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Generalized scalar operators were introduced by C. Foia~ [4] and a detail­

ed study of such operators can be found in the monograph [3]. An important 

subclass consists of regular generalized scalar operators which enjoy proper­

ties not shared by all generalized scalar operators. For example, the sum and 

product of commuting generalized scalar operators S and T need not be gener-

alized scalar operators[2; §3]. However, if, in addition, S and T are both 

regular, then ST and S + T are again generalized scalar operators [3; p.l06], 

although they need not be regular [2; §3]. In particular, there exist genera­

lized scalar operators which are not regular [1,2]. 

A closed subset F of the complex plane ~ is called thin [3; p.lOO] if 

the function A + ~ on F ( the bar denotes complex conjugation ) is the restric­

tion of a function which is analytic in a neighbourhood of F. It is clear that 

any closed subset of a thin set is also a thin set and that segments of a line 

are thin sets. Accordingly, the following result is an immediate consequence 

of Theorem 4.1.11 in [3]. 

THEOREM. A generalized scalar operator whose spec~a is contained in a 

line in the complex plane is necessarily regular. 

The proof of this result given in [3] is based on the theory of distribu­

tions and N. Dunford's analytic functional calculus. The purpose of this note 

is to present another proof of the above Theorem based on some recent work of 

A. Mcintosh and A. Pryde [6] in which they develop a specific functional 
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calculus for certain operators via the theory of integration. 

It is time to be more precise. Let X be a complex Banach space and L(X) 

denote the Banach algebra of all continuous linear operators from X into it-

self equipped wi-th the uniform operator topology •. An element T of L (X) is a 

generalized scalar operator if there exis·ts a continuous algebra homomorphism 

u, C00 (~) + L(X) such that U(p) = p{T) for all polynomials p, and the function 

s + U(fgs) from ~\Supp(f) into L(X) is holomorphic for each f E C00 (~), where 

-1 
gs (z) = (s-z) and Supp (f) is the support of f. Such a u is called a spectral 

distribution for T. Here (CJ:) (JR2 ) is the algebra of all infinitely 

differentiable functions on JR2 equipped with the topology of uniform conver-

gence on compacta of functions and all their derivatives. we say that T is 

regular if it has a spectral distribution which takes its values in the bicom-

mutant, {T}", of 'r. Such a distribution is called a regular spectral distri-

hution for T. 

The first assertion is that it suffices to establish the Theorem for the 

case when the line in a: is the real axis JR. Indeed, suppose that T satisfies 

the hypotheses of the Theorem. Then there exist complex numbers a and S, with 

Ia! = 1, such that S = a(T-SI) satisfies o(S) c JR. Let V be a spectral dis-

tribution forT and let g(z) = a(z-S), z E ~. Since S = V(g) it follows that 

S is also a generalized scalar operator [3; p.lOS, Lemma 3.2] and hence, there 

would exist a regular spectral distribution for S, say W. If h(z) = S + a-1z, 

z E ~. then U(f) = W(foh) defines a spectral distribution for the operator 

-1 
U(A) = W(h) = SI + a W(A) 

-1 
SI + a s T 

where A denotes the identity function on ~ [3; p.l05, Lemma 3.2]. But, 

and hence, U would be a regular spectral dis-tribution for T. 
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So, suppose that T is a generalized scalar operator with real spectrum. 

Then there exist constants M ~ l and s ~ 0 such that 

v v 
[3; p.l60]. Let L1 (s) denote the space of inverse Fourier transforms f = g of 

functions g: IR +a: for which t + (l + Jtj)sg(t), t E IR, belongs to L1 (IR). 

1\ 
we shall write f for g. The Fourier inversion formula being used is 

-lJ ixw f(x) = (211) IRe g(w}dw, X E lR. 

v . 
It follows [6; §8] that L1 (s) lS a Banach algebra with respect to pointwise 

addition and multiplication and with norm 

v 
Define a linear map W: L1 (s) + L(X) by 

w (f) (211) -1 fIR~ (t) ei tTdt, 
v 

f E L1 (s), 

where the integral is a Bochner integral. Indeed, the integrand is a strongly 

itT 
measurable L(X)-valued function of t (using continuity of t + e and the 

separability of IR) and fiRJJ ~(t)eitTJJ dt oS 211Mjjfjj < oo This also establish­

es the continuity of w. Actually, it is shown in Section 8 of [6] that w is a 

v 
multiplicative functional calculus forT based on the algebra L1 (s), in the 

sense of Definition 6.1 of [6]. In particular, the support, Supp(W), of w is 

precisely a (T) and p (T) = w (8p) for all polynomials p: IR + a:. Here 8 is any 

compactly supported C00-function on IR which is equal to l in a neighbourhood 

of Supp(w). It is then straightforward to verify that the mapping U:C00 (U:)+L(X) 

defined by 

where f J IR deno·tes the restriction of f to lR , is a spec·tral distribution 

for T. 



294 

So, it remains to verify that U assumes its values in {T}" or, equivalent­

v 
ly, that <l.i assumes its values in {T}'0 • Let f E L1 (s). Then define the set 

A 'tT 
P (f) ~ { t E IR 1 II (8f) (t)e~ II > o}. If :;: > 0 there eJdsts a decomposition of 

P (f) into disjoint measurable sets {Ek (E:} }:=l such that for arbitrary 'l::k E Ek (:;:), 

A 't T 
the function fE: given by fE:(t) = (8f) (tk)e~ k if t E Ek(:;:), k = 1,2, ••• , 

and fE:(t) = 0 otherwise, is Bochner integrable and satisfies 

(1) J IR II (8f)A (t}eitT - fE: (t) II dt < :;: 

[ ~ 1 . it1T ~oo n -1 n 
see '5; p.81, CorollaryJ, ior examp e" S~nce e ~ = "''n=O(i·tk) (n!) T , for 

each k = 1,2, .•• , 

where~ is Lebesgue measure in lR, and all series involved converge in L(X), 

it is clear that f 8 (t)dt E {T}", for every E > 0. Choose a sequence E(n)-+0. 

Then the definition of Bochner integral together with (1) imply that qi(f), 

being equal to the limit (in L(X)) of the sequence {IlRfE(n) (t)dt}~=l' belongs 

to {T}" as required. 
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