
Introduction

Degree theory, as it is studied today, traces its development back to the
fundamental papers of Post [1944] and Kleene and Post [1954]. These papers
introduced algebraic structures which arise naturally from the classification of sets
of natural numbers in terms of the amount of additional oracular information
needed to compute these sets. Thus we say that A is computable from B if there is a
computer program which identifies the elements of A, using a computer which has
access to an oracle containing complete information about the elements of B.

The idea of comparing sets in terms of the amount of information needed to
compute them has been extended to notions of computability or constructibility
which are relevant to other areas of Mathematical Logic such as Set Theory,
Descriptive Set Theory, and Computational Complexity as well as Recursion
Theory. However, the most widely studied notion of degree is still that of degree of
unsolvability or Turing degree. The interest in this area lies as much in the
fascinating combinatorial proofs which seem to be needed to obtain the results as in
the attempt to unravel the mysteries of the structure. An attempt is made, in this
book, to present a study of the degrees which emphasizes the methods of proof as
well as the results. We also try to give the reader a feeling for the usefulness of local
structure theory in determining global properties of the degrees, properties which
deal with questions about homogeneity, automorphisms, decidability and
definability.

This book has been designed for use by two groups of people. The main
intended audience is the student who has already taken a graduate level course in
Recursion Theory. An attempt has been made, however, to make the book
accessible to the reader with some background in Mathematical Logic and a good
feeling for computability. Chapter 1 has been devoted to a summary of basic facts
about computability which are used in the book. The reader who is intuitively
comfortable with these results should be able to master the book. The second
intended use for the book is as a reference to enable the reader to easily locate facts
about the degrees. Thus the reader is directed to further results which are related to
those in a given section whenever the treatment of a topic within a section and its
exercises is not complete.

The material which this book covers deals only with part of Classical Recursion
Theory. A major omission is the study of the lattice of recursively enumerable sets,
and the study of the recursively enumerable degrees is only cursory. These areas are
normally covered in a first course in Recursion Theory, and the books of Soare
[1984], Shoenfield [1971] and Rogers [1967] are recommended as sources for this
material.
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The book contains more material than can be covered in a one semester course.
If time is short, it is advisable to sample material in some of the sections rather than
cover whole sections. Sample courses for one semester would contain a core
consisting of Chaps. I-V and Chap. IX, with the remaining time spent either on
Chaps. VI-VIII (perhaps skipping some of the structure results, and either
assuming them for the purposes of the applications of Chap. VIII, or using the
exercises at the end of Chap. VI to replace the structure results of Chap. VIII in
those applications), or on Chaps. X and XI. Chapter XII is best left to the reader to
puzzle through on his own. The material in the appendices may be covered
immediately before the section where it is used, but it is recommended that this
material be left to the reader.

The following chart describes the major dependencies of one section on another
within the book.
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Some proofs are left unfinished, to be worked out by the reader. This is done
either to avoid repeating a proof which is similar to one already presented, or when
straightforward details remain to be worked out. Hints are provided for the more
difficult exercises, along with references to the original papers where these results
appeared. Exercises which are used later in the text have been starred.

Although an attempt has been made to be accurate in the attribution of results,
it is inevitable that some omissions and perhaps errors occur. We apologize in
advance for those unintentional errors.

Theorems, definitions, etc. are numbered and later referred to by chapter,
section, and number within the section. Thus VI. 1.2 is the numbered paragraph in
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Sect. 1 of Chap. VI with number 1.2. If the reference to this paragraph is within
Chap. VI, we refer to the paragraph as 1.2, dropping the VI. There are two
appendices, A and B, and a reference to A. 1.2 is a reference to paragraph 1.2 of
Appendix A.

Definitions and Notation. The following definitions and notation will be used
without further comment within the book.

Sets will be determined by listing their elements as {aθ9aί9...} or by
specification as the set of all x satisfying property P, denoted by {x:P(x)}. If A and
B are sets, then we write x e A for x is an element of A and A c B for A is a subset of
B. We use A c B to denote A c B but A Φ B (placing / through a relation symbol
denotes that the relation fails to hold for the specified elements). A U B is the union
of A and B, i.e., the set of all elements which appear either in A or in B, and A Π B
denotes the intersection of A and B, i.e., the set of all elements which appear in both
A and B. The difference of A and B is denoted by A — B and consists of those
elements which lie in A but not in B. The symmetric difference of A and B is denoted
by A Δ B = {A — B)Ό(B — A). We will denote the maximum or greatest element of
the partially ordered set <̂ 4, < ) by max(v4), and the minimum or least element of
this set by min(^4) if such maximum and/or minimum elements exist.

Let A, B and C be sets. The cartesian product of A and B, A x B, is the set of all
ordered pairs <x, y} such that x e A and ye B. The cartesian product operation can
be iterated, so that A x B x C is used to denote (A x B) x C We use Ak to denote
the cartesian product of & copies of A (which is the same as the set of all ^-tuples of
elements of A) and A<ω to denote the set of all finite sequences of elements of A. If
x = < * ! , . . . , xk> is a &-tuple, we use xm to denote xk, the kth coordinate of x. Given
S ^ A x B and ieA, we use Sli] to denote {xeB: {i,x}eS}.

We use 0 to denote the empty set, and N to denote the set of natural numbers
{0,1,...}. Given A,BeN, we denote the direct sum of A and B by A © B =
{2x:xeA} Ό{2x + 1 :xeB}. For any set A, \A\ will denote the cardinality of A. The
infinite cardinal numbers are Xo> Ki , . . . in order, and 2K° is the cardinality of the
continuum.

A partial function ψ from A to B (written φ: A -• B) is a subset of the set of
ordered pairs {{x, y}: x e A &y e B} such that for each xeA there is at most one
y e B such that (x, y}eφ. We write φ(x)i (φ(x) converges) for <x, y} e φ, and φ(x) |
(φ(x) diverges) iϊ xeA and for all yeB (x,y}φφ. We will sometimes denote the
function φ with the notation x\->φ(x). The domain of φ is denoted by
dom(φ) = {xeA:φ(x)[} and B is called the range of φ, denoted by rng(φ). If
dom(<p) = A, we call φ a total function. The word total, however, will frequently be
dropped. Thus unless otherwise specified, a function will always be total. In general,
we use the lower case Roman letters/, gf, A,... to denote functions with domain N
and lower case Greek letters φ, φ, θ,... to denote partial functions with domain
<Ξ N. The corresponding upper case letters are reserved for functionals, i.e., maps
taking functions into functions. A set S is identified with its characteristic function
χs where χs(x) = 1 if xeA and χs(x) = 0 otherwise. If φ is a partial function and
B c dom(φ), then φ \ Bis the restriction of <p to 5, i.e., the function with domain B
which agrees with φ on 5. By the previous definition, the restriction notation
applies to sets as well as to functions.
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Given/: N -• N, we write lims f(s) = y if {s :f(s) φ y) is finite, and lims f{s) = oo
if, for every y e N, {s :f(s) = y} is finite. We write lim sups f(s) = y if {s :f(s) = y) is
infinite and {s\f{s)>y} is finite; and limsupsf(s) = oo if, for every yeN,
{s:f(s) ^ y} is infinite. We write lim'mfsf(s) = y if {s:f(s) = y} is infinite and
{s\f(s) < y) is finite; and X\m'mϊs f(s) = oo if, for every yeN, {s:f(s) < y} is finite.
If {αs: s e N} is a sequence of finite sequences of integers, then we write lims αs for the
partial function 0 such that for all x e N, θ(x)l if and only if lims <xs(x)l, in which case
θ(x) = limsαs(x). Given two sequences of integers α and β, we say that α
lexicographically precedes β if either α cz β or oc(x) < β(x) for the least x such that
a(x) Φ β(x). We write lim sups αs = 0 if 0 is a sequence of integers and for all xeN,
{s: αs ί x = θ \ x} is infinite and {.s: 0 lexicographically precedes αs} is finite. We
write lim infs ocs = θ for 0 as in the preceding sentence if {s: αs ί x = θ Γ x} is infinite
for each XGTV, and {s:αs φ θ and αs lexicographically precedes 0} is finite.

We use Church's lambda notation to define new functions from old
ones. If / ( * ! , . . . 5 x n ,}Ί,. Jic) is a function of π + fc variables, then
1*! xnf(xι,..., xn,yi,. .,y k) denotes the function g of n variables defined by
g(xu . . . ,xn) =f(xu >,xn,yu > J7*)-

If φ and ^ are partial functions, then we write φ <= φ (φ extends φ) if
dom(φ) c dom(ι^) and for all xedom(φ), φ(x)[ = φ{x). We say that φ and ^ are
incomparable and write φ | φ if neither φ ^ φ or φ ^ φ.

We write ^4β for the set of all functions from 2? into A. Since sets are identified
with their characteristic functions, 2s then denotes the power set of 5, i.e., the set of
all subsets of S.

Standard interval notation will be used for sets A partially ordered by ^ . Thus
[a,b~] will denote {xeA:a ^ x ^ b}, (a,b) will denote {x\a < x < b}, (a, oo) will
denote {x: x ^ a}, (— oo, b~] will denote {JC: X < &}, etc. Structures will be denoted
b y si = (A, Ro,.., Rn, fo,.'., fk, Co,--, O w h e r e A is t h e universe o f s/9

Ro,..., Rn are relations on cartesian products of ,4, f 0 , . . . , fk are functions from
cartesian products of A into Λ, and co,...,cm are designated elements of A. The
partially ordered set above is thus denoted by si = <̂ 4, <>.

We will use the logical symbols & to denote and, v to denote or, —\ to denote
not, -• to denote implies, and <-• to denote if and only if. 3 will denote the existential
quantifier and V will denote the universal quantifier. We will write /\"=o σ i f o r

σo&σ! & &σn and \/" = o σ f to denote α 0 v di v v σπ. When we are not
using a formal language, we will use => and <=> in place of -• and <-» respectively.

D will denote the end of a proof.




