
Introduction

Even though the title of this book is related to the old Lecture Notes "Proper

Forcing", it is a new book: not only did it have six new chapters and some

sections moved in (and the thirteenth chapter moved out to the author's book

on cardinal arithmetic), but the old material and also the new have been revised

for clarification and corrected several times.

Now, twenty years after its discovery, I feel that perhaps "proper forcing"

is a household concept in set theory, and the reader probably knows the basic

facts about forcing and proper forcing. However we demand no prerequisites

except some knowledge of naive set theory (including stationary sets, Fodor

Lemma, strongly inaccessible, Mahlo, weakly compact etc.; occasionally we

mention some large cardinals in their combinatorial definitions (measurable,

supercompact), things like 0# and complementary theorems showing some large

cardinals are necessary, but ignorance in those directions will not hamper the

reader), and the book aims at giving a complete presentation of the theory of

proper and improper forcing from its beginning avoiding the metamathematical

considerations; in particular no previous knowledge of forcing is demanded

(though the forcing theorem is stated and explained, not proved). This is the

main reason for not just publishing the additional material in a shorter book.

Another reason is the complaints about shortcomings of the Proper Forcing

Lecture Notes.

Forcing was founded by Cohen's proof of the independence of the contin-

uum hypothesis; Solovay and many others developed the theory (works prior

to 1977). Particularly relevant to this book are Solovay and Tennenbaum [ST]
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and Martin and Solovay [MS], Jensen (see [DeJo]), Silver [Si67], Mitchell [Mil],

Baumgartner [Bl], Laver [LI], Abraham, Devlin and Shelah [ADS Sl].

We do not elaborate here on the history of the subject (but of course

there are credits and references to it in each chapter or in its sections, e.g. on

Baumgartner's axiom A see VII §4). And in the first two chapters we review

classical material.

Our aim is to try to develop a theory of iterated forcing for the continuum.

In addition to particular consistency results that are hopefully of some interest,

I try to give to the reader methods which he could use for such independence

results. Many of the results are presented in an "axiomatic" framework for this

reason.

The main aim of the book is thus to enable a researcher interested in an

independence result of the appropriate kind, to have much of the work done

for him, thus allowing him to quote general results.

We know how for any partial order P (which we call here a forcing notion) we

can find an extension Vp of the universe V of set theory (e.g. thinking of V as

being countable); this is explained in Chapter I. So for G C P generic over V

(i.e. not disjoint from any dense subset of P from V), V[G] is an extension of

V, a model of set theory with the same ordinals, consisting of sets constructible

from V and G. By fine tuning P we can get universes of set theory with various

desired properties, we are particularly interested in those of the form "for every

x there is y such that ...".

So, e.g., for every Souslin tree there is a c.c.c. forcing notion P changing the

universe so that it is no longer a Souslin tree, but to prove the consistency of

"there is no Souslin tree" we need to repeat it till we "catch our tail". For this
9 p*9

an iteration P*Q is defined, and (V )~ =V " i s proved (i.e. two successive

generic extensions can be conceived as one). More delicate is the limit case, and

for this case "finite support iteration" (P$, Qj : i < a,j < a) works; by natural

bookkeeping we can consider all Souslin trees and even all Souslin trees in VPί

for i < α, and as the c.c.c. is preserved if cf(α) > HI, since a Souslin tree can

be coded as A C ω\, we "catch our tail".
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In other cases countable support iteration can serve for "catching our tail";

some chain condition is then needed.

The main issue is thus preservation, i.e. if each Qi has (in VPί) a property,

does Pα, the limit of an iteration, have it (this depends of course on the kind

of the iteration, that is on the support). The most basic property here is not

collapsing NI, which is treated for several kinds of iteration, i.e. supports.

Classically, a natural condition guaranteeing that KI is not collapsed is (the

countable chain condition) c.c.c. under finite support iterations; it is preserved

(see Chapter II). It is natural to ask that the stationarity of subsets of ω\ be

preserved as well (as if (Sn : n < ω) is a partition of ω\ to stationary sets,

we can force closed unbounded subsets En of ω\ without collapsing KI (see

Baumgartner, Harrington and Kleinberg [BHK]) but in the limit necessarily

NI is collapsed). So it is natural to strengthen this somewhat (to preserve the

stationarity of subsets of <S<κ0(λ) for every λ), and we get the notion of proper

forcing, which is preserved under the countable support iteration (see Chapter

III, see alternative proof in XII §1 - and for KI - free iteration in IX). This is

a major notion here and the proof of its preservation serve as paradigm here.

However some forcing notions preserving KI are not proper: Prikry forcing,

Namba forcing. We have to use such forcing (i.e. non-proper) when during the

iteration, in some intermediate stage we have to change the cofinality of some

uncountable regular cardinal (e.g. ^2) to NI. To deal with them we prove the

preservation of semiproperness under revised countable support (see Chapter

X) and show that Prikry forcing is (always) semiproper and Namba forcing

is "often" semiproper. But there may be not semiproper non-proper forcing

notions, in particular Namba forcing may be not semiproper (see XII §2), so

we introduced properties like the 5-condition (guaranteeing that no real is

added (see Chapter XI)) and UP (I) (see Chapter XV), and another one (for

continuum > ^2) see Chapter XIV.

But of course we really would like to have a general framework for pre-

serving other properties. This is dealt with in Chapter VI §1, §2; a prototypical

property is preserving "every new / £ ωω is dominated by an old g G ωα;"

which is done in V §4 (but this is done only under the assumption that the
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forcing does not collapse KI by some of the earlier versions), but includes many

examples like "(/, ̂ -bounding for a closed enough family of pairs (/, g)". Later

we deal with more general theorems (XIII §3, with a forerunner VI §3, which

deals e.g. with "no new / G ωω dominates F").

However the case of "no new reals" is somewhat harder and it is treated

in several places: in Chapter V §3 (for 5-complete forcing, S C <S<κ0(λ)

stationary), in Chapter V §6, §7 (for (< ωι)-proper D-complete (e.g. D is a

simple Ni-completeness system)), Chapter VIII §4 (for a generalization, in

particular D is a simple 2-completeness system) and Chapter XVIII §2 (for

essentially strongly proper forcing notions). Some other properties do not fall

(or are not presented) under any of those cases: strongly proper (see IX, VI §6,

IX §4), not collapsing ^2 for Ni-complete forcing when we use mixed support

(VIII §1).

In all iterations somewhere we need to prove a suitable chain condition in

order to catch our tails; for finite support iteration this is done directly (II),

for countable support iteration see III §4, and more VII §1, VIII §2, and for

revised countable support later in XVII §4 this plays a central role.

Every iteration theorem + chain condition gives the consistency of an

axiom, see VII §3, VIII §4, XVII §1, §2, §3. This stresses the problem of having

a general iteration theorem for "continuum > N3".

Of course much of the book deals with specific problems which serve both

as an illustration of the methods and for their interest per se (see the annotated

content and the separate introductions to the chapters).

The mathematical work was done between 1977 and 1989; the author ap-

proaches other aspects of our subject in Judah and Shelah [JdSh:292], [Sh:630]

(on nicely defined forcing, e.g. Borel), Roslanowski and Shelah [RoSh:470] (on

even more nicely defined forcing, quite explicitly in fact), [Sh:176] §7, §8, Gold-

stern and Shelah [GoSh:295] (on amalgamation and projective sets in the final

model) and [Sh:311] (continuing Chapter XV), [Sh:587], [Sh:F259], [Sh:655] (on

replacing tto,Nι by λ,λ+) and [Sh:592] (more on FS iteration of c.c.c. forcing

notions).
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Prerequisites: we assume that the reader has some knowledge of naive set

theory (including stationary sets, Fodor lemma, etc.). The metamathematical

side is avoided by stating the forcing theorem without proof in Chapter I. If

you have read Jech [J] or Kunen [Ku83] you should be well prepared. Several

places present some preservation theorems with less generality and they may

be of some help to the reader (and they can be treated as good preparation

for this book too). Let us list some of them: Baumgartner [B3], Abraham

[Ab], Bartoszyήski and Judah [BaJu95], Goldstern [Go], Jech [J86], Judah and

Repicky [JuRe].

There are many people who gave indispensable help for the book in various

stages.

Concerning the old "Proper Forcing" I heard from Baumgartner the idea of

avoiding the metamathematical side, Azriel Levy, who has a much better name

than the author in such matters, made notes from the lectures in the Hebrew

University, rewrote them, and they appear as Chapters I, II, and part of III.

These chapters were somewhat corrected and expanded by Rami Grossberg and

the author. Most of XI §1-5 were lectured on and (the first version) written up

by Shai Ben David. And most of all Rami Grossberg has taken care of it in all

respects and Danit Sharon typed it.

Concerning the present work, Azriel Levy has helped in transforming the

book from Troίf to TjTJX. Menachem Kojman in addition wrote up first version

of section I §7 from my lectures in the eighties.

Various parts of the book benefitted a lot from proofreading and pointing

gaps by my students, postdocs and co-workers. All of them contributed in

various ways and I am very grateful for their help, though I failed to make a

complete list of the contributors.

Most of all Martin Goldstern has helped in some very distinct capacities.

Not only did he proofread and revise several chapters but also with his magic
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touch in various ΊgK-nical aspects he made the appearance of this book pos-

sible.

Last but not least I thank Hagit Levy and Gosia Roslanowska for typing

and retyping and retyping ... the book.

Thank you all.

Saharon Shelah

Institute of Mathematics

The Hebrew University of Jerusalem

91904 Jerusalem, ISRAEL

Department of Mathematics

Rutgers University

Hill Center - Busch Campus

New Brunswick, NJ 08854, USA

shelahOmath.huj i.ac.il

http: //www. math. rutgers. edu/~shelah

The author thanks "The Israel Science Foundation" administered by The Israel

Academy of Sciences and Humanities, and the United States-Israel Binational

Science Foundation, and National Science Foundation USA for partially sup-

porting this research^ (the old and the new one) in various times.

This footnote was omitted by mistake in [Sh:b].
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Notation

Natural numbers are denoted by fc, ί, ra, n.

Ordinals are denoted by z, j,α,/?, 7, 5, £, £, 0 where 5 is reserved for limit

ordinals.

Cardinals (usually infinite) are denoted by λ,μ, ft, χ. Let Kα be the α'th

infinite cardinal, ωa = Kα, α; = ωQ. Let ^α = {/ : / a function from /? to

α}, /3>α = |J7</3

7α. For sequences of ordinals (i.e., members of some ^α),

lg(η) = Domτ7, r/(i) the i'th ordinal so 77 = (η(i) : i < ίg(ή)). We write also

(77(0), . . . , 77(71)) or 77(0), . . . , 77(71) as seems fit. We denote sequences, usually of

ordinals, by 77, v, p and also r. The concatanation of 77, v is denoted by η Λ v Let

c.l.u.b. or club mean closed unbounded.

Let \A\ denote the cardinality of the set A, P(A) denote the power set of

^4, and cf (α) the cofinality of α.

"A real" means here a subset of cj, or its characteristic functions. The

quantifiers "5*π", "V*n" (sometimes written Ξ3°° and V00, respectively) are

abbreviations for "for infinitely many n G ω" and "for all but finitely many

n € ω" , respectively.

Let y?, ι/> denote first order formulas. Let (^(XQ? > x n-i) means every free

variable of φ appears in {x0, > ̂ n-ι}

Let P (and also Q and -R) denote a partially ordered set or even a quasi

ordered set (i.e., p < q < p does not necessarily imply p — q). We call such P

a forcing notion, and assume 0 ot 0pis a minimal member of P. We use G for

a generic subset of P, (usually Gα or Gpa for a generic subset of Pα), (for a

definition of generic see I §1). Let p, g, r denote members of forcing notions, we

say p, q are incompatible in P if they have no common upper bound in P.

We do not distinguish strictly between a model M, or a forcing notion P,

and their universe. Y . AΪ is the cartesian product sometimes also denoted by

Π ί€/Ai. Distinguish (in principle) it from Πiel μ(i) (multiplication of cardi-

nals). We shall not distinguish notationally between multiplication of cardinals

or ordinals. For an uncountable cardinal λ of uncountable cofinality, V\ stands
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for the filter generated by the closed unbounded subsets of λ; when 5 C λ is

stationary (also denoted by 5 φ 0 mod V\) T>\ -f 5 is the filter generated by

^λ U {5}.

For ordinals ot,β such that β < a we let 5̂  = {7 < Nα : cfj = N/?} but

when μ, λ are (infinite) cardinals such that μ < X then S* = {7 < λ : cfλ = μ}

when no confusion arise.

We made a special effort to uniformize the notation we use but still there

may be some exceptions in the chapters, for example in Chapter III, <Sκ0(A) is

used to denote the family of countable subsets of A (see Definition III 1.2) but

the same family in Chapter V is denoted by S<^l(A) (see Definition V 3.3).

So since some of the notions are redefined the reader is advised to check the

nearest definition rather than the first.

Models are denoted by letters M, N perhaps with an index. We shall not

always distinguish between the model and its universe, but always \M\ will

denote the universe of M and ||M|| its cardinality.
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Content by Subject

1. Results Outside Set Theory

In the Appendix, Sect. 2 there are results on the power of Ext (G, Z) assuming

various weak diamonds.

2. Results in Naive Set Theory

In the Appendix §1 we investigate weak variants of the diamond (continuing

Devlin and Shelah [DvShrβδ].)

In the Appendix §3 we prove that CH implies some kind of weak diamond

to Si (and generalizations).

In IX §3 we discuss various specializations of Aronszajn trees.

In XIII §4 a sufficient condition for the existence of Ulam filters is given.

3. Basics of Forcing

In Chapter I we explain how to use forcing and discuss some basic forcing. In

Chapter II we explain iteration with < /^-support, (in particular finite support)

deal for example with Martin Axiom, and more examples.

4. Specific Independence Results on Trees

In III 5.4 we present a proof that every Ni-Aronszajn tree can be specialized

by a c.c.c. forcing notion (and generally in III §5 deal with /ς-trees).

In III §6 we present a proof of the consistency of " ZFC+2K° = ^2+ there

is no ^2-Aronszajn trees".

In V §6, §7, we present a proof of CON (ZFC+G.C.H.+ every Aronszajn

tree is special) which seems to us more adaptable to further needs (e.g. 2**1

large).

In V §8 we present a proof of the consistency of the Kurepa hypothesis.

In VII §3 we prove consistency results on Aronszajn trees strengthening

the previous ones, motivated by general topology. This implies the consistency

of G.C.H. + there is a count ably paracompact regular space which is not normal

(see VII 3.25).
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In VII §3 we present a proof of the consistency of a strengthening of CON

(ZFC-f G.C.H. + there is no Ki-Kurepa tree.)

In VIII §3 we prove the consistency of ZFC+CH+SH+2*1 > N2

In IX§4 we prove that SH^ " every Aronszajn tree is special" and varia-

tions.

5. Theorems on Ni-Complete Forcing

In VIII §1 we prove that we can iterate N2-complee forcing and Ni-complete

forcing satisfying a strong N2-chain condition, without collapsing NI and b^

In VIII 2.7A we remark on another strong tt2-chain condition preserved

by CS iteration.

6. Chain Conditions

The c.c.c. and AC-C.C. are presented in Chapter II and the preservation of the

c.c.c. by FS is proved there.

In III 4.1 we prove that a CS iteration of proper forcing notions of power

< ft, K regular (Vμ < K) μ*° < /ς, of length K satisfies the κ-c.c. (by proving

that if the length is < «, it has a dense subset < K).

Of course IV is dedicated to oracle-c.c.

Lemma V 1.5 proves the N2-c.c. of a CS iteration of E-complete forcing

notions each of power NI, (assuming CH).

VII §1 deals with a strong κ>chain (e.c.c.), such that if we have a CS

iteration of length K with the condition we use for not adding reals (in V§7,

VIΠ§4) then the forcing satisfies the κ-c.c. So this helps to get consistency

results with ZFC+CH.

In VII §2 we deal with /s-pic (= /ς-properness isomorphism conditions). If

P satisfies it, then P satisfies the AC-C.C., and adds < K reals, and an iteration

of length K still satisfies the /ς-c.c. This helps to get consistency results with

ZFC+2*0 = N2 + 2Kl = λ (so we start with V \= "C# + 2Hl = κn and this holds

for the intermediate stages). Application is starting with V \= "CH+2Hl = ft"

and use a CS iteration Q — (Pi,Qi : i < ω^} to specialize all Aronszajn trees

without adding reals.
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On the tt-c.c. for RCS iteration of length K see X §5 (5.3, 5.4) and XI

6.3(2).

On λ-c.c. for κ-RS iterations see XIV.

7. Preservation of Properness and Variants

As the book was written in the generic way, i.e. as the author advance, there

are several such proofs. In III §3 the preservation of properness by CS iteration

is proved. In IX §2 the preservation of properness under Nχ-free limit is proved.

In X §2 the preservation of properness and semi-properness under RCS is

proved, (remember that semi-proper forcing may change the cofinality of some

regular λ > NI to ω). In XII §2 the preservation of properness under CS

iteration is reproved, using the definition of properness by games (similarly

for semiproperness) .

We deal with preservation of α-properness and (ω, 1)- properness in V §2,

§3, X §7.

8. Consistency Results on the Uniformization Properties

and Variants

In II §4 we prove the consistency of "some family P of HI subsets of ω has k-

uniformization property" i.e. if /A : A — > k for A e P then for some / : ω — > k

we have

In V§1, we prove the consistency with G.C.H. of "for some stationary

5 C α i, (As : δ < ωι) have the Ho-uniformization property if each AS is a set

of order type ω, sup(A$) = ί".

In VIII §4 we prove the consistency with G.C.H. of -«Φ^2. Moreover, e.g.:

for (As : δ < ωι limit) as above, n§ < 3 then for some / : ω\ — > 3, for every

δ < ωι limit, for some mδ G {0, 1, 2} \ {n5}, we have (V*α G Aδ)(f(otQ = mδ).

9. Consistency of "Large Ideals"

In XIII we get consistency results on ωi, in XVI use smaller ones, in XIV with

larger continuum.
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In XVII §4 we deal with properties consistent with -Ό^ (on ω\ being an

α-th function from ω\ to ω\ even α =

10. Other Consistency Results

In III §7 we deal with " for a family of NI countable subsets Ai of ω\(i < ωi),

order type (Ai) < SupAi, there is a club C C ω\ /\i Sup(C Π Ai) < SupAi.

In VI §4 we prove the consistency of " there is no P-point" .

In VI §5 we prove the consistency of " there is a unique Ramsey ultrafilter

(onu;)".

In X, XI we prove various independence results on ω<2, read XI §1, X 8.4,

and XI §7's theorem.

In VII §3, §4, many applications are listed.

In XVΊΠ §4 we prove the consistency of "there is a unique P-point (on

ω)" (which necessarily is a Ramsey ultrafilter).

11. Other Preservations of Generalizations of Properness

In V §3 we prove the preservation of ω-properness+ the α ^-bounding property

(properness suffices - see VI).

In VΊ §1, §2, §3, XVIII §3 we deal with general preservation theorems, e.g.

of covering models, hence of various specific properties which can be formulated

this way (F-bounding properties, Sacks property, Laver property, PP-property,

D generates a Ramsey ultrafilter, D generates a P-point (ultrafilter)). Now VI

§2 relies on VI §1 to give specific results (using covering models); a different

approach, guaranteeing only preservation continue to hold in limit stages, is

VI §3, which apply e.g. to "F C ωω is not dominated by •"; this is further

developed in XVIII §3.

In IX §4 we deal with preservation of "(T*, 6')-preserving" which means T*

looks like Souslin trees at levels 5^5, and in the end we comment on possible

generalizations.

Not adding reals is dealt with in V §1, §2 and mainly V §7, VIII §4 and X

§7 and in XVIII §2.



Content by Subject xxvii

In V §1 and X §3 we deal with preservation of generalizations of HI-

completeness.

In XI §5, §6 we deal with the preservation of the 5-condition (always

satisfied by Nm which change the cofinality of M2 to MO but guarantees reals

are not added).

In XV §3 we deal with a generalization, i.e. proving preserving of a condi-

tion implying MI not collapsed, which is satisfied by all proper forcing notions

and all forcing satisfying the ^-condition.

12. Forcing Axioms

On consistency, see III §4, VII §2, VIII §3, X 2.6, XIII, XIV, XVI §2. Also XVII

§3 (SPFAK weak Chang conjecture), XVII §1 (SPFAΞ MM), XVII §2 (SPFAK

PFA+)

13. Counterexamples

In VII §5 we build an iteration (Pn,Qn '• n < ω) such that each Qn does not

collapse any stationary subset of ω\\ but any limit we take collapses MI.

In III §4 we build (in ZFC) a forcing notion of power MI, not collapsing MI

but also not preserving the stationarity of some 5 C ω\.

Examples of iteration (Pn, Qn : n < ω) each Qn is α-proper for each count-

able a not adding reals, but any limit we take that collapses HI is presented

in V 5.1 using Appendix §1 (really the previous result of Devlin and Shelah

[DvSh:65]).

In XII §2 we show that many forcing notions satisfy the conditions from XI

but are not semiproper. In fact if there is an {Hι}-semiproper forcing notion

changing cofinaltity of M2 to M0 (e.g. if Nm is {Mι}-semiproper then Chang

conjecture holds.

Examples of iteration (Pn,Qn : n < ω), each Qn is a α-proper and is a

ID-complete for some simple MI-complete completeness system but any limit

adds reals is presented in XVIII §1.
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Annotated Content

I. FORCING, BASIC FACTS

§0. Introduction

§1. Introducing Forcing

We define generic sets, names for a forcing notion, and formulate the forcing

theorems.

§2. The Consistency of CH

Our aim is to construct by forcing a model of ZFC were CH holds. First we

explain the problem of not collapsing cardinals, and second prove that NI-

complete forcing notion does not add reals.

§3. On the Consistency of the Failure of CH

We construct a model of ZFC in which the Continuum Hypothesis fails; define

the c.c.c., prove that forcing with c.c.c. forcing preserves cardinalities and

cofinalities, and prove also the Δ-system lemma for finite sets.

§4. More on the Cardinality 2^° and Cohen Reals

We construct for every cardinal λ in V which satisfies λ^° = λ a model V[G]

such that V[G] \= 2*° = λ. Also Cohen reals are defined.

§5. Equivalence of Forcing Notions, and Canonical Names

We define when two forcing notions are equivalent, introduce canonical names

and prove that for every P-name τ there is a canonical P-name σ such that

§6. Random Reals, Collapsing Cardinals and Diamonds

We introduce random reals and the Levy collapse, and prove that for regular

λ Levy (Ho? < λ) satisfies the λ-c.c. For every uncountable regular λ and a

stationary 5 C λ define a forcing notion P which preserve the regularity of λ

and stationarity of 5 add no bounded subsets to λ and such that Vp |= Os
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§7. A Does Not Imply Diamond

φ is a weak relative of diamond, for S C λ stationary Jb(S) says that we can

find (A§ : δ £ S) AS C δ = sup(A$), and for every unbounded A C λ for some

(= stationarily many) δ G S, AS C A. If CH, Jfr(Hι) = ONI, so we prove the

consistency of Jfr(Hι) + ~^CH, but forcing three times.

Start with V N GCff, for Os for 5 = {δ < H2 : c f(δ) = H0}, using it construct a

"very good" Jfr(5) sequence (A§ : δ G 5). Then force by adding > H2 subsets of

HI by countable conditions, A was constructed to withstood it, lastly collapse

HI to HO by Levy (Ho, HI). As any new unbounded subset of H2 contains an old

one, A still witness Jk(S) but now S is a stationary subset of HI of the last

universe.

II. ITERATION OF FORCING

§0. Introduction

§1. The Composition of Two Forcing Notions

Composition of two notions and state the associativity lemma are defined.

§2. Iterated Forcing

We define iterated forcing, and prove that the c.c.c is preserved by FS (finite

support) iteration.

§3. Martin's Axiom and Few Applications

We prove that ZFC H-2H° > Hi+MA is consistent. Use MA to prove many

simple uniformization properties.

§4. The Uniformization Property

Here we deal with more general uniformization properties some of which con-

tradict MA. We strenghten the demand of almost disjointness to being a kind

of tree and prove the consistency of a version contradicting MA.

§5. Maximal Almost Disjoint Families of Subsets of ω

A maximal almost disjoint (MAD) subset of P(ω) is a family of infinite subsets

of ω such that the intersection of any two members is finite and maximal with
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this property. We prove using MA that every MAD set has cardinality 2^° . Also

the other direction: for every NI < λ < 2K° there exists a generic extension of

V by c.c.c. forcing such that in it there exist mad set of power λ.

III. PROPER FORCING

§0. Introduction

§1. Introducing Properness

We define "P is a proper forcing notion " , prove some definitions are equivalent

(and deal with the closed unbounded filter

§2. More on Properness

We define "p is (TV, P)-generic " and deal more with equivalent definitions of

properness.

§3. Preservation of Properness Under CS Iteration

We prove the theorem mentioned in the title, CS is countable support.

§4. Martin's Axiom Revisited

We discuss the popularity of the c.c.c., whether we can replace it by a more

natural and weaker condition. We give a sufficient condition for a countable

support iteration of length K to satisfy the ft-c.c. We prove the consistency

(assuming existence of an inaccessible cardinal) of "ZFC + 2K° = NI+ Ax[ for

forcing notions not destroying stationary subsets of ω\ of cardinality NI]". We

show that the last demand cannot be replaced by "not collapsing cardinalities

or cofinalities" .

§5. On Aronszajn Trees

We define K- Aronszajn and /ί-Souslin trees. We then present existence theorems

(for λ+ when λ = λ<Λ) and prove that under MA every Aronszajn tree is

special.

§6. Maybe There Is No N2- Aronszajn Tree

We prove the consistency of ZFC +2N° = H2+ there is no N2-Aronszajn tree,

the method being collapsing successively a l l λ , ^ ι < λ < κ ( / ς a weakly compact
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cardinal) and treating every potential initial segment of an N2-Aronszajn tree

to ensure it will not actually become an initial segment of such a tree.

§7. Closed Unbounded Subsets of ω\ Can Run Away
from Many Sets

We prove the consistency of ZFC +2N° = H2 with if for i < ω^ A^ C ω\ has

order type < SupAj, then for some closed unbounded C C ω^ (Vi)[Sup(C7 Π

Ai) <

IV. ON ORACLE-C.C., THE LIFTING PROBLEM

OF THE MEASURE ALGEBRA, AND «P(ω) /FINITE

HAS NO NON-TRIVIAL AUTOMORPHISM"

§0. Introduction

The oracle-c.c. method enables us to start with V \= 0Nι and extend the set of

reals α;2-times (by iterated forcing), in the intermediate stages <>NI holds, and

we omit types of power HI along the way, i.e. promise that some intersections

of HI Borel sets remain empty.

§1. On Oracle Chain Condition

One way to build forcing notions satisfying the HI-C.C., is by successive count-

able approximations including promises to maintain the predensity of countably

many subset, many times using the diamond. We formalize a corresponding

property (M-c.c., M an oracle) and prove the equivalence of some variants of

the definition.

§2. The Omitting Type Theorem

We prove that if the intersection of HI Borel sets is empty and even if we add

a Cohen real it remains empty, (and ONI) then for some oracle M, for every

forcing notion P satisfying the M-c.c., in Vp the intersection of the Borel sets

(reinterpreted) is still empty.

§3. Iterations of M-c.c. Forcings

We show that for Finite Support iteration Q = (Pi,Qi : ί < a < α^), if

Mi £ VPi is an Hi-oracle large enough for ((M?, P j , Q j ) : j <i), and Qi satisfies
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the Mi-c.c. then Pa = LimQ satisfies the MQ-C.C. The first three sections give

the exact formulation of the aim stated in the introduction and prove that it

works.

§4. The Lifting Problem of the Measure Algebra

We show how to apply the method described in §1 - §3 in order to get a model

in which the natural homomorphism B —>• B/ (measure zero sets) does not lift.

Where B is the Boolean algebra of Borel sets of reals.

§5. Automorphisms of P(ω)/finite

We use our method to prove that the Boolean algebra "power set of ω divided

by the ideal of finite sets" can have only trivial automorphisms, where those

are defined as the ones induced by permutations of ω or "almost" permutation

of ω. This is equivalent to having the topological space /?(N) \ N having only

trivial autohomeomorphisms. However a main lemma is delayed to the next

section.

§6. Proof of Main Lemma 5.6

The point missing in §5 is: if F is an automorphism of P(ω)/finite, M an NI-

oracle, then there is forcing notion P satisfying the M-c.c., and a P-name X

of a real such that in Vp, for no Y C ω, (VA,B G P(ω)v)[X Π A =ae B =>

YΓ\F(A) =ae F(β)], moreover even a Cohen forcing does not introduce such a

y, where =ae means equal modulo finite. We try to build such P, X and prove

that if we always fail F is trivial.

V. α-PROPERNESS AND NOT ADDING REALS

§0. Introduction

§1. ^-Completeness — a Sufficient Condition for Not Adding Reals

We define what it means to be ^-complete e.g., if P C (Wl>2, <), 8 C ω\

stationary and fn C /n+1 G P, Sup(Dom/n) G £. We show that properness

4- ^-completeness are preserved by CS iteration and get corresponding Axiom.

We also introduce a forcing axiom which is consistent with CH use it to prove
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a uniformization property which implies existence of a non free Whitehead

group. In this way we get universe in which ω\ is "schizophrenic": for two

disjoint stationary subsets Si, S2 we have 0 on Si but on S2 the situation is

as with MA.

§2. Generalizations of Properness

We introduce various variants of properness. We find it interesting and ben-

eficial to have properties like properness dealing with sequences of countable

models defining in particular α-properness.

§3. α-Properness and (£, α)-Properness Revisited

We repeat the previous section in more detail.

§4. Preservation of "u -Properness + the ωω Bounding Property"

P satisfies the ^-bounding property if [V/ G (ωω)yP][3g e (ω)v] (Λn/(n) <

g(n)) i.e.: every new function / : ω —>• ω is dominated by an old one. We prove

in great detail the theorem stated in the title as it serve a prototype of having

preservation of "properness -f X", dealt with later and is a case of a central

theme to this book.

§5. Which Forcings Can We Iterate Without Adding Reals

We explain why "not adding reals" is not preserved by any kind of iteration,

and suggest a remedy - D-completeness. More elaborately the weak diamond

tell us we have to exclude some forcing notion and D-completeness seems a

simple way to exclude then.

§6. Specializing an Aronszajn Tree Without Adding Reals

We prove that every Aronszajn tree can be specialized by a "nice" forcing:

α-proper for every α < ω\ and D-complete for some NI-completeness system

D. Together with the next section this gives a proof of Con(ZFC + 3«[« inac-

cessible]) -> Con(ZFC + GCH + SH) and with Chapter VIII a new proof of

Jensen's Con(ZFC + GCH + SH) where SH is the Souslin Hypothesis.
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§7. Iteration of (E,D)-Complete Forcing Notions

We prove that the limit of a CS iteration of Qi each is α-proper for every

a < ωi, and D-complete for some simple KI-completeness from V does not add

reals.

§8. The Consistency of SH + CH + There Are No Kurepa Trees

VI. PRESERVATION OF ADDITIONAL PROPERTIES

AND APPLICATIONS

§0. Introduction

§1. A General Preservation Theorem

We present a way to prove preservation of "properness +φ" for properties

φ restricting our set of reals. Our hope is that this framework is easy to be

applied to many properties. In the end we present a version, more general in

one respect, less general in most respects (for readability).

§2. Examples

We specify more the framework in §1 to capture more of the common properties.

Then we prove that the ωα;-bounding property, the Sacks property, the Laver

property, the PP-property, some (/, </)-bounding properties and some others

come under the framework of §1; the "Sacks" and "Laver" properties appear

first and most characteristically in the forcing notions bearing the respective

names.

§3. Preservation of Unboundedness

We prove a presentation theorem suitable to prove the preservation of: no

g G ωω satisfies Λ/eF / —* 9 ^or a fiχed F C ωω. We then look at other

examples and prove the consistency of "ZFC 4- s > b" i.e. there is a non-

dominated F C ωω, \F\ = NI, but for every B C P(α )/finite of cardinality NI,

some infinite A C ω induce an ultrafilter {B e B : A Cαe B}, but relaying on

the existence of a forcing notion presented in §6.
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§4. There May Be No P-Point

We present a proof of this theorem, using the preservation of the PP-property.

This may serve as a preliminary test, whether our general machinery simplifies

and clarifies proofs,

§5. There May Exist a Unique Ramsey Ultrafilter

The main result is the consistency of ZFC -f 2^° = ^2+ "there is a unique

Ramsey ultrafilter on ω up to permutations of ω". For this we have to prove

that "D generates a Ramsey ultrafilter " is preserved - by another application

of §1, and of course mainly to work on each iterand.

§6. On the Splitting Number $ and
Domination Number b and on α

In §3 we have proved the consistency of s > b, modulo the existence of a suitable

forcing notion: the one that adds an infinite A C ω including an ultrafilter on

the "old" P(ω) (helping to prove $ large), is proper of course and is almost ωω-

bounding (helping to prove b small). We define suitable creatures, and then the

forcing notion build from them, and prove that it has the desired properties.

We then prove parallel lemmas on a similar forcing notion "respecting" an ideal

(usually one coming from a MAD family enough indistructible). This helps to

get a universe with α large.

§7. On $ > b = a

We prove the consistency of the statement in the title. The main point is that

if we force as for "CON(ZFC 4- s > b)" and we build in ground model a "bad

enough MAD family", a suitable preservation theorem shows that it remains

MAD.

§8. On ϊj < $ = b

We prove the consistency of the statement in the title; for this we use an

iteration in which we add many Cohen reals making s large (as in §6) and

dominating real. We use the Cohen reals to construct a family witnessing ίj is

small (i.e. KI). To show that this works use our iterating only "nicely definable"

forcing notions.
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VII. AXIOMS AND THEIR APPLICATION

§0. Introduction

§1. On the κ>Chain Condition, When Reals Are Not Added

When we iterate H2 times forcings not adding real, (but not necessarily HI-

complete) we suggest a condition called H2-e.c.c. so that if each Qi satisfies the

K2-e.c.c., then Pω2 satisfies the N2-c.c.

§2. The Axioms

We suggest some axioms whose consistency follows from the theorems on preser-

vation under iteration of various properties.

§3. Applications of Axiom II

We prove several applications of an axiom consistent with G.C.H.

§4. Applications of Axiom I

We prove some applications and mention others of an axiom consistent with

2*° - N2.

§5. A Counterexample Connected to Preservation

An example is given of a countable support iteration of length ω of forcing not

collapsing stationary subsets of ωi, but the limit collapse HI.

VIII. K-PIC AND NOT ADDING REALS

§0. Introduction

§1. Mixed Iteration

We prove that we can iterate ^-complete forcings and Ni-complete forcings

satisfying a strong N2-chain condition, without collapsing HI and H2.

§2. Chain Conditions Revisited

We suggest another condition, K - pic, to ensure the limit of the iteration Pκ

satisfies the /ς-c.c. The aim is e.g., to start with V \= "2H° = HI Λ 2*1 > H2",

and use CS iteration Q of length ω2 , each time dealing with "all problems"

(there are 2K l) at once.
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§3. The Axioms Revisited

We discuss what axioms we can get according to the four possibilities of the

truth of 2K° = NI, 2Hl = N2 but assuming always 2H° < N2

§4. More on Forcings Not Adding α -Sequences

and on the Diagonal Argument

We prove e.g., that CH does not imply Φ^ (a kind of uniformization) by

dealing with completeness systems which are 2-complete. Our main results are

of the form: Suitable CS iteration does not add reals. So we continued the

proof in Ch.V on CS iterations not adding reals, weakening the demand on

the comleteness system from getting Ni-complete filter to "the intersection of

any two members is non empty, and we try to get properties preserved by the

iterations.

IX. SOUSLIN HYPOTHESIS DOES NOT IMPLY

"EVERY ARONSZAJN TREE IS SPECIAL"

§0. Introduction

§1. Free Limits

We look at Boolean algebras generated by a set of sentences in infinitary

propositional calculus (mainly Lωι>ω). This enables us to define free limit.

§2. Preservation by Free Limit

We prove that an iteration in which we use Lωι>urfree limit at limit stages,

preserve properness, in some sense this gives a more natural proof of the

preservation of properness.

§3. Aronszajn Trees: Various Ways to Specialize

We introduce some new ways to specialize Aronszajn trees, and present the old

ones, as well as some connection between those properties.

§4. Independence Results

Here are the main results of the chapter. We use an iterated forcing 5 — st-

specializing any Aronszajn tree. The problem is to make sure that some fixed
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tree T* will remain not special. In fact we get that on one stationary S all

Aronszajn trees are special but some trees are "Souslin" on ω\ \S, a strong way

to be not special. We introduce such a property of forcing "(T*, 5)-preserving"

and show that is is preserved in iteration. There is a discussion of the problem

and our strategy in the beginning of the section and a discussion of open

problems and how the preservation theorem can be generalized.

X. ON SEMI-PROPER FORCING

§0. Introduction

We would like to deal with forcing notions not preserving e.g. "5 has uncount-

able cofinality".

§1. Iterated Forcing with RCS (Revised Countable Support)

The standard countable support iteration cannot be applied when some un-

countable cofinalities are changed to ω, we introduce the revised version suit-

able for this case. Though harder to define, this iteration conforms better with

our intuition concerning iterations.

§2. Proper Forcing Revisited

We define semi-properness, and prove that it is strongly preserved by RCS

iteration.

§3. Pseudo-Completeness

We prove that a weakening of HI-completeness (compatible with changing some

cofinalities to NO) is strongly preserved by RCS iteration.

§4. Specific Forcings

We deal with Prikry forcing, Namba forcing and generalizations which are semi-

proper when we use "large" filters which may exist even on small cardinals.

§5. Chain Conditions and Abraham's Problem

We prove that under reasonable conditions when we iterate up to K the /ς-c.c.

holds and get the first application: a universe V in which for every A C ωι

there is a countable subset of ω\ which does not belong to L(A).
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§6. Reflection Properties of S$. Refining Abraham's Problem
and Precipitous Ideals

For some large cardinal /c, by iteration we find a forcing notion P, such that

Vp |= "Λ = N2 and A = {δ < K : cfδ = N 0» δ regular in V} is stationary ". So

we may make A large in some sense, as mentioned in the title.

§7. Friedman's Problem

We collapse some large ft, by iterated forcing, which sometimes collapses (2K2) +

to HI, sometimes changes the cofinality of ^2 to NO, and sometimes adds a closed

unbounded CCS of order type ωi, where S C SQ is stationary. We get a model

V in which every stationary 5 C S$ = {δ < ^2 ' cf (ί) = NO} contains a closed

copy of ω\. By stronger hypothesis we get it for every stationary S C 5£,

cf(Nα) > No-

XI. CHANGING COFINALITIES:

EQUI-CONSISTENCY RESULTS

§0. Introduction

We try here to weaken semiproperness.

§1. The Theorems

Here we describe what kind of a condition on forcing notions we want (i.e.

satisfied by some specific notions and preserved by suitable iterations). Then

we proceed to get consistency results. The proof uses RCS-iteration of length

/ς, K a strongly inaccessible cardinal. In each step, we allow Namba forcing. The

consistency results are mostly from Chapter X but here we use the minimal

large cardinals required.

§2. The Condition

We describe here the condition, called the 5-condition or I-condition for 5 a

set of regular cardinals > HI, I a set of ^-complete ideals, and some helping

definitions and conventions.
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§3. The Preservation Properties

Guaranteed by the S-Condition

We prove that, assuming a forcing notion P satisfies our condition, forcing with

P implies NI is not collapsed, and (assuming CH) no real is added; and for this

we need partitions theorems on trees.

§4. Forcing Notions Satisfying the 5-Condition

We show that Namba forcing, Nm satisfies the {^j-condition that Nm and

Nm' are really different forcing notions; that Nm, Nm' may satisfy the ^4-

c.c. (while 2H° = ttι,2Hl is large) We also prove Ki-complete forcing and a

forcing notion shooting a closed unbounded subset of order type ω\ through a

stationary 5 C SQ satisfies our condition.

§5. Finite Composition

We prove that under suitable hypothesis, a composition of forcing satisfying an

S-condition satisfies it. For this we prove a combinatorial theorem on trees.

§6. Preservation of the I-Condition by Iteration

Here we prove that if we iterate forcing notions satisfying our conditions, but

enough times collapse the present 2'p' to KI, the composite forcing satisfies

the condition. So usually we have large segments of cardinals which we have to

collapse by HI-complete forcings, but for strongly inaccessible we can use Nm

straight away (by 6.5).

§7. Further Independence Results

We prove the equiconsistency of "ZFC + K is Mahlo" and " ZFC +N2 has the

Friedman property", and a further result using weakly compact cardinal. We

also prove the equiconsistency of "ZFC 4- K is 2-Mahlo " and of "ZFC+ there

is the club of N2 consisting of regular cardinals of L".

§8. Relativising to a Stationary Set
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XII. IMPROPER FORCING

§0. Introduction

§1. Games and Properness

Equivalent definitions of variants of properness by games are given, and it is

exemplified how the proofs of the preservation theorems in this context look

like.

§2. When Is Namba Forcing Semiproper, Chang's Conjecture

and Games

We prove e.g., that if some {Nι}-semi proper forcing changes the cofinality

of ^2 to ω then Namba forcing is semi-proper, and Chang's Conjecture holds

hence 0# G V. So without some fairly large cardinals (in some inner model) all

semi proper forcing notions are proper, so actually Chapter X cannot do what

Chapter XI does.

XIII. LARGE IDEALS ON ωl

§0. Introduction

§1. Semi-Stationarity

We define and prove the basic properties of semi-stationarity of subsets of

<S<κ0(λ), and the connection with semiproper iterations up to measurables.

§2. 5-Suitable Iterations and Sealing Forcing

5-suitable iterations, for S C ω\ stationary, are semi-proper iterations in which

we "promise" for some subalgebras of 25f5 = P(ω\)/(Vωι 4- 5) in some VPί,

that they remain <§ *&v 7 for j > i (<£ means a complete subalgebra - see

0.1(4)); usually the subalgebras are 25 \S in VPί. They are reasonable if we

try to get a universe in which not only does P(ωι)/(Dωι + 5) satisfies the ^2-

c.c. but also has more specific structure. We prove various lemmas on how we

can continue such iterations, mainly using sealing forcing, which "seal" various

antichains.



xlii Introduction

§3. On 05 - P(ωι)fDωι Being Layered or the Levy Algebra

We prove, starting from enough super compacts the consistency of G.C.H. +

(23f5) = P(ωι)/(Dωι + S) is layered, which means that (S C ω\ is stationary

and) "almost" every AC*B\Sof power MI, satisfies Λ. <> 33 (almost means a

club of cofinality MI); we can have S = ω\, if we omit CH. Moreover we can do

this without adding reals and have some forcing axiom. We then get a stronger

condition of this form: 2ϊ \S is (the completion of) the Levy(M0, < M2) algebra;

in fact gives two proofs of this with extra things as above.

§4. On P(ωι)/(Dωι + S) is Reflective or Ulam

We prove, again starting from supercompacts, that in some generic extensions

not adding reals, a positive answer to the Ulam question holds: there are MI

measures on ω\ (really {0, l}-measures) with countable additivity such that

every set C ω\ is measurable with respect to at least one of them. For this we

define when a filter is Ulam, and give a combinatorial sufficient condition for

it (which take some space to show). Then we have forcing doing it, with extra

conclusions as in the solution for layerness. Note that here we have, for δ < K of

cofinality M0, a demand dual to the one when we want to get the Levy algebra:

decreasing sequences of members of \Ji<δ 23Pί has a positive intersection if this

is reasonable. We also prove the consistency of a weaker statement - among

any M2 stationary subsets of 5, there are M2, the intersection of any countably

many is stationary. Before all this we deal with reflective Boolean algebra.

XIV. ITERATED FORCING

WITH UNCOUNTABLE SUPPORT

§0. Introduction

We try to deal with "P does not change the cofinality of every μ < K" .

§1. K-Revised Support Iteration

We define and investigate ft-RS (^-revised support), intended for iterating

forcing not collapsing cardinals < ft, but possibly changing some cardinals

with cofinality > K to ordinals with cofinality < K.
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§2. Pseudo-Completeness

We do not know to generalize the theorem on proper forcing (III) and semi

proper forcing (Chapter X) but we generalize properties like pseudo complete-

ness (see X §3). We deal with such properties, some do not add bounded subsets

to K, some may add even reals. For this we use a forcing notion which has also a

notion of pure extensions [<o]. We define properties like (5,7)-PrJ" saying we

have pure decidability and <o is 7-complete; this is less restrictive than it may

look by 2.4. For such forcing notions we define an iteration with some kind of

mixed support and prove the appropriate preservation theorems and theorems

on chain conditions.

§3. Axioms

We deal with the relevant forcing axioms, and prove that it applies to some

forcing notions.

§4. On Sacks Forcing

We prove that we can apply our condition to Sacks forcing.

§5. Abraham's Second Problem - Iterating Changing

Cofinality to ω

We here apply the previous theorem to solve Abraham's second problem (solved

for ^2 in Chapter X). For this we use a forcing notion based on an initial segment

of a play of a game (using a fixed winning strategy) rather than positive sets

for a fixed ideal.

XV. A MORE GENERAL ITERABLE CONDITION

ENSURING KI IS NOT COLLAPSED

§0. Introduction

A drawback of Chapter IX is that it implies "the forcing notion does not add

real"; our aim is to overcome it.

51. Preliminaries
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§2. Trees of Models and UP

We define a property of a forcing notion, Ϊ7P(I, S, W) where I is a set of ideals,

S a set of regular cardinals (most popular value {^i}), W C ω\ stationary

(e.g. ω\)\ this condition generalizes the one in chapter XI, gives an equivalent

definition for the interesting cases there. We prove some basic properties: it

does not destroy the stationarity of subsets of W, and in suitable cases it is

preserved by composition. For this we again have to deal with the partition

theorems on trees.

§3. Preservation of the E7P(I,S,W) by Iteration

We prove that if we iterate forcing notions with such a property, each time

collapsing soon enough, then the limit satisfies a similar condition. We first

define (3.1), deal with limit of length ω (3.2), ω\ (3.3), note continuity and

chain condition (3.4), iterates up to an inaccessible (3.5), do one more step

(3.6), prove that we have enough freedom in reorganizing the forcings such

that the previous cases suffice (3.7, see 1.7) and conclude enough such iterations

exists (3.8).

§4. Families of Ideals and Families of Partial Orders

A bothersome point in §2, §3 is that for Q, a P-name of a forcing notion

satisfying some C7P(Iι), we demand that the members of |ι were ideals in V,

not Vp. We show here that we can replace a general |, a P-name of set of

ideals in Vp by a family of ideals I1 in V (not changing much the relevant

properties). For this we find it better to replace the ideals by partial orders,

revising the definition of UP. We then restate our iteration theorem, and have

a theorem on not adding reals parallel to W-complete.

XVI. LARGE IDEALS ON ωι FROM SMALLER CARDINALS

§0. Introduction

§1. Bigness of Stationary T C <S<κ0(λ)

We consider various bigness properties of subsets of <S<κ0(λ), connected reflec-

tion properties and large cardinal properties and interrelation.
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§2. Getting Large Ideal on ω\

Here we deal with the appropriate lemmas on iterated forcing and sealing

maximal antichains ofP(ωι)/Vωι1 and then get consistency results of the form:

(CΈf)+P(ωι)/(Dωι +S) is N2-saturated or even P(ωl/Vωι +S) is layered (hence

we can get non regular ultrafilter) or even in the Levy algebra.

XVII. FORCING AXIOMS

§0. Introduction

§1. Semiproper Forcing Axiom Implies Martin's Maximum

We prove the SPFA^MM. Also we prove that SPFAvAzι[Nι- complete] implies

that a forcing notion is semi proper iff it does not destroy the stationarity of

subsets of ω\. We then show that SPFA implies P(ω\/'Dωι) is ^-saturated.

§2. SPFA Does Not Imply PFA+

We prove that SPFA does not imply Axx [semi proper]=SPFA+, and even

AXi [proper]=PFA+. We first prove this consistency starting with a supercom-

pact limit of a supercompact and then show that one supercompact suffices.

We then show that properness is (provably in ZFC) not productive, and that

SPFA implies Axi [tti-complete] or even Axι[c.c.c. * Ki-complete].

§3. Canonical Functions for ω\

We start with g : ω\ —> ω\, such that for no stationary A C ω2 and a < ω2 is

g \A equal to an α-th function, and K supercompact and find a /ς-c.c. semi proper

forcing notion forcing K = K2, PFA+, and g retains its property hence Chang

conjecture fails. For this we define "Q is a 0-small proper forcing notion". We

then prove for a < ω\ additively indecomposable, Ax[α-proper] is consistent

with the existence of (eg : δ < ω\, a divides J), eg C δ closed unbounded of

order type α and for every club E ofωi for stationarily many δ < ω\, c§ C E. So

for a' < a" < ω\ additively indecomposable Axωι [α'-proper] ^Ax[α;-proper].

Note that CS iteration of ^i-complete and NI-C.C. forcing notion, is α-proper

for every a < ω\.
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§4. A Largeness of T>ωι in Forcing Extensions

of L and Canonical Functions

We define a property (*)\ of a cardinal λ, such that if it holds in V it holds in

L (and appropriate Erdόs cardinals satisfies it, and assuming 0# we show that

LLevy(K0,</0 μ (*)! holds when λ > ft > N 0 ).

Now we can iterate (CS) first adding λ functions from ω\ to ω\ and then kill

all stationary subsets of ω\ which contradict "/α is an α-th function for α < λ

and for every g G ωιω^ {eq(g,fa) : α < λ} is predense in P(ωι)/T>ωι (we get

a more explicit version: for every x G H(χ) there is a countable TV, x e N -<

(ff(χ), G, <*) such that \g G ω^ωl Π N => \/a€XnNg(N n "i) = /«(# Π ̂ ).

We then play with cardinal arithmetic.

XVIII. MORE ON PROPER FORCING

§0. Introduction

§1. No New Reals: A Counterexample and New Questions

We prove that the weak diamond (see AP§1) is not the only obstacle to "the

limit of a CS iteration of proper forcing not adding real does not add reals."

This points to some quite simple forcing notions, such that if we iterate them

with CS the theorem in Ch V (and the weak diamond) does not tell us whether

reals may be added in limits or not.

§2. Not Adding Reals

We give here a quite weak condition guaranteeing that CS iterations of forcing

notions satisfying those conditions do not add reals. Those conditions are par-

ticularly strong for forcing notions of cardinality HI and answer the questions

raised by the first section.

§3. Other Preservations

We deal with preservations of the properties (by CS iteration of proper forcing).

This was done in VI, here our framework is weaker so more general. We then

carry various examples, including preservation of the P-point.
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§4. There May Be a Unique P-Point

We prove the consistency of " there is a unique P-point" it is (necessarily) a

Ramsey ultrafilter but there is no other P-point. In VΊ§5 we have proved

" there is a unique Ramsey ultrafilter". The missing part proved here is: given

DQ <RK DI, DO a Ramsey ultrafilter, DI a P-point, DI ^RK DO, find a forcing

notion Q, \\-Q "Γ>o is not a P-point nor can it be completed to a P-point by

further forcing notions with all the required properties".

APPENDIX: ON WEAK DIAMONDS

AND THE POWER OF EXT

§0. Introduction

§1. Unif: a Strong Negation of the Weak Diamond

Introduce a generalization of the negation of the weak diamond (i.e., Φ^) and

prove cases of this principle from an appropriate replacement of 2K° < 2H l.

§2. On the Power of Ext and Whitehead's Problem

We show that for "every non free abelian group G is not Whitehead, moreover

EXT(G,Z) large", much less than V = L is needed; this exemplifies the use

of§l .

§3. Weak Diamond for tt2 Assuming CH

We prove that every ladder system ή = (η$ : δ € S%) when 775 is continuous

cannot be uniformized assuming 2K° = NI. This shows some hopeful theorem

on cases of "an CS iteration of N2-c.c. forcing notion not adding reals gives an

N2-c.c. forcing notion not adding reals", similarly for "(< ttι)-support iteration

of Ni-complete forcing notions not collapsing K2 gives a forcing notion not

collapsing H2.
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