1. ELEMENTARY PROPERTIES OF DIRECT PRODUCTS

We shall concern ourselves with systems
A- < A, +, Qo Ogyeney 0&,-..7

constituted by an arbitrary set A, a binary operation + (the
operation of addition), and arbitrarily many other operations
arranged in a sequence Qg, Ogyeeey Qgsees Of & type T (where 7T
is a finite or transfinite ordinal). Each of these operations
0g is assumed to be defined for finite or transfinite sequences
of elements X5, Xy,+e¢0, Xgres. Oof & well-determined type Pg
called the rank of the operation. Thus,0; may be a unary opera-
tion (pg = 1), & binary operation (pg = 2), & ternary operation
(pg = 8), an operation on simple infinite sequences (p; = @), eta
An operation 0y with the rank p; = i will be referred to for
brevity as a p-ary operation. Two systems

A=< A + 0gy Ogye0ey Ogyees > with E < 7
and

A' = < ., #', 04, Olyeee, oé,... > with £ < 1!

are called similar if the sequences of ranks p; and pé are iden-
tical, i.e., if

T =T and pg = pé for every E < T

The sequence of ranks py; will sometimes be referred to as the

similarity tyge of the system A.

The symbolic expression

Xy, Yyeeo€A

will express, as usual, the fact that x, y,... are elements of
A. We shall speak occasionally of elements of the system A hav-
ing actually in mind elements of the set A; and we shall call
the system A finite (or infinite) in case the set A is finite
(or infinite).
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Definition 1.1. By an algebra we understand a system
A = < Av +, 00, Og,o-o, OE,ooo > with g < T

subjected to the following conditions:
(i) the set A is closed under all the operations +, 0g, Ogyeca,

Oz,.--, i.e.,

(') if x and y are in A, then x + y exists and is in A;

(i") if Oy with £ < v is a p-ary operation and if Xo, Xgyeee,
Xgoeoe, With x < pare in A, then Oy(Xg, X500, Xy ,e00) exists
and is in A;

(ii) there is an element zeA such that

(ii') z is a zero element with respect to the operation +,
i.e., x +2 =2 +x = x for every xeA;

(ii") z is an idempotent element with respect to each of the
operations Og with € < 7; i.e., if Oz is a p-ary operation and
Xo ™ X3 ™ wveo *X, "ess =2z for x <y, then 0z(X0y, XayeseXy,eee) =2,

Under the same conditions we shall say that the set A is an
algebra under the operations +, 05, Og4ycc., Ogreee

Sometimes we shall call the set A itself an algebra, with-
out explicitly mentioning the operations involved; we shall do
so when it will be clearly seen from the context which operations
are referred to.

Groups without operators are thus algebras in the sense of
1.1 with T = 0. @Groups with operators are algebras in which 7
is different from 0, and 0oy Ogyeees Ogy.-e with E < T are unary
operations subjected to the condition

Og(x + y) = Oglx) + Og(y) for all x,yeA.

Rings are algebras with T = 1 and p, = 2. Lattices and Boolean
algebras are often characterized as algebras with T = 1 and pgo =
2, but they can also be treated as algebras with 7 = 0.

Definition 1.2. Let
A=< A + 0o Ogyeee, Ogyeee>
be an slgebra.

(i) The uniquely determined element zeA satisfying condition
1.1 (ii') is denoted by 0.
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(ii) The sum of a finite sequence of elements Xo, Xsjeee, Xyyeee€A,
x < v, is defined recursively by means of the formulas:

gcxx = 0, aLdKZ(vﬂxK -vax“ + x, for every finite v.

We shall apply to algebras in the sense of 1.1 various fa-
miliar notions of a general algebraic nature. 1In the first place
we here have in mind the notion of a subalgebra:

Definition 1.8. By a subalgebra of an algebra

A= <A 4 0o Oypurny Ogyene>

we understand an arbitrary algebra

B=<B, + 0oy Ogpeuey Ogyoes>

formed by a subset B of A containing the zero element of A and
by the fundamental operation +, 0o, Ogyeesy Ogy... of A. _Under
the same conditions the set B itself is called a subalgebra of A,
or a subalgebra of A (under the operations +, 0o, O4,c.., OE,..L

Thus, given an algebra
A=< A +, Coy O1,000, OE,...>,

the set A as well as the set {0} (containing O as the sole ele-
ment) are obviously subalgebras of A. In discussing subalgebras
of a given algebra, we shall use a familiar set-theoretical sym-
bolism. For instance, the formula

BgC

will express the fact that the subalgebra B is included in the
subalgebra C; the symbolic expression

B C, or 191 By,

will denote the intersection (common part) of the subalgebras B
and C, or of all subalgebras B; correlated with elements i of an
arbitrary set I. The intersection of arbitrarily many subalge-
bras is clearly a subalgebra.

The notions of homomorphism and isomorphism (or one-to-one
homomorphism)--as applied to algebras in the sense of 1.1--are
assumed to be known. We shall speak of functions f which map a
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given algebra

A=< A #+, 0o, Os,eee, Ogyeun>

homomorphically, or isomorphically, onto another (similar) algebra
A' = < A", +7, 0§, 0,ee., Op,ee.>.

Such a function f maps the set A onto the set A', i.e., the do-
main (the set of argument values) of f includes A, and A' consists
of all function values f(x) correlated with elements xeA. More-
over, f satisfies certain familiar conditiorns involving the fun-
damental operations of A and A'; and in the case of isomorphism
f is biunique when restricted to elements of A, i.e., for arbBi-
trary elements x and v in A, f(x) = f(y) implies x = y. In
general, given a function f and a set A included in the domain
of f, we denote by f*(A) the set onto which f maps A, i.e., the
sets of all elements f(x) with xeA. Thus, in case f maps A
homomorphically or isomorphically onto A', we can write

f*(A) = A'.
A function f is called an A, A' - homomorphism if it maps A
homomorphically orto a subalgebra of A'. It is called an A, A'
- isomorphism if it maps A isomorphically onto the whole algebra

A'; and if such a function f exists, the algebras A and A' are
said to be isomorphie, in symbols,

A =4,

The notions just discussed are often applied to subalgebras

B=<B, + 0oy Ogyee:0p500e>, C =< C, +, 0o, Ogye0e0py0eeyene>eee

of a given algebra A. In this connection the terms "B, C -

homomorphism (isomorphism)" and "B, C-homomorphism (isomorphism)®,
as well as the formulas

B =C and B =,
can be used interchangeably.

With any two similar algebras

A' = <A, +1, 0B, Olyeee, Ofseee> and A'= < A", #1, 03, O,uee, OF oou>
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we correlate in a familiar way a new similar algebra

é‘ < A, _+, Oo, 01!"" OE,-0->

called the cardinal product (or outer direct product) of A' and

A", in symbols,

A= A' x A",
The set A consists of all ordered couples < a', a" > with a'eA!
and a"eA", and the fundamental operations of A are defined by
means of formulas: .

<a', a" > + < b', b" > = < a! +' b1, a" +" p" >,
Oz(<ad, af >, < al, af >,..0) = < OE'(a.S, alyeee), (%“(58, al,e00).

This construction can clearly be extended to an arbitrary, finite
or infinite, system of algebras A(t).

Almost all the fundamental results of this work can be ex-
pressed in terms of cardinal products. However, the discussion
of cardinal multiplication can be greatly simplified by reducing
this operation on algebras to a related operation on subalgebras
of one algebra -- an operation which will be referred to as (in-

ner) direct multiplication. The possibility and usefulness of
such a reduction is well known from group-theoretical discussion.

Definition 1.4. Let

A' < A, +, 00, Og,-o., og,--.>
be an algebra. By the (inner) direct product of subalgebras B
and C, in symbols B x C, we understand the (uniquely determined)
subalgebra D of A which satisfied the following conditions:

(i) D consists of those and only those elements deA which can
be represented in the form:

d = b+ c with beB and ceC;
(ii) if by, beeB, Cy, C28C, and by * ¢4 = by *+ co, then

by = by and ¢y = ca;

(iii) _if by, boeB and ci, ceeC, then
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(bg + cq) #+ (b. + cg) = (by + bg) + (cqy *+ o)

(iv) if Oy is a p-ary operation, and byeB and cyeC for every
% < 4, then

og“’o*%. bl'chﬂtv ‘M"’%----)'Og(bo. byyees, b‘uuo)“()g(con Cayeeey cn!""‘

Thus the operation of (inner) direct multiplication applies
to subalgebras treated simply as sets; while that of cardinal
multiplication applies to algebras, that is, to systems formed
by a set and a sequence of operations. Hence no confusion will
arise from the fact that the same symbol x is used to denote
both of these notions.®

It is easily seen that), in case the operation + in A satis-
fies the associative law, Definition 1.4 can be simplified by
replacing condition (iii) by the following one:

(iii') if beB and ceC, then b + ¢ = ¢ + b.

Hence, when applied to groups with or without operators, Defini-
tion 1.4 proves to be equivalent to the usual definition of a
direct product (or direct sum) of subgroups.® The importance of
our definition in the general case and its adequacy for the pur-
poses of this work is evident from the following

Theorem 1.5. Let .
A=< A, +, Ogy Ogye0e, OE,--a>

be an algebra, and let B and C be two algebras similar to A. 1In
order that
(i) A=BxC

it is necessary and sufficient that there exist subalgebras B
and C of A such that

(ii) A =BxC(C,

(iii) <B, +, Ogy Ogyecey Og,-n.> :_B_a.nd <C, + 0oy Ogyeee, Og,...> :g-'
Proof: Let

B = <B, 4 03, Okyeee, Opyeee>and C= < G, +' 08, Ofyoee, Ogyees>

5. Unfortunately, the two notions are themselves very often confused in
the literature.
6. Compare, e.g., van der Waerden [1] , vol. 1, pp. 141 ff.
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If (i) holds, we consider a B x C, A - isororphism f. Thus, f
maps the set of all couples <b, ¢ > with beB and ceC onto the
set A. Let B be the set of all element f(< b,0" >J with beB,
and C the set of all elements fl(< 0', ¢ >) with ceC; 0' and O"
are the zero elements of B and C, respectively. The proof that
P and C are subalgebras of A which satisfy conditions (ii) and
(iii) is based upon 1.1 - 1.4, and presents no difficulty. If,
conversely, B and C are any subalgebras of A satisfying (ii) and
(iii), we first show by means of (ii) and 1.4 that

_A_Z< B. +, Oo, Ogyeoey 05,.--’ x <Cy, # 00y Ogy000, 05,...’,

and hence, with the help of (iii), we obtain (i). Thus, our the-
orem holds in both directions.

It should be emphasized that the notion of a cardinal prod-
uct -- like those of homomorphism and isomorphism -- applies to
arbitrary systems A formed by a set and a sequence of operations
and does not depend on restrictive -conditions imposed on ‘these
systems in 1.1. On the other hand, the definition of a direct
product implicitly involves the notion of a zero element, and_ it
cannot be applied to systems without a zero unless we agree to
use the term "subalgebra" in a more general sense. What is even

more important, a detailed examination of the proof of 1.5 re-
veals that condition 1.1 (ii) plavs an essential role in this

proof. It can easily be shown by means of examples that, in
general, Theorem 1.5 does not apply to systems A in which either
part (ii') or part (ii") of this condition fails; for it may then
happen that A is isomorphic to the cardinal product of two sys-
tems B and C, without containing anv subsystem isomorphic to B
or C. We can thus say that only by restricting ourselves to
systems which satisfy 1.1 (ii) are we in a position to introduce
an adequate notion of an inner direct product.

As regards condition 1.1 (i), the situation is more involved.
Algebraic systems in which 1.1 (i) fails, i.e., which lack the
closure property, occur quite frequently in apbligation and there-
fore deserve more attention than is usually paid to thenm. “Theorem
1.5 can easily be extended to such systems. This requires but a
slight modification of Definition 1.4; conditions 1.4 (ii) - (iv)
must be replaced by somewhat different conditions, which are
equivalent to the original ones when applied to algebras in the
sense of 1.1. Of course, the systems under discussion are assum-
ed to satisfy 1.1 (ii), and hence also those particular cases of
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1.1 (i) which are implied by 1.1 (ii). So far, however, we have
not succeeded in extending to such svstems all the fundamental
results of this work. We know only that our results apply to
systems which are not supposed to satisfy 1.1 (i'), and in which
1.1 (i") is restricted to cases where at least one of the ele-
ments Xo, Xs,eeey, Xyyeoo involved equals 0.

We take this opportunity to discuss briefly the possibility
of extending the notions and results of our work to still more
comprehensive types of algebraic systems. In algebras considered
in 1.1 the "main" operation, +, is assumed to be a binary one.
This circumstance, however, --which, of course has influenced the
formulation of 1.4 --does not seem to be essential; the operation
+ can presumably be replaced by an operation with an arbirtary
rank ¢ > 2, under appropriate modifications of 1.1 and 1.4. On
the other hand, it is well known that operations can be regarded
as relations of a special kind -- in fact, unary operations as
special binary relations, binary operations as special ternary
relations, and, in general, operations with a rank g as special
relations with the rank p + 1 (i.e., as sets cf sequences of
type o + 1). Hence the problem arises whether some or all of the
operations constituting algebraic systems under discussion cannot
be replaced by arbitrary relations subjected to conditions analo-
gous to 1.1 (i), (ii). We have not yet investigated this problem.

In consequence of 1.5 the notion of a cardinal product will
be entirely eliminated from the main bodv of our further discus-
sion. (We shall use it only in Section 4 in introducing the no-
tion of the cardinal product of isomorphism types.) We shall
undertake instead a detailed study of (inner) direct products.
It may be noticed that the order of operation 0o, Oysecey, Ogseee
in an algebra A, which plays an essential role in the definition
of a cardinal product, is not involved at all in the definition
of a direct product. Hence we could now modify our original con-
ception of an algebra, and regard algebras as systems constitut-
ed by a set A, a binary operation +, and a set Q of other opera-
tions. This would bring us into complete agreement with the
point of view generally accepted in the discussion of groups
with operators.

In the next few theorems we formulate the most elementary
properties of direct products.

Theorem 1.8. Let B and C be subalgebras of an algebra

A= <A, + 0oy, Osyece, OE,..->
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such that B x C exist.

(i) If beB and ceC, then b + ¢ = ¢ + b,

(ii) If by, bgeB and ceC, then (by + bg) + ¢ = by, + (b, + c)=
(by + c) + b,. Similarly, if beB and c,, coeC, then
b+ (cy +cg) =(b+ecy) +cg=cy +(b+c,)

(iii) If a e B x C, beB, and if either a + be Bor b + a ¢ B,
then aeB.

Proof: If b,, b,eB and ceC, then, by 1.8 and 1.4 (iii),
(by+0) +(by+c) = (b, +b,) +(0+c) and (b, +¢c) +(by+0) = (by +by) +(c+0).
Hence the first part of (ii) follows by 1.1 (ii') and 1.8 (i).
The proof of the second part is similar. To prove (i), put by=
0 and by = b, and apply (ii), 1.1 (ii'), 1.2 (i), and 1.8. 1If
a e Bx C and beB, then, by 1.4 (1),

a = b' + ¢ where b'eB and ceC

Therefore, by (ii),

a +b=(b'+b) +cand b+a=1(b+ b +ec.
By 1.1 (ii') and 1.2 (i),
a4+ bs (a4+ b)+O0Oandb+a=(b+a)+ 0.
Hence, if either a +beBor b+a ¢B, we have by 1.3 and 1.4 (ii)
c= 0.

Thus (iii) holds, and the proof is complete.

Theorem 1.7. Let B and C be subalgebras of an algebra

_A_- < At +, 00’ 0,.,..., 05,...>

gsuch that B x C exists. We then have:
(i) B x C is a subalgebra of A, and in fact the smallest sub-

algebra which includes both B and C. L ]
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(ii) BxC=C xB.

(iii) _If B' and C' are subalgebras of B and C, respectively,
' x C' exists and B' x C' & B x C.

Proof: (i) is an immediate consequence of 1.4; (ii) follows
from 1.8, 1.4, and 1.8 (i). To.prove (iii), let D' be the set
consisting of all elements of the form b + ¢ where beB' and ceC’.
By 1.1 (ii') and 1.2 (i) we see that 0eD', and hence we easily
conclude by 1.8 and 1.4 (iii), (iv) that D' is a subalgebra of A.
Finally, by 1.4,

D' =« B' x C' and D' & B x C;
and the proof is complete.

Theorem 1.8. Let B and C be subalgebras of an algebra

——

A=< A 4, 0, Oyy0ee, Oz,...>.

(1) If B x C exists, then B A C = {0}.
(ii) B xCs= C if, and only if, B = {0}.
(1ii) B xC = {0} if, and only if, B= C = {0}.

Proof: Suppose B x C exists anda e BxC. By 1.1 (ii')
and 1.2 (i),

a8 +0=0+ a.
Hence, by 1.8 and 1.4 (ii),
as= 0.
Therefore
BncC= {0},
and (i) holds. Suppose now that
(1) BxC=C.
Then, by 1.7 (i), C includes B, and hence, by (i),

L4 .

(2) B = {0}.
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Conversely, (2) implies (1) by 1.1, 1.2 (i), and 1.4, and the
proof of (ii) is thus complete. (iii) follows from (ii) and
1.7 (i).

Theorem 1.9. Let B, C, and D be subalgebras of an algebra

A< 4 05 0gpeeey Oppunese

If either BxCand (BxC) xD exist, or else CxD and B x (C xD)
exist, then all the direct products involved exist, and

(BxC)xD=B8Bx (CxD).

Proof: If B x C and (B x C) x D exist, then C x D exists
by 1.7 (i), (iii), and the proof is easily completed with the
aid of 1.1 (i), 1.4, 1.6 (ii), and 1.7 (i). The proof under the
alternative assumption is analogous

In view of this theorem, we shall usually omit parentheses
in expressions like
(BxC) xDand B x (C x D).
Definition 1.10. Let

_A. = <A, + Oo, Oz...., 0&....>

be an algebra. The (inner) direct product of a finite sequence
of subalgebras By, B,,..., Bx""' % <v, is defined recusiveiy
as follows:

I:l B“ = {0}

*1111 Bx = g<vB* x Bv for every y < @ (assuming that tes B, and
ey ka Bv exist).

The problem of extending the notion of a direct product to
infinite systems of subalgebras is somewhat involved, and will
not be discussed here.’

Theorem 1.11. Let B, ard B, be subalgebras of an algebra
s eV e—

7. For algebras with one operation the problem is discussed in Jénsson-
Tarski [2].
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A=< A 4, 0y, Ogyeue, 05"">'

We then have:
(i)

x<1 Bx = Boj
(ii) {:l By = Bo x B, in case B, x B, exists.

Proof: by 1.8 (ii) and 1.10.

The following theorems 1.12 - 1.14 are inductive generali-
zations of various parts of 1.4, 1.7, 1.8, and 1.9.

Theorem 1.12. Let B, By, B,,eec, B ,o.. withx < v < 0 be
subalgebras of an algebra

A=< A+, 0gy, Ogyee0, Ogrece>e
We then have
B = B,
X<y
if, and onlv if, the following conditions are satisfied:
(i) B consists of those and - only those elements beA which can
be represented in the form

b= ;g; b, with b eB, for x < v;
(ii) if b, treB, for x < v, and if ;Z; b, = Z;v bg» then

bn = b; for % < vy;

(iii) if b, bieB, for x < v, then

E: (h‘+ bé)- E: b

% + b!:
K<y X<y K<y

%

(iv) _%f 0 is a p-arvy operation, and }gs‘Bx for x <vand ¢ < u,
en

o,,c; By, o0 “Z“ By, a0eees ‘Z' By 1peee) @ g'o;«h,,,. By areee By, poenele

Proof: by induction, using 1.2, 1.4 and 1.10.

Theorem 1.18. Let B,, Byyeee, Byyeo. with x< v < o e
subalgebras of an algebra

A=< A ¢, 0gy 045000, OE,...>
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guch th i .
Ssuch that ‘l::l BK exists

We then have:
(i) {_] Bx is a subalgebra of A, and in fact the smallest sub-

<y
algebra of A vhich includes all the subalgebras B, with x < v.
(ii) 1If Eé is a subalgebra of B, for » < v, then I I B} exists
. -_ — K<V -_—

a [ m
(i1i) If %o < %y <eee< Xy <eea< v for A< m, then [-] By
<n A
exists and I_] I_]Bx.
——— A<n = x<y
(iv) If m < v, then £:1 By = I:l By x r1

K<y-n Bn+x'
Proof: by induction, using 1.1, 1.2, 1.8, 1.7, 1.9, 1.10.

c By
x<y ¥

Theorem 1.14. Let Po, By,eee, By,eeo with % < v < @ be
subalgebras of an algebra

A= <A + 0o, Ogpeee, Ogyues

(1) For every A < v we have By = By if, and only if,

X<y

By = {0} for x < v and x ¥A.

(ii) We have = {0} if, and only if,
K<y

« = 10} for % < v.

Proof: by 1.8 (ii), (iii) and 1.10.
We shall now give a theorem of a somewhat less obvious na-
ture, which is of fundamental significance for our further dis-

cussion and leads directly to several important consequences.
To state tris theorem (1.17) more conveniently, we introduce the

notion of a subtractive subalgebra.
Definition 1.16. A subalgebra B of an algebra

A = <A! +1 00, 0;,.-., OE'..>

is called a subtractive subalgebra if it satisfies the following
condition: if aeA and beB, and if either a + be B or b + a ¢ B,

then aeB.
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Corollary 1.16. If B and C are subalgebras of an algebra
E————4 — —

A s < A, +, o°, 0,,..., 0£,oto>,

and if A = B » C, then B and C are subtractive lubalgebfas of A.
Proof: bv 1.6 (iii), 1.7 (ii), and 1.16.

Theorem 1.17 (Modular law)? If B and C are subalgebras of
an algebra

A- < A, +, 00, 0,,..., 0&,-..)

such ‘that B x C exists, and if D is a subtractive subalgebra of
A which includes B, then

(BxC)NDs=B x(CND.

Proof: By 1.1, 1.8, and 1.7 (i), CND and (B x C) D are
subalgebras of A. Hence, by 1.7 (i), (iii), B x (C N D) exists
and

(1) Bx(CND)S (B xC)ND.
Suppose

(2) ae (BxC)ND.
Then, by 1.4 (i),

(8) a=b + c where beB and ceC.

Therefore, by our hypothesis and (2),

beD and b + ¢ e D.
Consequently, by (8) and 1.16,

.

ce CND.
From this and (8) we conclude by 1.4 (i) that
(4) aeBx (CND).
Thus, for any given element aeA, (2) implies (4). Hence, the

inclusion symbol in (1) can be replaced by the equality symbol,
and the proof is complete. )

8. The modular law in its application to various special algebras can be
found in the literature. Compare Birkhoff [1] pp. 84 f£f., where biblograph-
ical references to earlier publicationsd (by R. Dedekind and others) can be
found; see also Baer [1], P. 455.
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Corollary 1.18. If B and C are subalgebras of an algebra

A = < A, +, 0o, 05,..-, OE"'°>

such that B-x C exists, and if D is a subtractive subalgebra of
A with

BSDEB xC,

ihen
D=Bx (CND).

Proof: by 1.17.

A subalgebra B is called a factor of a subalgebra D if, for
some subalgebra C, B x C = D, Using this terminolody we conclude
from 1.18 (with the help of 1.18) that the factor relation be-
tween factors of a given algebra coincides with the relation of
set-theoretical inclusion.

Theorem 1.19. If B, C, and D are subalgebras of an algebra

A=< A, +, 0o, Ogyece, OE"">

such that B x C and (B x C) x D exist, then
(Bx C)N(B x D) = B.
Proof: By 1.7 (i), (iii), B x D exists and
(1) D& Bx D& (B x C) x D.

By 1.7 (ii), 1.9, and 1.18, B x D is a subtractive subalgebra of
(B x C) xD, and therefore, by (1), 1.7 (ii), and 1.18,

(2) BxD=[(BxC)NI(BxD)]x D,
Bv 1.7 (1),
(8) BS (Bx C)N(BxD)& B xD.

By (2) and 1.16, (B x C) N (B x D) is a subtractive subalgebra
of B x D. Consequently, by (3) and 1.18,

(4) (Bx C)N(BxD)=Bx [(BxC)N(BxDNDI.
By (2) and 1.8 (i),
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(6) (BEx C)N(BxD)ND= {0}.

The conclusion follows from (4) and (6) by 1.7 (ii) and 1.8 (ii).
We conclude this section with two elementary theorems which

establish certain connections between the notion of a direct

product and those of homomorphism and isomorphism.

Zheorem 1.20. Let B, By, Bi,ees, Byyeee with ¥ < v < @ be
subalgebras of an algebra

A" <A * 0o, Osyuee, Cgyeees,

and let
B = l:l By.

Then there exist functions f,, f,,cee, fx,se.. with % <v such that

(i) b2 f,(b) for beB,
K<y

(ii) f, is & B, B, - homomorphism and fXx(B) = B, for x < v.

Proof: Given an element b in B, there exists by 1.18 (i),
(ii) a uniquely determined finite sequence bo, bi,eee, by,cee
with b,eB, for x <v such that

fe(b) = by for x < v,

Putting

we see that condition (i) of the conclusion is satisfied; and,
by 1.1 (ii'), 1.2, and 1.12, the same applies to (ii).

Theorem 1.21. If B, C, and D are subalgebras of an algebra

A =< A! #1 Oo, O,,..., OE,--0>,
and if C x D exists, then we have B =C x D if, and only if,
there exist subalgebras C' and D' of A such that B = C' x D',
C'= C, and D'~ D.

Proof: bv 1.4.

Theorem 1.21 can obviously be extended to direct products
of arbitrary finite sequences of subalgebras.

In our further discussion we shall frequently apply various
definitions and theorems of this section without referring to
them explicitly.



