEN,hencex =7[Gl=ye NNHA) CNNV.

(c) = (b) is obvious.

(b) = (a). Let Z € N be pre-dense in P. Let J = {q € P: for some p € T
we have p < q}. Let Z' be a subset of J, an antichain in P and maximal under
those two conditions (for C). As Z is pre-dense in P clearly 7 is dense and open
hence T is a maximal antichain of P. By the definition of 7, as Z! C J there
is a function f from Z' to Z such that for every p € Zt, p > f(p) and f(p) € T.
SinceZ € N < (H()), €), there is such an Zt € N and so w.l.o.g. (Z! € N and)
f € N, since in H()) there is a sequence {gg : 8 < ) listing the members of
Zt, there is such a sequence in N. Let 7 be the canonical P-name such that for
B < a we have: 7[G] = Bif gg € G (since Z' is a maximal antichain of P there is

one and only one such (). So 7 is a P-name of an ordinal and 7 € N. By (b) we

have 7[G] € N. So v &ef 7[G] € N. Since (gg : B < a) € N also ¢, € N. Since

7[G] =7, ¢y € G but ¢, € I so f(gy) € Z, hence f(gy) € N (as gy, f € N)
and f(gy) € G (as ¢y > f(gy) & gy € G) hence clearly f(g,) € ZNNNG and
soINNNG #0.

(e) = (a) = (d) Left to the reader. 0212

2.13 Corollary. Assume P is a forcing notion and P € N < (H()),€) and
q € P, then the following are equivalent:
(a) ¢ in (N, P)-generic.
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(b) qlF “N[Gp]NOrd = NN Ord”.

(c) gIF “N[Gp]NV =NNV”".

(d) for every maximal antichain Z of P which belongs to N we have
qIF “NNINGp #0.

(e) for every dense open subset Z of P which belongs to N we have:
q- “NNINGp #0.

() qF “(NIGp], N, €) < (H(N) 1€

yH(A), €)”.

Proof. Each of the present (a) - (e) is equivalent to the statement that the
corresponding condition in the last theorem holds for all generic subsets G of

P which contain q. U213

83. Preservation of Properness Under
Countable Support Iteration

3.1 Definition. We call Q = (P, Qi i < a) (or (Q; 11 < )) a system
of countable support iterated forcing (or a CS iterated forcing system or a
CS iteration) if the following holds (on canonical names see Definition I 5.12,
Theorem I 5.13):
P, = {f : Dom(f) is a countable subset of ¢ and
(Vj € Dom(f))[f(4) is a canonical Pj-name
and Ip, “1(j) € ;"))
Q; is a Pi-name of a forcing notion.

The partial order <; on P; is defined by

f <ig < (V5 € Dom(f))[gls IF “f () <q, 9(5)"].

For every j ¢ Dom(f) we take f(j) to be a name §; = @q, of the minimal
member of Q;. Let P, be defined like P; above. We say: the forcing notion
defined by this system is the (partial order) P,. We say P, = Lim«x,(Q; : j <
a) or P, = Limcy,|Q|.- We may omit the “< R;”.

Instead “f(3) is a canonical P;-name” we can use other variants.
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3.1A Fact. For Definition 3.1 the parallel of II 2.2A hold (only in part (7)

(Va < N)[|ef < )] is needed), i.e. in Definition 3.1:

(1) If i < j < a then P; C P; as sets and even as partial orders.

(2) If i < j < o and p € P; then pli € P;; moreover P; E “p[i < p” and if
pli < q € P; then r Lef qUp[(j \ i) belong to P; and is the least upper
bound of ¢, p in P; (actually a least upper bound).

(3) fi<j<athenP;, < Pjandge P,pe Pj= PjFq<p& P,Fq<pli.

(4) If j < a is a limit ordinal of uncountable cofinality then P; = U P;.

(5) The sequence (@, : j < ) uniquely determines the sequence (}3:], Qj:j<
@) and vice versa and similarly for (F;,Q; :j <, and i < o).

(6) If Q; is a P;-name, such that IF “Q; is a dense subset of Q;” then P| =
{f € Pi: for every j € Dom(f) we have: I-p, “f(j) € Q;} is a dense
subset of P;. Moreover we can define and prove by induction on i < a,
P! = {f € P; : for every j € Dom(f) we have: f(j) is a P/’-canonical
name of a member of Q;} is a dense subset of P; and Q7 is a canonical
P/'-name satisfying IFp, “Q; = @;” and (P}, Q75 : jo < i,j1 < i) isa FS
iteration.

(6A) Assume Q; is a set of canonical P;-names, such that for every P;-name p
for some ¢ € Q;, IFp; “if p € Q; then Q; F p < ¢”. Then P/ = {f € P}
for every j € Dom(f) we have: f(i) € Q}} is a dense subset of P; and
(P/,Q; : i < ) satisfies (1) - (4) above.

(7) Moreover we can define and prove by induction on i < «, F;, P/’ such that
P! = {f € P/ : for every j € Dom(f), (j) € Rang(F})}

is a dense subset of P; and F; is a function with domain the P/-names of
members of @, satisfying: p € Q] = Fi(p) is a canonical P;’-name forced
to be equal to p. So letting Q7 = {p : p a P{"-name of a member of Q;},
we have: (P}, Q; : i < ) is a countable support iteration, P;' C P; is a

dense subset.
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(8) If Q = (P;,Qj : i < @,j < a) is a CS iteration, and for i < a, IFp, “Q; €
H(X\;)” and (A : ¢ < @) is an increasing sequence of regulars satisfying
2% < A1 and for limit § < a = (Z;A,)NO < A5 then Q € H()\y)
i<
3.1B The Definition by Induction Theorem. (one can construct Qi’s
by a given recursive recipe ). If F' is a function and a is an ordinal then
there is a unique CS iterated forcing (Q; : j < ap) such that for all j < ag
Qj = F({Qi : 1 < j)) and either ag = a or else F((Q; : i < ap)) is not suitable
for Qay, i-e., it is not a name of a forcing notion in the forcing notion Py,
Proof. This theorem is an obvious consequence of the standard definition-by-

recursion theorem. Os.18

3.2 Theorem. If (P;, Q; : i < a) is a countable-support iterated forcing system

and for each 1 < o, IFp; “Q; is proper” then P, is proper.

Remark. The reader may look at the alternative proofs presented in the book:
IX §2 (for one using alternative iteration) XII §1 (the one using games) and

another proof later in this section.

Proof. In Theorem 2.8(1) we showed that P is a proper forcing iff for some
A > 2!Pl every countable elementary substructure N of (H()), €) such that
P,pe N hasa q, p<qé€ P such that q is N-generic. As easily seen from the
proof or by 2.8(2) it suffices to require this only for all such N which contain
some fixed member y of H()).

For our present proof we choose a regular cardinal A which is large enough
with respect to |P,|, and the definition of the iteration and we shall show that
P, is proper by showing that for every countable elementary substructure N
of (H(A), €) such that (P;,Q; :i <a) € N, P, € Nand forallpe P, NN
there is a ¢, p < ¢ € P, which is N-generic. We shall show, by induction on
j < a such that j € N, a somewhat stronger property:

(x) For all i < j, i€ N and for all pe NN P;, and g € P, if ¢ is (N, F;)-
generic and q > pli then there is an r € P; such that r is (N, P;)-generic, 7 > p
and 7 > g and 7[i = ¢ (we could add Dom(r) N [i,5) = N N [3,5)).
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For j = 0 the statement (*) is vacuously true. Now we assume (*) for j
and prove it for j + 1. Since j + 1 € N also j € N. Therefore, since () holds
for j we may assume, without loss of generality that i = j. Let G; be a generic

subset of P; which contains gq. By Theorem 2.11 we have
N[G,] < (H(\),€)[Gy] = (H(N), €)VIGil,

since P; € N (because j, (P;,Qi : i < a) € N and P; is definable in
(H(X),€) from j and (Q; : i < @)) and @; € N and hence Q,[G;] € N[G;].
Remember that Q;[G;] is a proper forcing in V[Gj]. Since p,j € N also
p(j) = p; € N and p;[G;] € Q;[G;] N N[Gjy]; since X is still sufficiently
large and Q,[G,] is proper there is an 7; € Q;[G;] such that r; > p;[Gy]
and r; is (N[G;], Q;[G;])-generic. Since the only requirement we had about
the generic subset G; of P; was that is contains g, g forces the existence of an
r; as above. By the existential completeness lemma I 3.1 there is a name r;
such that ¢ IF; “r; € Q;&r; > pj&r; is (N[Gj],Q;)-generic” and w.lo.g.
IFp, “rj € Q;”. We set now 7 = qU {{j,r;)}. Obviously r € Pj;; and rlj = q.
Also since ¢ > p[j and g I+ “r; > p;” we have r > p. We still have to prove
that r is (NN, Pj41)-generic.

By the corollary in 2.13 in order to prove that r is (NN, Pj;+1)-generic
it suffices to prove that for all generic subsets G of P;;; which contain r,
N[G]NOrd = NNOrd. Let G; be the part of G up to ji.e. GNP;. Sincer € G
clearly ¢ € Gj;. Since q is (N, P;)-generic we have N[G;]NOrd = N N Ord. Let
G* C Q,[Gj], be the “j-th component” of G. Since r € G clearly r,[G] € G*.
Since (G} is (N[Gj], Q;[G])-generic we have N|[G;][G*]nOrd = N[G,]NOrd,
and using the equality above we get N[G;][G*] N Ord = N N Ord. We have
to observe that N[G] C N|[G,]|[G*], then we have N[G] N Ord = N N Ord.
For every Pjii-name 7 in N there is a name 7* € N as in Lemma II 1.5
(r* is definable from 7 and Pjy;, and is hence in N). By Lemma II 1.5,
1[G = 7*[G;][G"] € NIG,)[G"]-

Now we come to deal with the case where j is a limit ordinal. Let (1, : n <

w) be a sequence of all Pj-names of ordinals which are in N. Note that N N j
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is a countable set with no last element, so let i = ip < i1 <ip < ---,(n < w),
be a sequence cofinal in it.

For p’ € P; and ¢’ € P;, such that ¢’ > p'li, let ¢'Up’ denote ¢’ U (p'[(5 \
in)). Since ¢’ > p'lin, ¢'Up’ € P; and ¢'Up’ > p,. For p1,p2 € P; we write
p1~ p for p1 < pa&eps < pi.

We define now two sequences (g, : n < w) and (p, : n < w) such that
go = q,po = p and for all n < w:

(1) gn € P;, and g, is (N, P, )-generic

(2) qnt1lin =gn

(3) pn € Pj and Dom(p,) C NN j

(4) gn > pulin

(5) Pr+1lin = pnlin and ¢nUpnt1 > pp

(6) gnlFp, “(3s€ P,NN) (3q" > q,)(slin < ¢ &qf € Gp,,

&q'0s = q'Up,)”

(7) @n0pny1lkp, “Tn € N”

Let us assume that g, and p, are defined and that they satisfy (1) - (7).
We shall now define p,11 and ¢,+1. Let G be a generic subset of P; such that
gn € G. We shall see that there are ¢ € G, s and s* such that

(a) ¢! > gn and s € PN N, slin < qf, ¢'Op, = q'Us.

(b) s*lin < gf, s* € PN N, s* > s and s* decides the value of 7,.

By (6) there is an s € P; N N and a g’ > g, slin, < ¢' such that ¢ € G
and ¢'Us ~ q'Op,. The set Zop = {s* : s* > s and s* decides the value of 7,}
is obviously a pre-dense subset of P; above s. This set belongs to N since it is
definable from the parameters s and 7, which are in N. Let Z denote the set
which consists of the restrictions of the members of Z; to 4, since Zy € N and
s € NNP; clearly T € N and 7 is a pre-dense subset of P; above s[i,. Since gy,
is (N, P;,,)-generic and sli, < ¢, we have ZNN is pre-dense above g,. Therefore
INNNG#0.Let r € INNNG, then “r is a restriction to i, of a s* € P;
such that s* > s and s* decides 7,, and s*[i, € G” is true in (H(\)VI[% €).
By Tarski-Vaught’s criterion there is such an s* in N[G], but s* € P; C V
and by 2.13(c) (as ¢, € G, gn is (N, P;, )-generic) we know N[G]NV = N,
together s* € N. Thus r = s*[i, € G, and we can take ¢! to be > s*|4,,. Thus



112 III. Proper Forcing

q', s* are as required by (a) and (b). Therefore V[G] F “(3s*)(3¢' € G)(s* and
q' are as in (a) and (b), and s* is the first such element in some fixed well
ordering of P;)”. By the existential completeness lemma there is a P; -name
s* such that g, I “(3¢' € G) [s*,q' are as in (a) and (b) and s* is the least
such]”. Since each possible s*[G] is in N and it satisfies that [Dom(s*)| < Rg in
(H(X), €), it satisfies this also in N, hence Dom(s*) C N (since an enumeration
of Dom(s*) is in N). We define p,; as follows. Let ppy1lin = pnlin. For
Y € jN N \in let ppy1(7) be the Py-name of the member of Q., determined by
s* (ie., if s* is a set of pairs of members of P;, and members of P; N N then
Prst(7) = {{r, ) : B <r)(3s) (1, s) € 57 & (I <T)((r",) € s(V)))):

Now let us define g,4;. For each s € P; N N such that s[i, < g, there
is, by the induction hypothesis an gn41(s) € P;,,, such that gn41(s)in = ¢n,
qn+1(8) 2 slins1 and gny1(s) is (N, Py, )-generic. We define ¢, as follows.
The domain of g,4; is the union of all the domains of the g,+1(s)’s for s € N
as above, and since N is countable the domain of ¢,y; is countable. Let
Gn+1ltn = qn. For i, <7y < ip41 such that v € Dom(gn+1) if g € G, and G is a
generic subset of P;, then V[G] F (Ju)(3s € P;NN) ([gnUs = ¢nUpn41] & u =
gn+1(8)). By the existential completeness lemma there is a P; -name u of a
P;,,,-condition such that ¢, Ikp, “(3s € P; N N) (¢nUs = ¢uUppy1 &y =
gn+1(8))”. Now u determines canonically a Py-name of a Q,-condition: u(y),
which is taken to be the value of gn+1(7).

We shall not present here the proof that p, .1 and g, +1 thus defined satisfy
1 - (7).

Now we define r = Up<uqn. Clearly r belongs to P;. We claim that for
every m,r > p,. To prove that we have to show that for every v € Dom(p,),
riy Ik “pu(y) < r(y)”. Since v € Dom(p,) we have, by (3), v € N. Let k be
minimal such that v < ik then, by clause (4) we have gx > pg i, hence gi [y -
“p(7) < gu()". By the definition of 7, gi 1y = r1,gk(7) = (7). Also, by (5)
if n > k then pi(y) = pn(7), hence rly Ikp “pa(v) < 7(7)”. So assume n < k
(hence k > 0); now for £ < k we have: qUpgi1ly IFp, “pe(7) <q, pe+1(7)”
(by clause (5)) but gk !y > qeUpes11y for £ < k (by clauses (4) and (5)) hence

aely ke, “po(7) <p1(7) < ... < pr(7)”, hence gi v IFp, “pn(y) < pr(7)”, but
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we have proved above gi[v IFp, “pr(7) < qk(7)”, hence gly Ibp, “pn(y) <
qx(7v)”. However 7|y = qx|v and gx(y) = r(7) (as v < ix) hence this means
rly ke, “pn(y) < ()" as required. So we have really proved P; F “p, < r”.
Thus, by (7), r I+ “r,, € N” and therefore r is (N, P;)-generic which finishes

our proof. (EWS

3.3 Alternative proof of 3.2.

3.3A Advice to the reader. There are situations where it is enough to un-
derstand and believe the statement of a theorem (as opposed to its proof). For
example, we took this attitude in Chapter 1 when we discussed the fundamental
theorem of forcing.

However, this approach should not be used here. Not only is the preceding
theorem basic for the theory to be developed in the rest of the book, it is (in
the author’s opinion) also essential for the reader to understand the proof, since

variations and extensions of this proof will appear throughout the book.

To help the reader understand the proof of the Theorem 3.2 better we now
give a reformulation of this proof which is due to Goldstern [Go|. This version
emphasizes the fact that the conditions p, are in N by constructing the whole
sequence (p, : n < w) before constructing the generic conditions gy,.

N is an elementary submodel of some H(x) for some large x containing

(Pa, Qo : ax < €).

3.3B Fact. If 3> a, g€ P,, p € Pg, ¢ >* pla, then QF ef qUplla,B) is in
Pg, and ¢t >* p (ie, g7 IFp € G).

3.3C “Existential Completeness Lemma”. For any forcing P, and any

condition p € P, any formula ¢(z):

plF3x p(x) iff thereisa name 7 such that p - (7).
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Proof. By I 3.1.

3.3D Preliminary Lemma. (This lemma does not require properness.)
Assume a3 < ap < 3, piisa P, -name for a condition in Ps. Let Z be a dense

open set of Pg. Then Qp, IFp,  Ip2¢(p2), where ¢(p2) is the conjunction of

the following clauses:

(1) p2 € Pg, p2 >* p1.

(2) p2 €.

(3) If p1lag € Gq,, then palag € G,.

3.3E Remark. By the existential completeness lemma there is an as-name p,

for a condition in Pg such that I-p,, ¢(p2).

3.3F Remark. The P,,-name P1 corresponds naturally to a P,,-name, which

we also call p1-

Proof. Assume not, then there exists a condition r € P,, such that
r I+ “there is no ps satisfying (1)-(3)”.

We may assume that 7 decides what py is, (ie. 7 Ik p1 = py for some p; € V),
and r also decides whether p;[as € G, .
Case 1. r Ik p1lag € Ga,:

But then (3) is true for any ps, so

r I “there is no p, satisfying (1)-(2)”

which is a contradiction since Z is a dense open.
Case 2. 7 IF pilag € Ga,, ie. 7 >* p1laz. Now let ' = r Up1l[oz,8) >* p1,
and find v/ € D, r” > r’. Then

" lag IF r" satisfies (1)—(3),

again a contradiction, because r"[ag > 7.
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3.3G “Composition Fact”. ¢ € P,1 is (Pa+1, N)-generic iff:

gla is (Py, N)-generic, and gla I “g(a) is (Qa, N[Go N N])-generic.”

Proof. See §2.

3.3H Induction Lemma. For all 3 € NNeg, for all @ € N Neg, all peN
assume p is a P,-name for a condition in Pp, and
(a) g€ Py
(b) q is (Pa, N)-generic.
(c) qlFp, “pla € GoNN”.
Then there is a condition ¢*:
(@)t ¢t € Ps, gt la=g¢
(b)* q* is N-generic
(c)f ¢t lFp, “pe GgNN™.
(Note that “q is N-generic” implies already “g - p € N”, so the main point of
(c) is to say that q I pla € G,)
(For o = 0 this shows that Pg is proper.)

Proof.
The proof is by induction on 3.

Successor step.
Let 8 = ' + 1. Since we can first use the induction hypothesis on «, 8" to
extend ¢ to a condition ¢’ € Pg~ satisfying the appropriate version of (a)—(c),
we may simplify the notation by assuming 8 = a + 1.

Clearly q IFp, “N[Gq] < H(x)VICI" ¢ IFp, “there is a (Qu, N[Gq))-
generic condition > p(c)”. By “existential completeness”, there is a P,-name

q* () for it. By the “composition fact”, we are done.

Limit step.
Let 8 € N be a limit ordinal, 8 € N =Joy, g = o, o, € N. Let (Z, : n < w)

enumerate all dense subsets of Ps that are in N.
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First we will define a sequence (pn : n < w), pn € N such that in N the
following will hold:

(0) pn is a P,,-name for a condition in Pg

(1) ”.Pﬂn+1 Pn+1 2" Pn

@) k. pusr €T
(3) ”_Pan+1 “If Pn [n+1 € Ga"H then Pn+1 [an+1 € Gan+l”'

For each n we thus get a name p, that is in N. For each n we can use the
“preliminary lemma” (and Remark 3.3E before its proof) in N to obtain py1.
Now we define a sequence (g, : n < w), gn € Pa,, and g, satisfies (a), (b), (c)
(if we write g, for g, p, for p, and o, for a).

dn+1 = g, can be obtained by the induction hypothesis, applied to a‘n, Qnt1,

and pnlani1- By (c)t we know

qr Fp,, “(pnlGa,])lants € Ga,yy”-
Hence, by (3) and the genericity of g,41 we have

qn+1 ”‘Pan+1 “(Pn+l[Gan+1])ran+1 € Gan+1 NN”.

Since gn+1[on = qn, ¢ = lim g, exists and is > g, for all n.

We have to show that ¢ IF p € Gg N N and that g is generic. Let Gg
be a generic filter containing q. We will write p, for pn[G,,]. (Note that
Pn € N, because g, was N-generic and ¢, € G,,.) Since ¢, € Gg, we have
pnla € Go, NN and N E p, >* p,_1 >* ... >* po. Hence play, € Go, NN for
all n, and therefore p € Gg N N. Similarly, p, € Gg for all n.

Consider a dense set I, C Pg. Since gn41 IF Pn+1 € In, we have p,41 €

GsNZ,N N. Hence g is generic. Us.3

More advice to the reader. It may also be helpful to look at the proof in Chapter
XII, §1, which uses games. (Chapter XII, §1 can be read independently of
chapters IV to XI.)
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3.4 The General Associativity Theorem. Suppose (P;,Q; : i < a) is a CS
iterated forcing system each Q; proper then the parallel to II 2.4 holds.

Proof. Left to the reader. Oz.4

3.5 Theorem. Suppose (Q; : j < a) is a (< k)-support iterated forcing,
Pj = Lim(Q; : i < j).
IflFp, “Q; < Q},Qj a dense subset of Q}” and PJT = Lim(@i.r 11 < g),

then Pj < P; is a dense subset of P} .

Remark. By Lemma I 5.1 (a), we can replace Q; by any equivalent Q;‘ (just

use 3.5 a few times).

Proof. Left to the reader. Os.s

§4. Martin’s Axiom Revisited

Why is c.c.c. forcing so popular? I think the main reason is that such forcing
notions preserve cardinalities and cofinalities, so why shall we not be interested
in the property “P does not collapse cardinals ” instead “P satisfies the c.c.c. ”.
In particular Magidor and Stavi had wondered on the role of the c.c.c. mainly
in MA and asked:

“Is it consistent that for any forcing notion P of power ®; not collapsing
cardinals (i.e., ;) and dense Z; C P (for ¢ < N;) there is a directed G C P,
such that GNZ; # 0 for 1 < Xy ?”

In particular Baumgartner, Harrington and Kleinberg [BHK] proved that
if S C w; is stationary co-stationary, and CH holds, then there is a forcing
notion Pg = {C : C a countable closed subset of S} with the order C; < Cs
iff C; = C2N (SupC; + 1) which does not change cardinalities and cofinalities
and which collapse S ( i.e., collapse its stationarity, i.e., IFp; “S C w; is not

stationary ”.
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So why not include such forcing in MA? Because we can find pairwise
disjoint stationary sets S, C wi,wi; = Up<wSn. If we make each S, in turn
not stationary, w; must be collapsed. More exactly, if we try to iterate the
forcings Ps,, after w steps R; collapses, no matter how the limit is taken. It
does not matter if we look at the desired version of MA, in some V and let
I% ={C € Ps, :sup(C) > a}. Thus if GNI} # 0 for n < w,a < wy, then in
V, each S, is not stationary.

You can still argue that CH is the cause of the problem but we shall prove
in Theorem 4.4 that even 2% > X;,§ C w,; stationary co-stationary there is
a forcing notion P of power X, not changing cardinalities and cofinalities but
still collapsing S.

So it is natural to change the question to “P of power X;, not collapsing
stationary subsets of R;”, and we shall answer it positively, assuming there is
a model V of ZFC with a strongly inaccessible cardinal.

The natural scheme is to iterate (by CS iteration) proper forcing of power
N;, in an iteration of length ws. However to prove the consistency of almost
anything by iterating proper forcing we usually have to prove the k-chain
condition is satisfied, where k will be the new R, and the length of the iteration.
We have a problem even if |P| = Ry, lFp “|Q| = Ry”, P * Q have a large power
because of the many names. We can overcome this either by using k strongly
inaccessible, or showing that the set of names which are essentially hereditarily
countable is dense.

Another problem is that “not destroying stationary subsets of w;” is not
the same as “proper”. However we shall prove that if P is not proper, then
IFLevy(ry,21P1y “P destroys a stationary subset of wi”. So instead of “honestly”
dealing with a candidate P i.e., a forcing notion which does not destroy sta-
tionary subsets of w;, but is not proper we cheat and make it to destroy a

stationary subset of w;.

4.1 Theorem. Suppose Q = (Pi,Qi 4 < k) is a CS iteration IFp, “Q; is a

proper forcing notion which has power < &”, & is regular and (Yu < k)u™° < k.



§4. Martin’s Axiom Revisited 119

Then P, = limQ satisfies the s-c.c., and each P;(i < ) even has a dense subset

of power < k. Hence for i < k,IFp, “2%0 < £”.

Proof. Easily (twice use 3.4), w.l.o.g. the set of elements of Q; is a cardinal

w; < K; (ie., g is a P;-name of a cardinal < k).

4.1A Definition. For a forcing notion P and P-name @ of a forcing notion
with set of elements 1 (a P-name of cardinal) with minimal element 09 (can
demand it to be 0) we define a hereditary countable P-name of a member of Q:
it is the closure of the set of ordinals < u (see (*) below) by the two operations
(a) and (b) (see below):
(*) the names & for a < p or more exactly for an ordinal a the P-name
Tea is such that 74(G] = a if @ < p[Gp| and 74[G] = 0g[GPp] if
a > H[GP]. Of course we can restrict to 7, such that Ifp o > p. Also
if p = p we can use just &, a < p
(a) if T7,(n < w) are such names, and p, € P (for n < w) then let 7 be
the 7, for the least n satisfying p, € Gp, and Q¢ if there is no such
n. -
(b) if Tn,m(n <w,m < w) are such names, let 7 be the least ordinal a < p
such that for every n, {Tn,m : m < w} is pre-dense over 7 (in Q); and
(g if there is no such a. (Remember: the members of @ are ordinals
< p).
We shall prove by induction on § <  that P satisfies the x-chain condi-
tion.
Suppose this holds for every ¢ < &, so for ¢ < ¢ by Claim I 3.7 clause (ii)

we have < k possible values for p¢, each is < & so

d f ”
pe = sup{p: Wp, “p# pc”}

is < K (as & is regular). So for ¢ < { w.lo.g. pu¢ = u¢ (as we can add to Q¢
the ordinals i, u¢ <4 < p¢ such that 7 is = to the minimal element (,). Let

us define by induction on (, Pg = {f : f a function with domain a countable
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subset of ¢, f(i) is a hereditarily countable PiT—name of an ordinal < y;}. Let
Pg C P inherit its order. We now can prove by induction on ¢ < &, that PCT
is a dense subset of P, using the proof that properness is preserved by CS
iteration. It is clear that ng | < €[, so for £ < k, P has a dense subset of
power < k. So we finish.

For ¢ = &, if p; € P, for i < K, clearly S def {i < k:cf(i) = Ry} is
stationary, f(i) = Sup[i N Dom(p;)] < 7 is a pressing down function, hence by
Fodor Lemma on some stationary S; C S, h has a constant value 7. There is
a closed unbounded C C & such that: if 8 € C,a < 3, then Dom(p,) C 8. So
S1 N C is still stationary, hence has power « and for o, 3 € C N Sy, pa,pp are
compatible iff p,[v,pgly are compatible (in P, or P, does not matter). But

we have proved that P, satisfies the x-chain condition, so we finish. 041
We have proved

4.1B Claim. For Q = (P;, Qi : i < a), a CS iteration of proper forcing, such
that for each i < a it is forced that Q; is with set of elements C Ord, we have,
for i < a:
1) P} = {f € P;: for j € Dom(f), f(j) is a hereditarily countable P/-name}
is a dense subset of P;,and i < j < a and f € P/ = fli€ P;
2) If f is a Po-name of a function from w to Ord and cf() > R then for a
dense open set of ¢ € Py, for some 3 < o and Pg-name g of a function

from w to Ord, q IFp, “f = g".

4.2 Theorem. Suppose P is not proper, then there is an Rj-complete forcing
notion Q, in fact Q = Levy(Ry,2/P) will do, such that |Q| < 2P and IFg “P

collapses some stationary S C w;”.

Proof. As P is not proper, there is a stationary S C Sy, (u) which P destroys,
Ro < i < 271, So there are P-names F%, of n-place functions from p to y, such
that I-p “Sm((u, F§,...)) NS =0". Let Q = Levy(R1, ) = {f : f a function

from some o < wy into p}.
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Fact A. IFg “S is a stationary subset of Sy, (1)”.
This is because @ is X; -complete hence, by 2.10, proper.

Fact B. The statement I-p “S C Sy, (1) is not stationary ” is absolute, i.e., if

it holds in V it holds in V9.
We just have to check that the P-names F’ ¢ continue to satisfy the suitable

requirement (and @ adds no new member to P and no new member to S).

Fact C. I “ the ordinal y has power X;”.

This is trivial.

Fact D. If forcing by P destroys a stationary subset of Sy,(A)(A = p in our
case ), A of power Ry, then forcing by P destroys some stationary subset of wy.

(follows from Lemma 1.5 and 1.12(3)). Og2

4.3 Theorem. Suppose ZFC has a model with a strongly inaccessible cardinal
. Then ZFC has a model in which 2% = R, and

(¥) If P is a forcing notion of power ®; not destroying stationary subsets of
w1, and Z; C P is dense for ¢ < w; then there is a directed G C P satisfying
GNI; #0 for i <w.

Proof. Notice that if V E “k > Ro & k<" = K& |P] < k& (I < k)[P has the
A-c.c]” then VP E “k<F = k& Kk > R".

This is proved exactly as the parallel fact in Theorem II 3.4. Now let
{Sa : & < K} be a partition of k to k sets such that 3 € S, = 8 > a,
and |S,| = k. Define by induction on i < s a CS iterated forcing system
(Pi, Qi 11 < k). Let (<¢ : € € Su) be alist of the canonical P,-names of partial
orders on w;. The induction hypothesis for ¢ < & is:

(1) Qj is proper for j < .
(2) the density of P; is < & (i.e. it has a dense subset of cardinality < k).
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Assuming (P}, Q; : j < 1) is already defined, let

(w1, <i) if IFp, “(w1, <;) is proper”
B Levy(Ry,281) otherwise

where Levy(R;, 2%1) means “2%t and the Levy collapse are interpreted in V5",
so are P;-names. Clearly P; is proper (by Theorem 3.2 and remembering that
Levy(Ry,2%) is Rj-complete hence by Theorem 2.10 proper). We still have to
check that density(P;) < & but it is easy, note that we use Theorem 4.1. Finally
also Py is proper by 3.2 and (again by Theorem 4.1 ) satisfy the k-c.c. which
makes it possible to prove VP~ I (x) exactly as in the proof of Theorem II 3.4,
but using 4.2 above. Oas

Note that in view of Theorem 4.1 we have a parallel of MA for proper

forcing without assuming an inaccessible. We now return to a promise.

4.4 Theorem. Suppose S C w; is stationary co-stationary (i.e., also wy \ S
is stationary too). Then there is a forcing notion Ps which shoots a closed
unbounded C C S (i.e., add such a set ) without collapsing cardinals (or

changing cofinalities).

Remark. So we cannot answer Magidor, Stavi’s question positively in the orig-

inal version.

Remark. Assuming CH this was done by Baumgartner, Harrington, Kleinberg
[BHK]. Without CH, Abraham [A] and Baumgartner [B3] introduce forcing
notions which add a new closed unbounded subset of w; (for different purposes).

We can adapt each for proving 4.4., and will use a forcing similar to Abraham’s.

Proof. Let P = Levy(Ro, < ®1). So P is essentially adding ®; Cohen reals. If
Gp C P is (directed and ) generic over V, then Gp is also generic over L (the
constructible universe) as P € L and also over L[S]. By Theorem I 6.7 the
forcing P satisfies the countable chain condition and Nf[GP b= RY = NY[GP |
and V, V[Gp] have the same cardinals and cofinalities. Let
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Q = {C : C a closed bounded subset of S which belongs to L[S, Gp]}

C1 < C, iff C; = C, N (Max(Cy) + 1)

Clearly Q is a forcing notion of power X1, so it cannot collapse cardinals or
regularity of cardinals except possibly R; (all finite subsets of S belong to Q).
So we shall prove that P Q does not collapse ;. So let (in V) N < (H()), €),
N countable, (p,q) € PxQ € N, (p,q) € N, ¢ df N Nw; € S and suppose
Gp C P is generic over V and p € Gp. Note that as S is a stationary subset
of wy, there is such N (in V). So it is enough to find (¢',p') > (g, p) which is
(N, P x Q)-generic. As P satisfies the countable chain condition, p is (N, P)-
generic (by 2.9), hence N[Gp] NV = N. Clearly Q[Gp| € L[S,Gp] C V[Gp],
now N[Gp] does not necessarily belongs to L[S, Gp], but N[Gp] N L[S, Gp] is
N[G,] N Ls[S,Gp] = Ls[S,Gp] € L[S,Gp] and is a countable set in L[S, Gp].
In L[S,Gp] we have an enumeration of Q[Gp] N N[Gp] (of length w), say
(gn : n < w) (but not of the set of dense subsets ); in fact we have it even
in L[S,Gp[(é + 1)] (and as we use Levy(Ro, < R;) not Levy(Ro, < k) even in
L[S,Gpld]). Now in L[S, Gp] there is a Cohen generic real over V[Gp[(d + 1)]
say r* € “w and we use it to construct a sequence C = (Cy, : n < w) such
that C, € Q[Gp]in L[S,Gp] ie. C € L[S, Gp], e.g. we choose C,, by induction
on n; we let Cy = g[Gp] and we let Cyy1 be gm(n) where m(n) is the first
natural number m such that: m > r*(n) and Q[G Pl E “Cn < gm”. Let G def
{g: g € Q[Gp], and ¢ € N[Gp] and for some n, Q[Gp] |= ¢ < Cp}. Clearly
G € N[Gp]NQ[Gp] is generic over V[Gp[(6+1)]. So ¢ = |, CrU{6} € Q[Gp]
is (N[Gp], Q[Gp])-generic. Going to names we finish. Oy.a

Remark. Also N in V[Gp] is O.K. as it still belongs to some V[Gpla] for some
a < wi.
§5. On Aronszajn Trees

5.1 Definition. 1) A cardinal & is said to have the tree property if every tree

of height « in which every level has < « members has a branch of length . A



124 ITI. Proper Forcing

tree which is a counterexample to the tree property of « is called a k- Aronszajn
tree. By the Konig infinity lemma Rq has the tree property.

2) A k-Aronszajn tree in which every antichain is of cardinality < & is
called a k-Souslin tree. An N;-Aronszajn tree, and an R;-Souslin tree are called
an Aronszajn and a Souslin tree, respectively. A A\*-Aronszajn tree is said
to be special if it is the union of A antichains, if A = Ry we may omit it. A
special Aronszajn tree cannot be Souslin, since in a Souslin tree every antichain
is countable, hence the tree, being uncountable, cannot be the union of Ry
antichains. A A-wide Aronszajn tree is a tree with w; levels, A nodes and no

wi-branch.

5.1A Remark. It is easy to show that an Aronszajn tree T is special iff there
is a function f : T — Q which is order preserving. A A*-tree which is special
is a AT-Aronszajn tree. The following was proved by Aronszajn, [Ku35] (and

5.3 is a well known generalization).

5.2 Theorem. There is a special Aronszajn tree 7.

Proof. The members of the a-th level T,, of T' will be increasing bounded
sequences of rational numbers (of length o) with < as the tree relation. When
we come to define T, we assume that for all 8 < v < a and for all x € T}
and every rational ¢ > Sup(Rang(z)) there is a y € T such that < y and
Sup(Rang(y)) = q, and |Ts| = Ro. f @ = 0 take T, = {<>}. If a = v +1
take Ty = {2° < g >: z € T, &q € Q&q > Sup(Rang(z))}, where Q is the
set of all rational numbers. Obviously |T,| = |T]| - Xo = No. The induction
hypothesis holds also for 8 < a, as easily seen. If o is a limit ordinal then
for every * € Ug<aTp and every ¢ > Sup(Rang(zr)) we shall construct a
sequence y of length a which extends z such that Sup(Rang(y)) = q. Let
(Bn : n < w) be a (strictly) increasing sequence such that z € Tj, and
Sup{fn : n < w} = . Let (g, : n < w) be an increasing sequence of rationals
such that go > Sup(Rang(z)) and Sup,,..,g» = g. We define now a member
zn, € Tp, such that Sup(Rang(z,)) = ¢n as follows: o = z. Assume z,, € Tp,, is



§5. On Aronszajn Trees 125

defined; Sup(Rang(z,)) = ¢n < gn+1 then by the induction hypothesis there is
an Tny1 € Tp,,, such that z, < z,4; and Sup(Rang(z,+1)) = gn4i. Take
¥ = Unc, Tn, then the length of y is Un<wBn = o and Sup(Rang(y)) =
Sup(Rang(z,)) = Sup,,.,,¢n = ¢. As y was chosen for = and ¢ we let y = Yz,q-
Lastly let To = {yz,4' T € Upco T and Sup(Rang(z)) < ¢ € Q}. Since we
introduced one such y for each z € Ug<oTp and ¢ > Sup(Rang(z)) and there
are only Ng such pairs clearly |To| < Ry.

T has no branch of length w; since if S is such a branch then US is an
increasing sequence of rationals of length wy, which is impossible.

By our construction of T', for every x € T we know Sup(Rang(z)) is a
rational number. Therefore T' = |J,co{z € T : Sup(Rang(z)) = ¢}, and each
set {x € T : Sup(Rang(z)) = q} is clearly an antichain. Thus the tree T is a
special Aronszajn tree. Os.2

When we want to construct a «t-Aronszajn tree we use, instead of the
rationals, the set Q, of all sequences of ordinals < & of length x which are
eventually 0, ordered lexicographically. We can proceed as in the construction
of the N;-Aronszajn tree, but when we construct Ty, for a limit ordinal a such
that cf(a) < k, we have to put in Ty, all the increasing sequences y of members
of Q, of length « such that y[3 € Tg for every 8 < a. Otherwise we have no
assurance that we can carry out the construction of T, for a limit ordinal
such that cf(a) = . In order to be sure that |T,| < &, for every a < k* we
need that k<* = >  _ K" = K, since this will enable us to prove that if for
a limit ordinal a with cf(a) < k we construct T, as mentioned above we still
have |T,| < k.

So we have presented a proof of the well known:

5.3 Theorem. If K = k<" then there is a x*-Aronszajn tree.

If the continuum hypothesis holds then N?" = N; and therefore there is
an Ry-Aronszajn tree. Therefore, if we look for a model with no R,-Aronszajn
tree, the continuum hypothesis should fail to hold in such a model. There is
a theorem which says that in such a model Rq is a weakly compact cardinal

in L, hence the consistency of the inexistence of Ny-Aronszajn trees is at least
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as strong as the consistency of the existence of a weakly compact cardinal; we
shall see that these two consistency assumptions are equivalent. Mitchell had
proved this theorem, and Baumgartner gave a simpler proof by proper forcing.

The following theorem is due to Baumgartner, Malitz and Reinhart [BMR].

5.4 Theorem. For every tree T of height w; with no branch of length w; (no
restrictions on its cardinality) there is a c.c.c. forcing notion P such that in the
generic extension of V by P the tree T is special. If |T| < 2% then by Martin’s
axiom it follows that T is special.

As a consequence, if we assume Martin’s axiom and 2% > X, then all

Aronszajn trees are special and hence there are no Souslin trees.

Proof. Let P be the set of all finite functions p from T into w such that if
p(z) = p(y) then z and y are incomparable. For every x € T the set Z, of all
members of P whose domain contains x is obviously dense in P, hence if G is
a generic subset of P, F = UG is defined on all of T and if F(z) = F(y) then
and y are incomparable. If we have Martin’s axiom and |T'| < 2% then there are
< 20 dense sets 7, and the directed set G can be taken to intersect all of them,
and F = UG is as above, i.e., it specializes T since T' = U, {z : F(z) = n}.

We still have to prove that P satisfies the c.c.c. Suppose there is an un-
countable subset W of P whose members are pairwise incompatible. Without
loss of generality we can assume that all members of W have the same car-
dinality, that their domains form a A-system with the heart s and that for
all p € W, pls is the same function. Denote W = {p, : @ < wi} and let
Dom(py) \ s = {Za,1,---»Zan} Let a, 8 < w1, po and pg are incompatible,
hence p, Upg ¢ P. Since p, and pg coincide on s and the rest of their domains
are disjoint we must have for some 1 < k,£ < n, pa(Ta,k) = ps(za,) While z4 x
and zg, are comparable. Let Yo 50 = {8 < w1 : B # a,Pa(Tak) = Pa(Ts,e)
and z, and zg, are comparable }. As we saw Uik e<n Ya ke = w1 \ {a}.
Let E be a uniform ultrafilter on w;, then for every a there are k and £ such
that Yy k¢ € E, let k(a) and £(a) be such. Therefore for an uncountable sub-
set A of wy,k(a) = k and £(a) = £ for a € A. Let o, 8 € A then Y, o,
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Yp ke € E hence Yoo NYs ke € E and therefore |Yo ke N Yp kel = R1. Let
v € YakeNYp ke then 24k and 2, are comparable with z., . Now x., ¢’s with
different v € Yo ke N Y3 k¢ are different, and since there are only countably
many members of T below z,x or below zg, (in T’s sense) there must be
some v € Yy k¢ N Yp ke such that z, p is greater than both z,x and zg (in
T’s sense) and since T is a tree, ok is comparable with x . This holds for all
a, B € A hence T has a linearly ordered subset of cardinality R;: {zqx : @ € A},

and therefore a branch of length w;, contradicting our assumption. Os.4

§6. Maybe There Is No Ny-Aronszajn Tree

Toward this we mention (see for history, 6.2 below):

6.1 Lemma. 1) Assume V F “Mo > N, & T is an Ry-Aronszajn tree.” Let P
be an Ni-complete forcing notion. Then V[P] F “T has no cofinal branches”.
(X2 may become of cardinality R; in V[P] so it does not have to stay an Ro-
Aronszajn tree.)
2) Assume:
(a) T is a tree with ¢* levels such that cf(6*) > Ro
(b) for no limit § < §* of cofinality Rq can we find pairwise distinct z,, € Ts
for n € “2 such that: [a < § = {z,]a : 7 € “2} is finite] (z, | is the
unique y <7 T, y € Ty)
(c) P is an Rj-complete.

Then forcing by P add no new ¢*-branch to T.

Proof. 1) Assume that pg I+ “B is a cofinal branch in 7. We shall define in V
two functions F : “>2 — T'|« for some a < wp and S : “>2 — P such that:
(i) F(<>) = the root of T, S(<>) = po
(ii) for all z € 2<¥ we have S(z) I+ “F(z) € B”.
(i) z <y = S(z) <p S(y), F(z) <r F(y), and
(iv) F(z" <0>) and F(z" <1 >) are incomparable in T



128 III. Proper Forcing

F(n) and S(n) are defined by induction on the length of 7. Assume S(n),
F(n) are defined we shall define S(n"(£)), F(n" (£)) for £ =0, 1. Since S(n) >p
po, S(n) has, for every § < wa, an extension which forces some member of Tg
(i.e., the set of vertices of height § in the tree) to be in B. If {¢ : F(n) <r t and
there is p >p S(n) such that p I “¢ € B’} was a set of pairwise comparable
members of T' then they would be a branch of T in V, contradicting our
hypothesis. Therefore there are two incomparable t’s in this set, take one to
be F(n" < 0 >) and the other to be F(n”~ < 1 >) and choose S(n~ < 0 >)
and S(n" < 1>) as conditions > S(n) such that S(n"~ < £>) I+ “F(n"~ < £>
) € B” for £ € {0,1}. Since the range of F is countable it is included in some
Tla for some a < wsy. Since P is Ry -complete, for every n € 2%, P contains a
condition p, which is an upper bound of {S(n[n) : n < w}. Since p,, > po there
is a g, > p, and a t, € T, such that g, IF “t, € B”. Let v # n, and v,n € 2.
Let n be the least such that v|n # n[n, then by requirement (iv) above we have
that F(v|n) and F(n[n) are incomparable in T. Now P |= “g, > p, > S(nn)”,
hence also g, IF “F(nIn) € B”. Since gy forces that B is a branch of T" and that
tn, F(nin) € B clearly t, and F(n[n) are comparable in 7. Since the height
of F(n[n) is < a and the height of ¢, is o we have F(n[n) <r t,. Similarly
also F(v|n) <r t, and since F(n[n) and F(v|n) are <r-incomparable also t,
and t, are <p-incomparable and hence different. Thus T}, contains 280 > N
different members t,, contradicting the assumption that 7" is an Np-Aronszajn
tree.

2) Similar proof. Us.1

6.2 Theorem. If ZFC is consistent with the existence of a weakly compact
cardinal then ZFC is consistent with 28¢ = R, and the non-existence of N-

Aronszajn trees.

Remark. By what was mentioned in the last section we have “iff” in this
theorem. Mitchell had proved the theorem and Baumgartner [B3| gave a simpler

proof by proper forcing.
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Proof. Let k be a weakly compact cardinal. We shall use a system (P;, Qi1 <
k) of iterated forcing with countable support. Q; will be the composition of two
forcing notions Q; 0 and Q; 1. Now Q; o will be the forcing notion of countable
functions from w; into wy (in V[P;]) which collapses R, i.e. Levy(Ry, R2). Now
Qi is obviously Nj-complete. V[P;][Qi0] contains wide trees of cardinality
R; and w; levels with no wj-branches (e.g., {(a,8) : 8 < & < w;} with
(a, B) <7 (af,B) iff @ = ot & B < Bf). Let W be the disjoint union of all
such trees (up to isomorphisms), as a single tree with at most 2% roots ( we
take all the trees to be wy x {i} with some partial orderings). The tree have
wy levels, < 2% nodes and no wj-branch. By Theorem 5.4 there is a c.c.c.
forcing @;,1 which makes this tree special, and hence makes every R;-wide tree
of cardinality N; special, provided it has no wj- branch.

Note that in VP, Qi,0 has cardinality < 2% and Qi1 inV
cardinality < 2®1. Let us notice that these descriptions of Qi in V[P;] and

P;ixQ;0
~ has

Qi1 in VIPi][Qi0] = VI[P; * Qi) really yield corresponding names Q;,o and
Qi,1 by the Lemma of the existential completeness which we proved.

Since Q;,0 is Ri-complete over V[P;] and since Q;,; satisfies the c.c.c. over
V[P;][Qi,0], both are proper, hence Q; 0 * Q;,1 is proper and therefore also each
P;,i < K, is proper. Thus R; is not collapsed even in V[P,| (by 3.2). Let A be
an inaccessible cardinal, A < k. Our construction of P; and Q; are such that for
i < X we have |@;| < A, hence each P; has a dense subset of cardinality < A.
Therefore, as we proved in 4.1 also Py satisfies the A-c.c. and therefore ) is not
collapsed in V[Py] and thus V[Py] F “A > Ry” (since N; too is not collapsed).

Before finishing we prove two lemmas.

6.3 Lemma. V[P,] E “ there are at least A real numbers ” for every A < &.

Proof. It suffices to prove that for every ¢ < X there is a real in V[P;41] \
V[P;][Q:,0]. We shall see that a forcing notion such as @; 1 introduces a Cohen
real over the previous universe. Let us simplify the notation by writing V1 for
V[Pi)[Qipo], and Q for Q;1 and T for the tree in V1 which Q makes special.

Let (a; : j < w) be an ascending sequence in T in VT (ie, j < k < w —
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a; <t a). Now Q introduces a function F' on T into w such that if a,b € T
and F'(a) = F(b) then a and b are <p-incomparable. For j < w let t; = 0 if
F(aj;) is even and t; = 1 if F(a;) is odd. We shall see that t = (¢; : j < w)
is a Cohen real over V1, i.e., for every dense subset Z of “>2 in Vi, tjn € Z
for some n < w. For p € Q let p* = {(j,s) : j < w and a; € Dom(p) and
([s = 0&p(a;) is even] or [s = 1& p(a;) is odd] )}. Let Qz = {p € Q : p* € I};
we shall see that Qz is a dense subset of Q in V1. Clearly Q7 € V! since
it is defined in V!. For ¢ € Q let r > ¢*,7 € Z; there is such an r since
T is dense in “”2. Let n be a strict upper bound of the range of q. Let
p=qU{{a;,2n+2j 4+ (j)) : j € Dom(r) & a; ¢ Dom(q)}. Obviously p € Q,
and p* =r € 7 hence p € Qz. Since p > q we know Q7 is dense. Let G be the
generic subset of ) then there is a p € G N Q7 such that p* € Z, and for some
n <w,p* €2 (as p* € Q = “>2). Since p C F[G] we have t[G][n = p*, hence
t[G]In € T, which establishes that ¢ is a Cohen real. Os.3

6.4 Lemma. For every inaccessible A < k, V[Py] F “A = Rp”.

Proof. Let G be a generic subset of Py. We saw already that V[G] E “A > Ry”.
Suppose now that V[G] F “Ny = u”, where u < A. Let F' € V[G] be a function
on p X wy such that for all 0 < a < u we have {F(a,8) : 8 < w1} = ¢, ie,
F(a,—) is a mapping of w; on a. Let F' be a name of F and let py € G force
that F' is as we described. For each a < p and 8 < w; let Z, g be a maximal
antichain of members of P, which are > py and which give definite values to
F(a, B). Since as we saw, Py satisfies the A-c.c. condition, clearly |Z, g| < A.
Let T = Ug<p,B<wiLa,g- Since A is regular |Z| < X. Since each member of
ZU{po} is a countable function on X there is a v < A such that ZU {po} C P,.
Let G, = G N Py, then clearly F € V[G,] (since we define F(a, 8) in V[G,] to
be that v for which there is a ¢ € Z, sNG, such that ¢ I “F(a, ) = v"). Then
V[G,] E u < Ry, but since V[G] F “u = Ry” we have V[G,] F “u = Rp”. But
since we force above V[G,] with Q,0[G] which collapses the X, of V[G,], we
have V[G,][G~,0] F “p < R” hence V[G] F “u < Ry”, which is a contradiction.

Us.4
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Continuation of the Proof of Theorem 6.2. Now let us go on with the proof
of the theorem. Assume that there is a pp € P, such that py IFp_ “ there is
an No-Aronszajn tree,” i.e., po lFp_ “ there is a k-Aronszajn tree T on k and
a function F on & such that for a < k, F(a) is the rank of a in T, (since by
the lemma V[P;] E “Ny = K”), i.e. po IFp, “ there is a transitive relation T'
on « such that for all «, 3, € k we have: [Ty & BTy = oT'y] and there is a
function F from « into k such that for all o, 8 < &: if oT'3 then F(a) < F(B),
for all & € k and v < F(a) there is a ST« such that F(8) = v, and for all
v € k there is a 3 € k such that for all @ € « if F(a) = then o < 3, and for
all B C k there are a, 3 € B such that a # 8 A -aT B A —BTa, or else there is
a 8 < k such that B C 7. This implies, by the existential completeness that
there are canonical names of T and F of relations on k such that:

(%) po IF “T is a transitive relation on x and (Ve 8,7 < &)(aTy& BTy —
aT7) and (Yo, 8,7 < k) [a = BV aTBV BTa) and (3F : k — k)(Va, B < k)
(0T — F(a) < F(B))& (8 < F(a) — (37 < H)(vTa A F(y) = §))] and

(Vy <k)3EB < k)Va <k)(Fla) =y —>a<p)
and for every canonical name B of a subset of

(+%) po Ik (3, B € B)(a # BA~aTB A ~BTa) V(3B € )(B C ).

Now a name X of a subset of  x & (like T) or  (like B) or even a subset of
H(k)V, we can assume the name is canonical (see Definition I 5.12 and Theorem

15.13). So X is a subset of {(p,z) : p € P, and z € H(x)}, so a subset of H(k)

and even assume that for each x € H(k) the set Zx . def {p:(pz)e X}is
an antichain of P,. But P satisfies the x.c.c. hence z € H(k) = |Ix ;| < &,
hence E = {§ < & : p strong limit singular, and [j < p = Qlj € H(u)] and
z € H(p) = Ix,. € H(p)} is a club of k. So for p € E, XN H(p) is a P,-name.

Consider now the structure (H(k),€,T, F'). The statement (*) is a first
order statement about this structure, and that (xx) holds for every B as
mentioned is a I1! statement about this structure i.e. a statement of the form:
for every subset X of the model some first model sentence holds. We now use
one of the equivalent forms of the definition of weakly compact (can be read

from the proof, or see e.g. [J]). Since x is weakly compact and therefore II}-
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indescribable there is an inaccessible cardinal A < &, from E such that (H()), €
,TNAx X, FNAx ) is an elementary substructure of (H(k), €, T, F) and satisfies
the I1] statement mentioned above. P, and IF-p_ are definable in (H(x), €,T, F)
and the same definitions give Py and IFp, in (H(A), €, TNAX A FNAxA).
Therefore (I’NAX \)[G,] is a A\-Aronszajn tree in V[G)] (where G is the generic
subset of P over V and Gy = G N Py). We claim that (T'N X x \)[G,] is the
part of the tree T'[G] up to level A. Let (o, 8) € (T'N A x A)[G,] then a, 8 < A
and for some p € Gy, p IFp, (@,8) € (TN A X A), hence p IFp, “(a,B) € T”
(by the relation between the two above mentioned structures), hence, since
p € G,{a, B) € T[G), shows that (T'N A x A)[G,] is included in the part of T[G]
up to level A. The proof of the equality of these two trees will be completed
once we show that in T'[G] all the ordinals in the levels below A are < A. Let
1 < X then, since () holds for the structure (H()),...) there is a p € G and
an ordinal 8 < X such that p IFp, (Va € A) (FNAx A)(a) =p — a < f),
therefore p IFp, (Va € k) (F(a) = p — a < ), and since p € G we have in
V[G] that all the ordinals in the level p are < 8 < A.

Thus in V[P)] we know T'N (A x A) is a A-Aronszajn tree, i.e., an No-
Aronszajn tree. Now we saw that in V[P,] there are at least A real numbers,
ie, 2% > R, in V[P,] and we know Q)¢ is an Nj-complete forcing notion
in V[P,], therefore, by Lemma 6.1 T'N (A x A) still has no cofinal branch in
V[P2][@x,0)- Since in V[Py][@x,0] we have |A| = Ny there is a subset a of A
of order-type w;. Let b be the set of all the ordinals in 7"N A whose level is
in a, so TN b is an R;-tree with no cofinal branch in V[Py][@x0]. Now Qi1
makes this tree special (dealing with a tree isomorphic to it). Thus the tree
TI{t : F(t) € a} is a special Ny-tree in V[Py;1] and therefore it stays so also
in V[P,] since the function which makes it special is in V[P 41] and hence also
in V[Pg]. Thus in V[P,] we have T[) is a tree which has no cofinal branch
and {t € T : F(t) € a} is (in VF+1) an R;-wide Aronszajn tree, but this is a
contradiction since 7'N (A x A) is the part up to level A of the sk-tree T and as
such it must have branches of length . Oe.2

We used a weakly compact & to obtain a generic extension in which there

are no No-Aronszajn trees. If all we want is to obtain an extension of V in
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which there are no special Na-Aronszajn trees ( i.e., trees which are the union

of R; antichains ) then it suffices to use a Mahlo cardinal  (see [B3] on this).

§7. Closed Unbounded Subsets of w; Can Run
Away from Many Sets

Baumgartner [B3] has proved the consistency of the following with ZFC+2"0 =
Ro: if A; C wy, for i < wy, is infinite countable then there is a closed unbounded
C C w; such that A; € C for every i < w;. We prove a somewhat stronger

assertion.

7.1 Theorem. ZFC + 2% = X, is consistent with:
(*) if A; C w; has no last element and is nonempty and has order type
< SupA;, for i < wy, then there is a closed unbounded subset C of w;, such

that C N A; is bounded in A; for every i.

Remark. Abraham improved Baumgartner’s result to:
ZFC + 2% = anything +

(*#x) there are Ry closed unbounded subsets of Xy, the intersection of any X; of
them is finite.
Galvin proved previously that CH implies () fail. Our proof is similar to

[Sh80 §4].

Proof. We start with a model V satisfying CH, and use CS iterated forcing of
length wy, such that in the intermediate stages CH still holds. So by 4.1, it

suffices to prove.

7.2 Lemma. Suppose V satisfies CH. There is a proper forcing notion of power
R; which adds a closed unbounded subset of C of w; and Sup[C N A] < SupA
for any infinite A C w; with no last element and order type < Sup(A), which
belongs to V.
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Discussion. A plausible forcing to exemplify 7.2 is:

Q = {C :C a closed countable subset of w; so that if A € V is a set
of ordinals < wj, § = Sup(A) is a limit ordinal, A has order

type < 6, then Sup[ANC] < 6}

(so if 6 > sup(C) this holds trivially), with the order
Ci<Cyiff Cyn [(MaxCl) + 1] =C;.

So the elements of @ are approximations to the required C. It is clear that a
generic subset of Q gives a C as required, provided that R, is not collapsed;
hence the main point is to prove the properness of Q. Unfortunately it seems
Q is not proper, in fact has no infinite members. However if we want to add
a C € Q which is (N, Q)-generic for some N < (H(\),€) a c.c.c., forcing is
enough. So we could first force with some P, |P| = Ro, P satisfies the c.c.c.
such that
IFp “2%e = Ry and MA holds”.

Then we define @ in V[Gp] for Gp C P generic over V; similar to the definition
above but members of the forcing notion are from V|[Gp] whereas the A for
which we demand sup(C) N A < sup(A) are from V. So

Q = {C € V[G]: C a closed countable subset of wy, and if A € V is
infinite with no last element and (order type A) < SupA < MaxC, then
Sup(C N A) < SupA}.

Now Q is proper, and adds a C as required, so P*Q adds a C as required.
Unfortunately P @ also collapses Rz, so if we are willing to use some strongly
inaccessible k > R, there is no problem. Otherwise, we use a restricted version
of MA, which is consistent with 2% = R, so 7.3, 7.4, 7.5 below prove Lemma

7.2 hence Theorem 7.1. Throughout we use the order < on @ defined above.

7.3 Claim. Suppose
(a) V satisfies CH, P is a forcing notion of power R satisfying the c.c.c.

and G C P is generic over V.
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(b) 0 < w; is a limit ordinal, (Vo,, 8 < d)ja + 8 < 3, R € V[G] is a
countable family of closed bounded subsets of §, ordered by C; < Cy
iff C; = Co N (MaxC) + 1)
(c) Define (in V[G]):
Q = Qg def {(C’,{(A,',ai) i< n}):C € Rn < w, for each
i <n,A; €V is asubset of § of order type < §, and CN A4; C o; and
a; is an ordinal < § },
the order is
(C{(A},a}) s i < nl}) <(C?,{(42%,a2) :i < n?}) if C < C?,n! <
n? and for every i < n' for some j < n® we have (4},a}) = (42,a2)
and C?\ C! is disjoint to A}.
Then
1) Qg satisfies the c.c.c.
2) if for every C € R, {8 < § : CU{B} € R} has order type § then

IF@ “Ucegq C is an unbounded subset of 6”.

Proof. 1) Trivial, as any two conditions with the same first coordinate are com-
patible, and there are only countably many possibilities for the first coordinate.

(2) Trivial, because if Ay,..., A, are subsets of ¢ of order type < ¢,
their union has order type < ¢ by Dushnik, Miller [DM]. So for every p =
(C,{(Ag, ) : £ < n}) € Q the set

B,={B8<a:p<(CU{B},{(As,ar) : £ < n}) € Q and 8> max(C)}
has order type § because

B,={8:CU{B} e R}\ (|J ArU (maxC +1))
£L<n
and the first set has order type d (by an assumption) whereas the second has
order type < & (by the previous sentence as otp(A4g) < & by the definition of
Q, and otp([0, maxC + 1)) < & by the assumption on R). Now B, C § being

of order type 4, necessarily is unbounded in § and we are done. O7.3
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7.4 Claim. Suppose V satisfies CH. There is a forcing notion P of power R;
satisfying the c.c.c., such that the following statement is forced:

(x) Suppose § < w is limit, (Va, 8 < §)[a + B < 4] (equivalently § is an
ordinal power of w) and R is a countable family of closed bounded subsets of
d such that (VC € R)(VB) (MaxC < < § - CU{fB} € R) and for n < w we
have: Z,, is a dense open subset of R such that I} = {(C,0): C € 7,,} C Qr
is pre-dense in Qg (where Qg is from 7.3 clause (c)). Then there are Cy, € R,
such that C, < Cp41, Sup,MaxC,, = §,Cp41 € Z,, and for every Ac V,AC§
of order type < 4, Sup[4A N (U,C,)] < 6; moreover we can choose Cy € R

arbitrarily.

Proof. We can use an FS iteration (P;, Q; : i < wi) of forcing notions satisfying
the c.c.c., such that for every possible R and § (which are in V or appear in
VP for some i < w) for uncountably many j < w; in V¥ we have Q; =Qr-

7.4

7.5 Claim. Suppose V satisfies CH, P is asin 7.4, and Q = {C : C € VP
a closed bounded subset of wy, such that for every infinite countable A € V,
A C wy with no last element, and (order type of A) < supA, if SupA < MaxC
then Sup(A N C) < SupA} ordered by: C; < C; iff C; = Co N ( maxC + 1).
Then Q is proper (ie., I-p “Q is proper ”) and has cardinality < R;.

Proof. Let G C P be generic over V, X be regular big enough and let in V[G]
SYUN:N < (HQ)),€),Pe N, HR,)" € N, G € N, and there is a
sequence (N; : i < §) such that N; < N, (N; : j <) € Niz1, N = U;<sN; and
6 = N Nw; (automatically Q[G] € N)}
It is easy to check the following facts, and by 2.8 they imply Q is proper,
so we finish the proof of 7.2, hence 7.1.

Fact A. § € Dy, ((H(N\) (in V[G], remember we do not distinguish strictly

between N and its set of elements).
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Fact B.Tn V[G]: if N € 5,6 = NNw;, R Q[G]NN, and T € N is a dense
open subset of Q[G], then
(a) {(C,{(Ai,aq) : i <n}) € Qr: C € IN R} is a dense subset of Qr and
{(C,0) : C € TN R} is a pre-dense subset of Qg.
(b) For every C € Q[G]N N there is C*, C < C* € Q[G] and C* is (Q[G], N)-

generic.

Proof. Let (N; : i < 0) be as in the definition of S. Let py = (Co, {(4¢, ) :
£<n}) € Qr and let T € N be a dense open subset of Q[G], so for some i < §
we have Z, p € N;. Let §; be Nj Nwy. Let Ay = {j < 6 : A; N [0;,8;41) # 0},
so otp(A}) < otp(Ag) < . hence as in the proof of 7.3 there is j € (i, ) which
does not belong to Aj for £ < w. Now p; = (Co U {6}, {(Ae, ) : £ < n})
belongs to R and is > p. There is Cz € Q[G] N Z[G] such that C' U {4;} < C»
(in Q[G]), hence there is such C3 in Nj1 (as relevant parameters belong to it).
Now py = (Ca, {(Ae, ) : £ < n}) belongs to Q[G] N N and is > p; > po. This
proves clause (a).

Let (I3 : n < w) list the dense open subsets of Q[G] which belong to N
and C € Q[G]NN, and let T, = Z) N N, and let R = Q[G] N N with the
inherited order. Trivially C € R & max(C) < < NNw; = C <g CU {B},
and the other assumption in (x) of 7.4 holds by the previous paragraph, so
there is (Cp, : n < w) as guaranteed there (with C' < Cy).

Now C* = |J CrU{NNw} belongs to Q[G], C, < C* and Cpy1 € I, C

n<w

§8. The Consistency of SH + CH + There Are
No Kurepa Trees

8.1 Definition. For any regular k, a k-Kurepa tree is a k-tree such that
the number of its k-branches is > k. Let the k-Kurepa Hypothesis (in short

k—KH) be the statement “there exists x-Kurepa tree”. We may write “KH”
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instead of wi-KH. (Be careful: KH says “there are Kurepa trees”, but SH says
“there are no Souslin trees”!)

Solovay proved that Kurepa trees exist if V = L, more generally Jensen
[Jn] proved the existence of k-Kurepa’s trees follows from Jensen’s {*, which
holds in L for every regular uncountable x which is not “too large”. But -KH
is consistent with of ZFC + GCH, which was first shown by Silver in [Si67],
starting from a strongly inaccessible k. The method of his proof is as follows:
collapse every A, w; < A < k using Levy’s collapse Levy(Ri,< k) = {p: |p| <
R; & p is a function with Dom(p) C & x w; A V(a, &) € Dom(p)(p(e, €) € )}
Now Levy(X;,< k) can be viewed as an iteration of length k, and satisfied
the k-c.c. on the one hand, and X;-completeness on the other hand. Therefore
N; does not get collapsed, as well as any cardinal R, > k. Suppose now that
T € VP is an w-tree. So it has appeared already at an earlier stage along the
iteration, say T € VP’ where VP is obtained from V¥’ by an RN;-complete
forcing. In VP " the tree T has at most 2% branches, and this is less than .
Note that by 6.1(2) the tree T can have no new wj-branches in V¥. So T is
not a Kurepa tree in VF.

Devlin in [Del] and [De2] has shown, starting from a strongly inaccessible,
the consistency of GCH + SH + —KH. For a proof by iteration see Baumgartner
[B3].

8.2 Remark. In both proofs the inaccessible cardinal is necessary, for —-KH
implies that No is an inaccessible cardinal of L.

The main point in Silver’s proof, is the fact that N;-complete forcing
notions do not add new branches to w;-trees. In this section we prove that
the property of not adding branches is preserved under CS iterations and use
this to give another proof of CON(SH + —KH) from the consistency of “(3k) &
inaccessible”. This serve as a prelude and motivation to Chapter V (and even
more Chapter VI), which deals with preservation of such properties. In chapter
V we will show that moreover the iteration we construct here does not add

reals, so (since we start from a model of CH) we will get a model of “CH + SH
+ -KH”.
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8.3 Definition. A forcing notion Q is good for an w;-tree T' (so the a-th level
of T is T, etc.), if for any countable elementary submodel N < H(x, €), for
x large enough, with T,Q € N, and every condition p € N N Q, there exists
an (N, @)—generic condition ¢ > p such that if 7 € N is a name, g I~ “either
7[Gp] is an old branch of T or 7(Gp] N T<s, is not a branch of Ts, with a

bound z € Tj,”, where 6y denotes N Nw; = sup(N Nwy).

8.4 Fact. Q is good for an w;-tree T iff Q is proper and @ does not add a new
branch to 7.

Proof. =: Suppose @ is good for T. The properness of @ follows trivially.
Let p kg “r is a new branch of T”, and we shall derive a contradiction; let
{T,p,Q} € N < (H(x),€), x large enough and N countable. So let ¢ > p be
as in the definition of good.

If 7[G] is an old branch — we are done. If not, 7[G] N T<s, # By = {y:
y <t z} for all z € Ty, . But this implies that 7(G] being linearly ordered by
<7 has no member of level > §y, so it cannot be a w;-branch of T.

Conversely, suppose that @ is proper and does not add a new w;-branch to
T. Let 7,p € N be as in the definition, and pick ¢ > p which is (V, Q)-generic,
and a generic subset G of P over V with ¢ € G. So 7(G] € N[G] < H(x, €)[G],
and 7[G] is either an old w;-branch, or is not an w;-branch at all. In the first
case we are done. Now if 7[G] is not an wi-branch, then either (3a)7[G|NTy = 0
or 3z,y € 7[G] such that z,y are not comparable in T. By elementaricity of
N[G], such an a or such z,y exist also in N[G]. So q forces what is required by

the definition. Us.4

8.5 Theorem. If T is an w;-tree and Q = (Pi,Qi 14 < @) is a countable
support iteration such that for all 7 the forcing notion Q; (is forced to be) good

for T, then also P, = Lim(Q) is good for 7.

Proof. We break here the proof into two parts. The first part is nothing more
than another proof of the preservation of properness under countable support

iteration. It is meant to help those readers who find the proof in III 3.2 hard
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to follow. In the second part we show how to extend the first part in order to

get a full proof of the theorem.

Let Q = <P1:,Qj 14 < a,j < @) be a countable support iteration such that
IFp; “Q); is proper” for all j < . We fix some regular x which is large enough
for what we need. As in III 3.2 we prove by induction on j < « the condition
(*)j, which is stronger than the properness of P;:
(*); P; is good for T, and
(a) forcing with P; add no wq-branches to T and:
(b) for alli < j and countable N < (H(x), €) such that i,5,Q € N and
p € P;NN and an (N, P;)- generic g € P; which satisfies ¢ > p[i there
is T such that:
(i) re P
(ii) rfi=gq
(iii) = is (IV, P;)-generic
(iv) p<r
(v) Dom(q) N [3,5) = N N [i, ).
The proof is split to cases. Note that though in the statement (x);(b) we
say “for 1 < j” it holds for ¢ = j too.
Case 1. 7 =0
Trivial.
Case 2. j a successor ordinal
Let j = j1 + 1, now (a) of (+); holds as (a) of ();, holds and Q; is good for T',
so we shall deal with (b) of (x);. So by the induction hypothesis applied to j;
and i (see remark above) w.l.o.g. ¢ = j; and continue as in the proof of III 3.2.
Case 3. j a limit ordinal
We first look at a case of clause (b) of (x); and/or of clause (b) of (x); (by 8.4
this suffice) so i, N, p, g are given as there.
As N is countable, we can pick a sequence of ordinals of order type w,
(in : n < w) which is cofinal in N N j and such that 49 =i and i, € N for all n.
Let (Z,, : n < w), enumerate all the dense sets of P; in N. Let ((Tr,Zn) : n < w)
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enumerate the pairs (7,2) where 7 is a Pj-name from N and z € T5, where

v ¥ NAw.

We define by induction on n a condition g, and a P;,

such that:

(a) gn € P;, is (N, P, )-generic.

(b) g0=4q

(¢) gnt1lin = gn, Dom(gn) = Dom(go) U ([io, in) N N)

(d) Po=p and Pnisa P;,,-name of a member of P;

(e) gnlkp, “Pn€ P;NI,NN"

(f) gn IFp,, “plin € Gp,’

(8) anlFp., “Pr < Pn41”

(h) if G; C Pj is generic over V and ¢, € G; N P;, and p,[G; N P, ] € Gp,
then either (3o < dn)(7:,[Gj] NTo € {t: t <7 zn} or TN 1, [G,] is an
wi-branch of T from V.

-name of conditions p,

Let us carry the induction. For n = 0 there is no problem.

Suppose now that we have defined ¢,, Pn and let us define Pn+1,4n+1. Pick
a generic subset Gp, of P;, such that ¢, € G;,. So by clause (e) we have
pnlGi,] € PN N, let p = ef pnl[Gi,]. Define, in V, the set J, = {u € P,
(@r)p; <r &r €I, & u=rlin]} € V. As py[G;,] belongs to N, so does Jy.
Clearly, J, is dense above p, (Gi.]lin. Define Tn=TnU {u : u is incompatible
with plin} € V. So Jn € N is a dense subset of P;.. By the genericity of
qn, the set jn N N is predense above ¢,, and as a consequence there exists a
condition ug € J,NNNG;. . As by clause (f) we have p; i, = = pn[Gi,]lin € Gi,,
clearly ugy cannot be incompatible with it, but ug € Jn so by the definition of
A necessarily ug € J,. There is, therefore, a condition 7o € Z, such that

ug = 7o [i,. By elementaricity of N, we can assume that ro € N.
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In V[G,,], for any p € P;/G;, = {p € P; : plin € Gy} let B} = By[G;,] =
{t €T :pWpya, “t & 1n"}, equivalently {t € T : for some p satisfying
p <p' € P;/G;, we have p’ I “t € 7,,”}. We now choose pgﬂ, oy, such that:
(i) Pr € Py/G,
(ii) 7o <p; Ph41 € N[Gi,]
(iii) one of the following occurs
(a) Bp[Gi,|NTa, £ {t:t < zn}

(b) Phy1 ke, “T N1y is an wy-branch of T7.

Why is this possible? If for some r, rg < r € P;/G;, and BP*[G;,] is disjoint
from some Ty, then there are such r, a, € N[G;,] and p%,; = r is as required.
If for some o < wy, By [Gs,] N T, has at least two members, then there is such
an < wi, and so there is t, € B [G;, ] N Ty, € N such that —(t, <7 z,). By

0

the definition of BY [G;, ] there is p} , | satisfying ro < p3,, € P;/G,, such that
o +1Fp; “tn € 74”7, and 0 +1> Qn, ty are as required. Again by elementaricity

wlog. p%., € N[Gi,]sopd,, € N (as N[G;,] NV = N).

Define now pn1, a Pi,-name by cases. Let pn41[Gy,] be pa[Gi,] if ¢, is not
in the generic set G;,_, and equals p 41 as described above otherwise. For
the definition of g,+1 we utilize the induction hypotheses (x);,. We have just
given a prescription, i.e. a name, for Prt1- We can choose a maximal antichain

J = {ug : { < (u(¥)} of P;

in

of conditions which decide this name, namely
u? I “pny1 = ppt?” for some pP+', and uf > g;, or u¢ is incompatible with
qi, -

For each ¢ < {(*) we can apply the induction hypothesis (*);,,, holds so
apply (*);,,, clause (b) with in, iny1, N, uc, p2+1 here standing for 4, j, N,
g, p there and get q?“ € P, 41 as guaranteed there. Define g, 41 as follows:
Dom(gn+1) = (Dom(gn)) U (N N[in,int1)), for v € Dom(gn+1): if ¥ € Dom(gy)
then ¢n11(y) = gu(7); if v € N N [in,in41) then gny1(y) is a Py-name: if
¢ < (n(*) and ug € Gp, then it is p?‘” (7). Check that g,41 is as required.

So we have succeed to carry the induction. Let ¢ = |J gn, clearly ¢ € P;

n<w

and qli, = gn. As in the proof of III 3.2 we can show that:
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(%) if G; C P; is generic over V and g € G; then p,[G; N P ] € Gj.
So q is (N, Pj)-generic and as

@n IFp,, “Plint1 = polint1 <p;, P1lint1 < ... < Pipyy lint1 < g1’

clearly ¢ is above p. This show that ¢ is as required in clause (b) of (x);. But
by the choice of p%_; (and the list ((T,,2n) : n < w)) necessarily g I+ “for
every T € N[Gj], if 7 is not an old w;-branch of T' then 7 N N[G}] is not of the
form {t : t < z}, for z € Ts,”. So q is as required in clause (b) of (*); and in

Definition 8.3. Us.s

8.6 Theorem. If CON(ZFC + & is inaccessible) then CON(ZFC + GCH
+SH + -KH).

Proof. Described in 8.1, using 8.5. For CH we need to use the results from

chapter V, sections 6 and 7.





