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HOLOMORPHIC REPRESENTATIONS OF SL(2,R) AND 

QUANTUM SCATTERING THEORY 

J.V. Corbett 

1. Quantum Scattering 

The notation that we use will be essentially that of Reed and Simon 

(1]. The Hamiltonian operator that describes a system of N particles 

that interact via two-body potentials is 

H Ho + V 

In the centre of mass coordinate system, 

N 

H0 =- 2: AJ/2mJ + Ac.m./2Mc.m. 
j=l 



v 
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I vlJ(xi-xJ) , 

l < j 

V; • : 1R 3 -> 1R 
- J 

on the Hilbert space Ho = L2 (~<N-l)). In this work we will impose two 

conditions on the ViJ 

(1) each V1 J (y) is AY - compact 

is A 
y 

bounded. 

The first condition ensures that H is self-adjoint on the domain 

D(H) = D(Ho). The second condition will be needed later. 

As the N particles may be found in a variety of bound subsystems each 

moving freely with respect to the others we need some notation. 

A cluster decomposition Dk is a partition of {1,2, ..• , Nl into k 

k 
subsets ·lCJIJ~ 1 • 

Intercluster potential In is the sum of all potentials ViJ linking 

different clusters in D. 

The cluster Hamiltonian H0 
!( 

H~ + L H(C) 

J~l 

0 
where H is the sum of the kinetic energies of the centres of mass 

D 

of the k clusters minus the kinetic energy of the centre of mass of 

the total system, and for each j, H(C) is the sum of the kinetic 

energies of the particles in the cluster C minus the kinetic energy 
J 

of the centre of mass of the cluster c plus the sum of all the 

potentials v 
iJ 

that link particles in the cluster c 
j 
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The total Hilbert space H can be decomposed for each cluster 
0 

decomposition D into a tensor product of an outer Hilbert space 
k 

0 
H and an inner 

D 

! lc 
H j~ H(C 

D 

cluster C , 
j 

) 
j 

! 
H 

D 

is the 

0 i 0 2 3(k-1) 
H H ® H with H = L (IR ) 

0 D D D 

Hilbert space of the internal motion of the 

A channel a, a = ID, Tlcu Eo: I, is a cluster decomposition D 
I< 

together with a prescription of the bound state, ~a 

and 

H(CJ)~~ E~ ~~ Eoc = ~ k E~ is called the threshold energy of the 
J=i 

channel a. If a cluster C contains only one particle we take 
j 

E 
j 

0, 'Tl 

"' "' 
L 

± 
A cluster wave operators Q 

t D 
± iHt -iH 

Q s-lim e e n 
D t.~::;:oo 

0 

H ~ H is defined as the strong limit, 
0 0 

± 
Channel wave operators Q H ~ H are maps from the outer 

D (oc) o 

Hilbert space of the clusters in the channel a, to the Hilbert space 

H; they are given by maps 

where 
± 

[l 
D(«) 

0 
i.e. for any u e H 

D(oc) 
+ 

are cluster wave operators 

Q- JJ. = Q (u ® 11l 
oc D(oc) oc 
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Theorem (Hack) [1] 

The cluster wave operators r.m± exist for each cluster decomposition 

D if each VtJ eL2 (jR3) +LP(jR3) with 2~p<3. 

Theorem If Oa± exist, then, 

1) Ran Oa- is orthogonal to Ran Q8 - if a * ~. and Ran Oa+ 

is orthogonal to Ran o8 - if a * ~ 
2) Oa± are isometries from BD<a>o onto 

3) e1Ht ( ®Oa±) ®Oa± eiBat 
d d 

where Ha = Ho<a> 0 + Ea 

4) <±> (Ran Oc/l c Hac (H). 
a 

H ± a 

The problem of asymptotic completeness is to prove that the following 

two conditions are satisfied. 

1) He (H) = Hac (H), i.e. os. c (H) 1/l 

2) Hac (H) = <±> (Ran Oa±) 
a 

If a system is asymptotically complete then the Hilbert space H for 

the system can be written as 

H = 1/p. p. (H) <±> (Ran Oa±) 
a 

This result has proved to be very difficult to obtain for a general 

N-body system that is capable of supporting non-trivial channels. 

However in February 1986 I.M. Sigal and A. Soffer announced in the 

Bulletin of the A.M.S. [2] that asymptotic completeness holds if the 

two body potentials VtJ satisfy 
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1) V (y) is A - compact 
1 j 

2) 
l+e 

(l+jyj 2 ) (VV (y)) are '9· -·bounded for some e > Oo 
2 j j y 

3) jyj2 A V (y) are d -bounded 
i j y 

4) 
IJ./2 

(l+jyj 2 ) V (y) are A -bounded) , ~ > 1 
iJ y 

The aim of this paper is to show the usefulness of holomorphic 

representations of SLI2,RI in the description of the problem of 

asymptotic completeness. The physical meaning of these representations 

will be discussed elsewhere. le first quote a theorem that relates 

asymptotic completeness to holomorphic representations of SL(2,R) on 

He (H) . The second example of their usefulness will be in proving the 

existence of asymptotic variables for the N-particle system. 

2. Holomorphic representations 

The representations of SL(2,R) that interest us here occur when the 

metaplectic representation of the sympletic group is restricted to a 

subgroup isomorphic to SL(2,~). We will call these representations 

Weil or holomorphic representations. The metaplectic representation of 

the symplectic group arises when the symplectic group is considered as 

a group of outer automorphisms of the irreducible representations of 

the Heisenberg group. A nice account of these matters, and more, 

occurs in the review articles of R. Howe [3], the Veil representations 

of the symplectic group is presented in the paper of Saito [4]. 
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For each cluster decomposition D there is a Weil representation of 

SL(2,R) on the outer Hilbert space ~· of the centres of mass of the 

clusters in D. If there are k clusters in D, Hg = L2 (~<k-l)) because 

the overall centre of mass coordinate has been removed. In general these 

unitary representations are complicated to write out but the corresponding 

representation of the Lie algebra sl(2,R) of SL(2,R) is easy to present. 

The standard basis for sl(2,R) is IX+, X-,Zl, X+ r 0 1 l . 
Lo oJ 

X- [: :J and z = [l 0] 
0 -1 • 

The Lie products are [Z,X+J 2X+, 

[Z1X-l -2X- and [X+ ,X-] = Z. The Casimir operator is OG, 

2 4 

The Weil representation no of the Lie algebra sl(2,R) is 

'no (Z) iAo 
i r (XJ •PJ + P.J •XJ ) 
2 

j ~ 1 

i r PJ 2 /mJ 
2 

'ITo (X+) iHo 
j~! 

i \n 
L mjXj2 no (X-) iRo 

2 
j ~ 1 

1 3 
where , XJ are the self adjoint operators of 

i ()Xj 

differentiation and multiplication by Xi, and mj are positive numbe.rs. 



134 

Furthermore the Casimir operator OG is represented by 

n:o (QG) 
Ro Ho + Ho Ro 

2 
L2 + n(n-4)/16 

where L2 is the sum of the squares of the generators of the orthogonal 

group On, is the Casimir operator for On" Thus the irreducible 

representations of SL(2,~) that occur here are labelled by the 

parameters of the irreducible representations of On" These 

representations are holomorphic representations of SL(2,R). [3] 

The usefulness of these representations in scattering theory stems from 

the fact that for each cluster decomposition Dk there is a Veil 

representation n: 0 (g) of SL ( 2, IR) on Ji "' L2 (!R' (1<-1 > with 
Dk D 

I< 

11 0 (X.) -iH o 7l 0 (Z) iA o and n: 0 (X-) iR o 
D D D D D D 

k k k k k k 

Ho~ is the kinetic energy of the centres of mass of the k clusters 

in Dk in the centre of mass frame, An~ is the corresponding 

dilation operator and the corresponding Jacobi metric. 

This leads to the following theorem [5]. 
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Theorem 1 

If the channel wave operators Oa± exist as partial isometrics with 

orthogonal ranges then the scattering is asymptotically complete if and 

only if there is a pair of representations n±(g) of SL(2,~) on 

He (H) such that 

[( b)] -iH±b 
(a) n± = e for all be~ with H± H - LE p ± a a 

1 a 

(b) n± (g) I ® 'Ira± (g) I where each 'l!a±(g) is 
Rano± a Ranoa± 

unitarily equivalent to a Weil representation. 

Proof I will just give an outline of the proof here. If asymptotic 

completeness holds then the conditions (a) and (b) follow from the 

properties of the Oa±· If there exists a pair of representations 

n±(g) of SL(2,~) and Hc (H) such that (a) and (b) hold then 

Hac (H) = He (H) and if K± = Hc (H) {-} Ha± there exists on K± sub-
0: 

representation of n±(g) that are unitarily equivalent to a direct sum 

of Weil representations and hence K± must be the direct sum of the 

ranges of channel wave operators. 

We will only present the results for the representation no:-(g) on 
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Proposition 1 For each channel a with cluster decomposition 

D = D(a), for all g e SL{2,1R) and for nt = [~ !] 
iHt o -1 -Hit 

e n (n g n )e converges strongly to na (g) on Ha 
D t t 

0 0 
Note: n (g) 

D 
n (g) Q9I i following the tensor product decomposition 

D H 
D 

We will usually suppress the 

o -1 -iHt iHt 
!le n In gn ) e $- n -(g)$~ 

D t t ~ 

0 0 

iHt -iH t 0 !H t 
lie e D 'T! 

D 
(g) e D e 

0 0 
iHt -iH t 0 iH t 

e e D n (g) 
D 

e ]) e 

iH t !Ht -!E t 
~ lie 0 e $ - e a 11 f I! 

iHt 
+ II (e 

0 
iH t 

e D 

<X 

-IE t 
e a 

Hit 
- e e 

t 
fna - oa-

I i. 
ll 

D 

t 

0 

0 
'f! 

D 

'IT iglfll 
D 

0 
iH t -iE 

(g) e D e 

The first term converges to zero as t ~ oo because $=oa-f, the 

second goes to zero as t ~ oo by definition of Q0 - because 
0 0 

n (g)f e H for all g. This proves the assertion. 
D D 

Let g(s), s e IR, be a one parameter subgroup of SL(2,1Rl and let 
0 

L be the self-adjoint representative of its generator in the 
D 

representation 
0 

n and let La- be the self-adjoint representative 
D 

of its generator in the representation Ra-(g) on Ha-· 

t 
a f110 
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Proposition 2 In the limit as t tends to infinity, 

0 
-iHt -iH t 

e (e 0 

0 
o iH t 

L e 0 
D 

®I 1 
H 

D 

strong resolvent sense on Ha-· 

Proof 

-1Ht 
e converges to L -Ct. in the 

This result follows immediately from Trotter's Theorem ([1], vol.I) as 

everything happens on the subspace Ha- of H. 

It is useful to write out this result for the three basic elements 

of sl(2,JR) 

(i) eiBtHoo e-1Bt converges to (H-Eal in the strong resolvent 

sense on Ha-. 

(ii) converges to A -Ct. in the strong 

resolvent sense on Ha-· 

(iii) converges to R -a in 

the strong resolvent sense on Ha-· 

Let D be the space of C'-vectors for the representation no(g) of 

SL(2,JR) on L2 (~<N- 1 >). It is well known that D = D(Ro) n D(Ho) 

equipped with a norm !lull = !lull+ li(Ho+Rolu!l. 
D 

Theorem 2 

Let H = Ho + l: V1J be such that each ViJ (y) is Ay-compact and each 
1 < j 

(Y•9V1J)(y) is Ay-bounded then for all ¢ € Ha-nD, 

0 
(a) t-2 (¢,R (t)¢), 

D 
(b) 

0 
(2t)-1 (¢,A (t)¢) 

D 

0 
(c) (¢,H (t)¢) 

D 

all converge to (¢, (H-Eal¢) as t tends to infinity. 
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Proof 
(c) By the special case {i} of Proposition 2, HD 0 (t) converges 

to (H-Eal in the strong resolvent sense on Ho:-. Furthermore if 

z E c, Im z - D then 

0 for all 

cfJ e Ha- n D(H) • 

(a) and (b) are proved in similar ways and we will only look at (a). 

that if q, e D then 

IIAo 0e-IHt.pl! ~ Cdl+ltllll4>11 
D 

for the class of Hamiltonians in the 

enunciation of the theorem. 

Now one uses the identity, that holds on D , 

Rn ° + t A~ 
2 0 

+ t Ho 

to obtain that in the limit as t • oo 

Each of the three limits has a physical interpretation or consequence. 

0 
lim (if;, H (t)cfl) 
t+>o D 

(¢, (H-E ) if;) 
IX 

for ¢ e H - n D(l{) :;:, H - n D 
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says that for such f, (f, 8¢) ~ EaH•H 2 • and that in the limit as t 

tends to infinity the total energy augmented by the binding energy of 

the clusters in the channel a is purely kinetic" 

Ao 0 (t) 
€~ (•,--2-t--- ¢) = (f,(H-Eal¢) ~ 0, means that asymptotically the motion 

is outgoing as (¢,An° (t)•) > 0 for t large enough. 

Ro 0 ( t) U!! (•,--t-2- ¢) = {¢, (H-Eal•> ~ 0, means that the radial separation 

between the clusters in the channel a increases linearly with t for 

large enough t. 

Let {r } be the Jacobi coordinates for the centres of mass of the 
j J=l 

k 

clusters in the channel a , let {P } be their conjugate momenta, 
j j = 1 

l MJ l their masses, then we obta1in as a corollary, the existence of 

asymptotic variables in the sense of Enss [6). 

Corollary 

Let H satisfy the conditions of theorem then for any f e: Ha- n D 

lim ll<rJt- 1 - PJMrl)•ll 0 
t.:m 

Proof 

By Theorem 2, 

lim 
t.:m 

0 
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But the left side is ll<nt- 1 - PJMr1J<PII 2 " 

This corollary together with the three results of Theorem 2 describe 

the propagation properties of states in the channels. More work needs 

to be done before asymptotic completeness is proven. 
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