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1. Introduction

One of the aims of the Berkeley Symposium is to encourage research workers
to present a summary of results newly obtained in their fields during the
previous five years. In accordance with this intention, the earlier part of the
present paper will describe some interesting developments in problems of first
emptiness since 1965. For simplicity, only first passage problems (to the zero
state) for certain discrete time random walks on the integers 0, 1, 2, * , will be
discussed. As is already known, first emptiness probabilities are of considerable
importance in queueing, storage, and traffic problems. Their distributions may
be interpreted

(a) in queueing theory, as probability distributions of the length of a busy
period during which all waiting customers have been served, so that the queue
is empty;

(b) in storage theory, as probability distributions of the times to first empti-
ness of a reservoir, all the stored water having been released;

(c) in traffic theory, as probability distributions of periods to a first gap at a
"give way" intersection on a minor road, all vehicles crossing the road having
passed, so that the intersection becomes empty and through traffic on the road
can proceed.
A graphical representation of a random walk in discrete time of the type

which arises in queueing, storage, and traffic processes is provided in Figure 1.
Here Z0 = u is the initial state of the random walk at time t = 0; this represents
the number of customers initially waiting for service in a queue, the units of
water initially contained in a reservoir, or the number of vehicles initially waiting
to cross a minor road, thus blocking the traffic along it.
The sequence of discrete nonnegative random variables {X,},o'0 constitutes the

inputs into the system during the time intervals (t, t + 1), t = 0, 1, . At the
end of each time interval, there is a unit output if the random walk lies in any
one of the states 1, 2, 3, . *, or a zero output if it is in state zero. Inputs
represent new arrivals at a queue, new water inflows into a reservoir, or new
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FIGURE 1

Random walk with first emptiness at T = T(u).

vehicles preparing to cross a minor road in traffic; outputs denote a serviced
customer in queueing, a released unit of water from a reservoir, or a vehicle
which has crossed the minor road in traffic. For such processes, the random
walk {Z,}t - may be characterized by the relation

(1.1) Zt+1 = {Zt + X, - 1}+ t = 0O l, 2, *,
where the positive index indicates the greater of Z, + X, - 1 and 0.
The time to first emptiness of the process starting from ZO = u will be denoted

by T = T(u); it is clear that for t = 0O l,1 , T,

(1.2) Zt+ = Z, + Xt-l,
with Zt becoming zero for the first time when t = T. Note that in Figure 1 we
have written Tj, j = 1. , u, for the first passage time of the random walk to
state u - j starting from state u + 1 - j, so that

U

(1.3) T(u) = T1 + T2 + + Tu =Z Tj
j= ,

rhe first part of this paper will deal mainly with recent research on the properties
of T(u) when the inputs {X,} form a Markov chain with a finite or denumerably
infinite state space. We shall see that the newly derived results are similar to
those previously known for independently and identically distributed (i.i.d.)
inputs.
We shall also denote by Wj, j = 1, , u, the stochastic integral under the

first passage path leading from state u + - j to state u - j and lying above
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the line u-j (see Figure 1). The path integral WH corresponds to the first
passage time Tj. Clearly, the stochastic integral W(u) lying under the path to
first emptiness starting from state u is given by

(1.4) W(u) = {W1 + (u - 1)T1} + {W2 + (u - 2)T2} + + {W.}
U

- E {Wi + (U-j)Tj}
j=1

In the second part of the paper, we formulate some problems for stochastic path
integrals of this type when the inputs {X,} are either i.i.d. or Markovian, and
derive initial results for their probability distributions. Much remains to be
done in this area; it is hoped that research workers will be encouraged to attack
some of the many unsolved problems in the field.

2. Known results on first emptiness for i.i.d. inputs {X,}
From Figure 1, it is intuitively obvious that if the inputs {X,} are i.i.d., the

random variables Tp, j = 1, , u, will also be i.i.d: It follows that the distri-
bution of T(u) in (1.3) is the uth convolution of the distribution of Ti. This may
be demonstrated more formally as follows. Let

00(2.1) g(O; U) = E g(T; u)OT? 0 . 0 < 1,
T=u

be the probability generating function (p.g.f.) for the first emptiness time T(u)
of the random walk (1.1) with initial state ZO = u > 1, subject to i.i.d. inputs
{X,}. It is readily shown that

(2.2) g(0; U) = {g(0; l)}U.
Assume z to be the line of first descent of the random walk from state u to

state 1; then clearly, the first emptiness probability g(T; u) may be decomposed
as

T-1

(2.3) g(T; u) = g(z; u - 1)g(T - z: 1).
r=u-1

Forming the p.g.f. of this distribution, we obtain
.o T-1

(2.4) g(0; U) = E 0T 1 g(z; u - l)g(T - z; 1)
T=u r=u-1

= g(z: u - 1)0 g(T - z;
r=u-1 T=r+ 1

= g(0: u - 1)g(0; 1).
Continuing the reduction of g(0: u - 1), we readily find result (2.2); this was
originally derived in a somewhat different form by Kendall [13] in 1957.
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Following (2.2), a second more interesting result, reminiscent of that holding
for probabilities of first extinction in branching processes may be derived for the
p.g.f. g(0; 1). Namely, if p(0) = = piO denotes the p.g.f. of any one of the
random variables X,, then g(O; 1) satisfies the functional equation

(2.5) g(6; 1) = Op(g(6; 1))
subject to the condition g(O; 1) = 0. A proof of the equivalent result for a par-
ticular continuous time process in queueing may be found in the basic 1955
paper of Takdcs [24]; its derivation for the more general case was sketched by
Kendall [13] in 1957. The argument in discrete time may be given very simply
as follows. Let the input XO during the time interval (0, 1) in a random walk
with initial state ZO = 1 be i = 0, 1, 2, - - . If the input is zero, first emptiness
occurs at T = 1, but if i > 1, the first emptiness process will continue from time
t = 1, starting now from Z1 = i. Thus, the p.g.f. g(O; 1) will be given by the
equation

(2.6) g(0; 1) = Po0 + 0 E pig(o; i);

but from (2.2), we see that this may be rewritten as

(2.7) g(O; 1) = Po0 + 0 E pi{g(6; 1)}W
= Op(g(O; 1))

leading to the result (2.5), where g(O; 1) = 0.
Precisely as in branching process theory, it is easily shown that

g(l-; 1) = C = 1 if E(XJ) = p'(l) < 1,
(2.8) g(l-; 1) = C < 1 if E(XJ) = p'(l) > 1.

Takics [24] first obtained the explicit form of g(T; 1) for Poisson inputs of
fixed size, and Kendall [13] later derived the general formula (but in continuous
time, from an integral equation) of type

(2.9) g(T; u) =- (T) = 1, 2, ,

where p(T) - Pr {X0 + X1 + * + XT.- 1 = T - u} for arbitrary i.i.d. input
distributions. Perhaps the simplest analytic method of obtaining this result is
from the functional equation (2.5), using Lagrange's method of reversion of
series. It has also been derived in an elementary manner by Lloyd [15] in 1963,
using difference equation methods. But (2.9) is perhaps best viewed com-
binatorially as recording the proportion ulT of permissible paths leading to
emptiness from among all those satisfying the condition XO + X1 + ... +

XTl1 = T -U.
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An analysis of the restrictions on these paths is to be found in Gani [7].
Considering the case where first emptiness occurs at time T starting from Z0 = 1
for simplicity, and rewriting the inputs as YO = XT-1 and Y1 = XT-2,'
YT- 1 = X0, we note that for emptiness to occur at T, it is necessary that

(2.10)

YO = °, 1<l YT-1 -T- ,

Y0+ Y1 < 1, or, in slightly 2 -YT-1 + YT-2 < T -1,

YO + Y1 + Y2 . 2, different terms, 3 < YT-1 + YT-2 + YT-3 = T

YO+ Y1 + + YT-2 _ T - 2, YT-1 + YT-2 + + Y1 =T -1,

Yo+ Y1 + + YT-1 T-1, YO = 0.

In 1963, Mott [21] showed by considering all cyclic permutations of the inputs
{Yj} that the number of paths satisfying these conditions is precisely 1/T of all
those for which EJT- 1 Yj = T -1, the probability of the latter being p(T)1.
Thus,

T-1

j=0 j=o

TPr{ Yj = T -1

this can easily be generalized in a similar way to the case where Z0 = u, leading
to (2.9). We now outline the extension of these methods to the case of Markovian
inputs {X,} since 1965.

3. Recent results on first emptiness for Markovian inputs {XJ
It was Lloyd [16] in 1963 who first considered, in the context of storage

theory, a random walk of the type (1.1) in which the inputs {X,}t'=o formed a
Markov chain with a finite number of states. In a subsequent series of papers,
Lloyd [17], [18], and Lloyd and Odoom [19] investigated the stationary pro-
perties of this random walk. The practical relevance of such Markovian inputs
in queueing, storage, and traffic theory is obvious; a large number of arrivals
for service at a queue during the time interval (t - 1, t) may well discourage
arrivals in the subsequent interval (t, t + 1). In storage theory, there is much
empirical evidence to show that annual water inflows into reservoirs are serially
correlated; in traffic, advance warnings of congestion along a particular road
often persuade motorists to find alternative routes to their destinations.
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For convenience we shall assume, unless it is stated otherwise, that the input
X_-1 in the interval (- 1, 0) before the process {Z,} begins is zero. For inputs
{X,}'o forming an irreducible Markov chain with stationary transition
probabilities

(3.1) Pij = Pr {X,+, = j|X, = i}, i,j = 0, 1, , r,

it is known that the Tjj = 1, * , u, in Figure 1 are once again i.i.d. (see
Chung [4]). It follows as before that the distribution of T(u) in (1.3) will be the
uth convolution of the distribution of T1. As in the case of i.i.d. inputs, this
may be proved formally as follows. Let

(3.2) g(0; u,0) = E g(T; U,0)0T, 0 _ 0 < 1,
T=u

be the p.g.f. of the first emptiness probabilities g(T; u, 0) = g(T; u, X 1 = 0)
of T(u), subject to Markovian inputs {X,}. Again assuming r to be the time of
first descent to state 1, we may write

T-1

(3.3) g(T; u, 0) = E g(z; u - 1, 0)g(T - r; 1, 0).
z=u-1

Forming the p.g.f. with respect to T we find, much as in (2.2) through (2.4),
that

X T-1

(3.4) g(O; U, 0) = E ST E g(r; u - 1, 0)g(T - T; 1, 0)
T=u T=u-1

= g(0; u - 1, 0)g(0; 1, 0) = {g(0; 1, 0)}".

For Markovian inputs, Ali Khan and Gani [1] showed in 1968 that g(0; 1, 0)
satisfies a functional equation similar to (2.5), of the form

(3.5) g(0; 1, 0) = 0)(g(O; 1, 0))

subject to g'(0; 1, 0) = poo. Here A(0) is the simple maximum eigenvalue of the
positive matrix

Poo Po00 V020 ... POr0'

(3.6) {PijO}ij=o = P1o Pu10 P1202 ** Plr0 , 0 < 0 . 1,

[PrO Pr10 Pr202 .. PrroJ
such that A(1) = 1 and A(0) = poo, where all pij may be taken positive for
simplicity. This eigenvalue, though positive and strictly monotonic increasing
for 0 > 0, is not in general a p.g.f.; it is shown in Gani [8] that when expanded in
powers of 0, the generating function

- AW(Oi},
(3.7) A(0) = 1 ()o0

i=o
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may have negative coefficients 2(i)(0) for i . 2. When the {X,} are i.i.d. so that
pij = pj, equation (3.5) reduces to the better known functional relation (2.5).
We now proceed to prove (3.5).

Following precisely the same approach as that leading to (2.6), we readily
find for the random walk with Markovian inputs starting from ZO = 1 that

(3.8) g(0 1.0i) = pOo0 ± 0 E p0ig(0: i. i),

where

(3.9) g(f: i, i) = g(0: Z1 =. i X0 = i)

denotes the p.g.f. of first emptiness times starting from Z1 = i. with prior input
X0 = i instead of the usual zero. A decomposition similar to (3.4) yields

(3.10) g(0: i) = g(0: 1. i){g(0; 1, 0)}'1 i _1
substituting this in (3.8). we are led directly to the relation

(3.11) g(O; 1.0) = 0 E poig(O; 1, i){g(0; 1, 0)}i 1.
i=o

In exactly the same way, we may show that

(3.12) g(0: 1. k) = 0 E pkig(O: 1, i){g(O: 1. 0)}i-. k = 1, . r.
i=o

Hence, multiplying both (3.11) and (3.12) by g(O; 1, 0) and setting out the
results in matrix form, we obtain

g(O);I0) OPoo p01g POr'gr g(O; 1, 0)

( g(0 1 1) P p11g ... p gr g(O: 1.I)

( g(O:1. r) 1=0 KP;g ...Prrg_jg(O:1.r)
where g = g(O; 1, 0) is subject to the condition that g'(0; 1. 0) = poo.

For (3.13) to hold, it is necessary that

(3.14) gI -OpG| = 0,

where I is the unit matrix, p = {Pij}ir j=0. and G = diag {1. g, . gr} Hence,
resolving pG spectrally in terms of its eigenvalues, we obtain (3.5) as required.
Once again, as in (2.8),

g(l- 1. 0) = 4 = 1 if A'(1) . 1.

(3.15) g( -: 1. 0) = 4 < l if A'(1) > l.

It is proved in Gani [8]. using Lagrange's method of reversion of series, that
g(T; u, 0) can be expressed in the form
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(3.16) g(T; u, 0) = " A(T), u = 1, 2,---T,T Tu

where i(T) U is the coefficient of 0T-U in {2(0)}T. In a recent paper, Lehoczky [14]
has indicated in the case of i.i.d. inputs, how this result may be given a com-
binatorial interpretation in terms of paths.

Result (3.5) was generalized in the summer of 1969 by Brockwell and Gani
[3] to the case where the inputs {X,} form a Markov chain with a denumerable
infinity of states. It is assumed for convenience that each n x n top left trun-
cation of the transition probability matrix is irreducible for n = 1, 2, 3, * * *
The method used is essentially that of n truncation of the relevant infinite vectors
and matrices, followed by a limiting argument as n -- cc. In this case, Af(0) in
(3.5) must be interpreted as the convergence norm of the infinite matrix

POO P019J p02g ...

(3.17) {Pijgj}zIj=0 _P1P1P19 P12 _,-

as defined by Vere-Jones [25], [26] where g = g(O; 1, 0) remains the p.g.f. of
first emptiness probabilities starting from Z0 = 1 with X 1 = 0. An algorithm
is obtained for the coefficients of A(0), and result (3.16) is shown to hold equally
well for the case of a denumerable state space.

It may be of some interest to point out, following the analogy with extinction
probabilities of the branching process mentioned in Section 2, that the present
model may also be interpreted as a special type of population extinction process
in discrete time. The population is now such that its progeny in consecutive
time intervals is Markovian with one individual dying at the end of each interval.
Whereas in a branching process each individual offspring produces its progeny
independently, the present process differs in that the total progeny in one
generation determines the offspring in the next.

4. New problems of stochastic integrals under first emptiness paths

The probabilistic properties of the stochastic integral under a first emptiness
path have recently attracted some interest; this is the random area W(u) of (1.4)
enclosed under a path of the kind depicted in Figure 1. In queueing, such an
area will represent the total amount of customer time (in man hours, say) lost
by those waiting for service during a busy period; in storage, W(u) is a measure
of the total storage time capacity of a reservoir during a wet period; while for
traffic it denotes the total vehicle time elapsed before an intersection is freed.
Although several results are known for stochastic path integrals associated with
continuous time processes, particularly of the birth and death type (see Bartlett
[2], Daley [5], Daley and Jacobs [6], Mc Neil [20], Puri [22], [23]), few yet seem
to have been obtained in the discrete time case. One of these, a result of Good's
l 1] in branching processes, which can also be interpreted as a stochastic path
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integral, has been pointed out to me by P. J. Brockwell (see also Harris [12],
p. 32). In this section, we show that problems of the stochastic integral W(u)
effectively reduce to the study of a weighted sum of a set of constrained random
variables.

Let us first examine the structure of W(u) in (1.4). We have seen that for inputs
{XJ both i.i.d. and Markovian, the passage times T,j = 1, 2, * * *, u, are i.i.d.;
the associated integrals Wj will also clearly be i.i.d., though each pair of random
variables (Tj, Wj) will not be mutually independent. Thus, W(u) can be con-
sidered as the sum of u independent random variables { Wj + (u - j)Tj}; if we
could find the joint distribution of (7j, Wj), the distribution of W(u) would be
known. In what follows, we write W(1) for Wp, T for Tp, and denote by W(1 | t)
the random variable W( 1) conditioned on the particular value T = t of the first
emptiness time.

Let us assume for simplicity that during any unit time interval, inputs arrive
in single units with independent uniformly distributed arrival times; then an
input Xi during (i, i + 1) will contribute the expected area 'X,. This may alter-
natively be assumed to be an approximation to the exact area in question. Thus
for the time interval (i, i + 1), the total area under the path will be Zi + 'Xi.
It follows from (1.2), for a random walk starting from Z0 = 1 and first emptying
at T = t, that

Zo= 1,

Z1 = zo + Xo- 1 = XO,

(4.1) Z2 = Z1 + X1-1 =X +X1-1,

t- 2

Zti = ZO + XO + *- +X1-2-t1 = Xi -(t -2).
i=o

Hence, we may write for W(1 It) the sum

t- 1

(4.2) W(l t) = 1 Zi + Xi
i=o

= (t -21)XO + (t- 3X1 + *-+ 32Xl_2 -2t(t -3)
t- 1

= (i + 12)Yi - 12t(t-3)
i=o

where Y,-i-1 = Xi, i = 1, , t - 1, with Y0 = X,1 = 0; this sum will be
subject to the usual constraints (2.10). It is clear that for a fixed value T = t of
the first emptiness time, W(1 |t) is a weighted sum of constrained i.i.d. or
Markovian random variables Yi.
We can make use of (4.2) to obtain simple bounds for the moments of W(1) or

the joint moments of (T, W(1)), since, in summing the second set of inequalities
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in (2.10), we see that
t- 1

(4.3) 2tt1) _ i i _ (t _1)2.
i=o

Since Ei- = -(t- 1). we finally obtain for W(1 I t) of (4.2) the bounds

(4.4) -(3t - l) _ W(1 1t) < 1 (t2 + 1),

where these represent the minimum and maximum areas contained by the
stochastic paths for which Y,-1 = Y2 = = Y1 = 1, and Y,,1= t- 1.
and Y2= = Y1 = 0, respectively. We see from (4.4) that

(4.5) E 2J (3T- l)i) _ E(W(1)i) _ E2J (T2 + )J).

Thus, a sufficient condition for E(W(1)) to be finite is that T should have a finite
second moment about the origin: if T has a finite fourth moment, W(1) will
have a finite variance. Similarly, the joint moment of (T, W(1)) lies between the
bounds

(4.6) E('T(3T - 1)) . E(TW(1)) < E('T(T2 + 1)).

Hence, for i.i.d. inputs {Xi} with the distribution {pi}tt-o. (4.5) reduces to

(4.7) E 2' (3t - 1)jp,') 1 _ E(W(1)i) . (t2 + 1)jp4,.

where p,1i = Pr {X0 + X, + * + X, = t - 1}. For example. writing
E(X,) = p'(l) = m < 1 and Var (X,) = s2 < cc in this case, for E(W(1)), we
obtain the bounds

(2 ± rn) 1 $ 2 2-m
(4.8) 2

<m-E( W( 1))-
<

l { +2- }
(.) 2(1 - m) -(() 2(1 - m) }(i M)2 (1 M)

Similarly, for inputs {Xi} forming a Markov chain with finite state space where
X_ 1 = 0, we have

10 1 "C 1
(4.9) -J (3t - l)jA(,') 1 < E(W(1)i)-< J (t2 + 1j,)1

where i," 1 is the coefficient of Ot 1 in {2(O)}' and A(0) is defined as the maximum
eigenvalue of (3.6). While bounds such as (4.7) or (4.9) are rather wide, they
may prove adequate for first approximations in practical queueing, storage,
and traffic problems. We now describe an exact method for deriving the mean
of W(u) for i.i.d. and Markovian inputs due to Lehoczky [14].
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5. Exact results for the mean E(W (1))

Let us first consider the case of i.i.d. inputs {Xi}:. we follow Lehoczky's tech-
nique [14] of conditioning the process on the input XO = i during the initial
time interval (0. 1), and so write the expectation of the path integral 11'(1) as

(5.1) E(W(1)) = 1 + Pi - + E(W(i))}.
i=o 2

Now, from (1.4),

(5.2) E(W(i)) = Et {Wk + (i - k)Tk}) = iE(W(1)) + 'i(i - 1)E(T).

Hence substituting this in (5.1), we finally obtain

(5.3) E(W(1)) = 1 + m + E ipiE(W(1)) + , 4i(i - 1)piE(T).
i=o o

or

(5.4) E(W(1)) = 1 + ! ( 2
1-rn 2(1-rn)2'

where E(X,) = m < 1, Var (X,) = s2 and E(T) = 1/(1 - m) as in Section 4.
Thus for W(u), we find the expectation

(5.5) E(W(u)) = uE(W(1)) + u(u - 1)E(T) = u + }

The technique may be applied equally well to Markovian inputs {Xi} with
finite or denumerable state space. Assume as usual that the input X_ in the
time interval (- 1, 0) is zero, and for convenience allow the number of states in
the chain to be denumerably infinite. Then, once again conditioning on the
input XO = i during the interval (0. 1), we obtain

(5.6) E(W0(1)) = 1 + E poif{i + E(Wi(i))} = 1 + m + , poiE(Wi(i))
i=o i=o

where mo = l'S. 0 ipoi < 1, and the subscripts in WO(1) and Wi(i) indicate that
the inputs prior to the start of the two processes are 0 and i, respectively. Now
for any prior input j, considering the first descent to state i - 1 of a process
starting from state i, we obtain

(5.7) E(^J(i)) = E(WV(1)) + (i - 1)E(Tj) + E(Wo(i - 1))
= E(1V(1)) + (i - l)E(Tj) + (i - 1)E(Wo(I))

2(i - 1)(i - 2)E(T),

where Tj now denotes the time to first emptiness starting from state 1 with
prior inputj, and we decompose WO(i - 1) according to (1.4).
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Thus, we may rewrite (5.6) as

(5.8) E(Wo(1))

= 1 + Ymo+ pPoi{E(Wi(l)) + (i - 1)E(Wo(l))
i=O

+ (i - l)E(Tj) + j(i- 1)(i - 2)E(T)}

= 1 + 2mO + (MO- 1)E(WO (1)) + E(T) Z 2(i - 1) (i - 2)poi
i-o

+ Z poiE(Wi(1)) + E (i 1)poiE(Ti).
i=0 i=o

More generally, for Wk(1) starting from state 1 with prior input k and using
precisely the same arguments, we have that

(5.9) E(Wk(I)) = 1 + 2mk + (mk - 1)E(WO(1)) + E(T) Z 2(i - 1)(i - 2)Pki
i=0

+ Z PkiE(Wi(I)) + Y (i - 1)pkiE(Ti'),
i=o i=0

where ik = ELT= 0 iPki < 1. Thus, expressing these results in matrix form, we
obtain

(5.10) E(W(1)) = 1 + 'm + (m - 1)E(Wo(I)) + pE(W(1)) + R,

where W(1), 1, and m are column vectors with kth elements Wk(l), 1, and Mik,
respectively, and R is the column vector with kth elements

OD 00~~~~~~~~~O

(5.11) E(T) Z 2(i - 1)(i - 2)Pki + Z (i - 1)PkiE(Ti).
i=0 i=o

Note that E(T) and E(Ti') can be found from the p.g.f. g(6; 1, 0) and g(6; 1, i)
of Section 3, so that R is assumed to be known.

If the Markov chain considered is stationary, E(WO(1)) = E(W(1)) can be
obtained without difficulty. Rewriting (5.10) as

(5.12) {I - p}E(W(1)) = 1 + 'm + (m - 1)E(Wo(I)) + R

and premultiplying by the row vector n' of stationary probabilities {7rk}, we
obtain

(5.13) n'{1 + 4m} + nc'(m- 1)E(WO(I)) + n'R = 0.

Hence, 00 0

1 + I1rimi +
(5.14) E(WO(1)) i=0 i=0

1 - Irimi
i=0
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where E, 0 nimi < 1. For chains with a finite number of states, E(W(1)) can be
readily formed by inverting the matrix equation (5.12) (see Lehoczky [14]),
while for chains with a denumerable state space, truncation methods will provide
approximations to Wk(l) for any finite k. We now proceed to discuss joint
generating functions for (T, W(1)).

6. Joint probability generating functions for (T, W(1))

If results more precise than the inequalities of (4.5) or the mean values of
(5.3) and (5.14) are required for the stochastic integral W(1), it becomes
necessary to resort to more complex methods of analysis. Equation (4.2) for
W(1 It) suggests that an extension of the truncated polynomial technique used
in [7] may provide the joint p.g.f. of (T, W(1)); for simplicity, we shall write W
for W(1) from now on.
For the first emptiness path starting from ZO = 1 and terminating at T, con-

sider the contributions made to T = ET-7 Yi + 1 and
T-1

(6.1) WQ 1 T) =E(i + ')Yi - T(T -3)
i=o

by the input YO = 0; for inputs {Yi} forming an i.i.d. sequence with distribution
{pj}, starting with the input YO, we write the polynomial

(6.2) G0(0 (P) = Po, 0 _ 0, U < 1,

where the zero indices of 0 and qp record the contributions of YO = 0 to T and
W(1 | T), respectively. Let us now define for the inputs Y1 + YO the truncated
polynomial

(6.3) G1(0, p) = (p0p93/2)G0(0, A')> = (Po + P10(P312)Po,
where p(0gp312) is the p.g.f. of Y1 with argument 0'3/2 to record the contribution
of Y1 to T and 3 Y1 to W(1 | T). Here the truncation < > cuts off all terms in 0 of
degree higher than the first, since Y1 + YO _ 1.
For the remaining sums of inputs Yi + * + YO, i = 2, , T - 1, we de-

fine similar truncated polynomials

(6.4) Go(0p ) = <P(OqPi+112)G 1(0, q,)>

where the argument 0(p'1/2 records the contributions of Yi to T and (i + 2)Yi
to W( 1| T), respectively. The truncation < > now cuts off all terms in 0 of degree
higher than i, since Yi + Yi- 1 + * * * + Yo _ i.

It is clear that the joint probability of (T, W) will be given by the coefficient
of OT-1W+T(T-3/2) in GT-1(0 p); thus, we may formally write the joint p.g.f.
of (T, W) as

(6.5) F(O, () = E(OT ) = E j G T dz} P T
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where i = 1 and z is now a complex variable. Note that the integral must
be taken on a suitable contour around the origin, and that (-T(T-3)/2 provides
the appropriate correction to the contributions of the {Y,} to W(1 | T).
When the inputs {Yi} form a Markov chain with transition matrix {pij},

assumed to be infinite, we may write for the input YO the vector

P00

(6.6) Go( (p) = [Pio1 O 0, ( ,

where the zero indices of 0 and (p record the contributions of YO = 0 to T and
W(1 | T), respectively. We now define for the sums of inputs Yi + + YO the
ith vector of truncated polynomials

POO P010(PiL+ 1/2 P02((Pi + 1/2)2 ...

(6.7) G1(O, 9) =< P10 P1 i+ 1/2 Al2(A0i+ 1/2)2 ... Gi- 1(0, (p)>.

where for i = 1,*, T - 2, the argument 09i+ 1/2 records the contributions of
Yi to T and (i + 1)Yi to W(1 IT), respectively. The truncation <> cuts off all
terms in 0 of degree higher than i, since Yi + Yi- 1 + Y+.o i; it follows
in practice that one can neglect all elements of the matrix {Pkj(0i + 1/2 j} beyond
those of the (i + 1)th column and (i + 2)th row. Starting with GO(0. (P), this
means we need only consider its first two elements [P].

Finally, since we assume once again that the input prior to the start of the
process is X_ 1 = YT = 0, the truncated polynomial

(6.8) GTl- 1 (0 (P ) = <[Poo,polOpT-1,1*.. ,POT(-91( ]GT-1/2 )2T-(O]G ,(9)>
will provide in the coefficient of OT- 19W+T(T-3)/2 the joint probability of
(T, W). Hence, as before, we may formally write the joint p.g.f. of (T, W) as

(6.9) F(O, 9) = E(OT9W) = E T- 1( (P)dz9OT)-T(T-3)/2
T=1 (22t J ZT z.09TT3/where z is a complex variable and the integral is taken on a suitable contour

around the origin. For a finite (r + 1) x (r + 1 ) matrix {pij}i j=o and a finite
state space, the same methods apply with appropriate modifications from
G, 1 (0, () onwards, due to the finiteness of the transition probability matrix.
As simple illustrations of these techniques, we consider the following two

random walks.
EXAMPLE 6.1. Let the {Xi} be i.i.d. with p(O) = pO + q, forO < p < 1 and

p + q = 1. In this case W = 2(3T - 1) and the joint p.g.f. of(T, W) is
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(6.10) F(0, ) = p 0 0, .< 1.

From this, we obtain. for example, that E(RW) = (3/q - 1), and Var (W) =
49(l/q- 1).

Since, from (1.4), we know that W(u) = Y"=> {Wj + (j - 1)Tj}, where the
Vj = Wj +±(j-)Tj are mutually independent. we first note that the joint
p.g.f. of (Tj, Vj) is

(6.11) Fj(0, () = F(0i',, p) = -0_po9p+1/2'
Hence, it follows that the joint p.g.f. of IW(u) and T(u) = T1 + * + T. is given
by

(6.12) 11 Fj(O. 9) = (1 - pO312) {q09l_ +1)}..U+1/2

from which it is readily found that E(W(u)) = (u/2q)(u + 2 -q) and
Var (W(u)) = (u/12q)(4u2 + 12u + 11)(1/q - 1).
EXAMPLE 6.2. Let {Xi} be a two state Markov chain with transition prob-

ability matrix [~Po Pot] for pij > 0, i,j 0, 1. With the prior input X1 = 0.
we obtain for the joint p.g.f. of (T. W) the expression

(6.13) F(O. )( 1 -P03 2 {poo + (PoiPio - PooPll)09312}.

Much as before, the joint p.g.f. of (Tj. Vj) is found to be

(6.14) Fj(O, () = F(091-'. ()

l_ 09J±1/2 {Poo + (PolPio -poop, )0pi+ 12}

It follows that the joint p.g.f. of W(u) and T(u) will take the form

(61
U

E(,)-{0(+)2}u {poo ± (PoiPio - PooPii)O93112}6.1) fl, Fj ( 0, (p) = { 0?o( +
3/2u{~(olplOPoPl1)0 /

J= 1 1 - pilo931
{poo + (PoiPio -POooP11)O0u+112}

1 - P110l +/2

These results may appear somewhat slight after the complexities of the trun-
cated polynomial technique; work is at present in progress to derive explicit
results for the joint p.g.f. F(0, 9o) of (T, J') for input distributions such as the
geometric and Poisson when the inputs {Xi} are i.i.d.
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7. Random walks imbedded in birth and death processes and an asymptotic result

Joint distribution problems for the analogous time to first emptiness T'(u)
and stochastic path integral W'(u) have been investigated for birth and death
processes in continuous time by Gani and McNeil [10]. For these, the double
Laplace transform of T'(u), W'(u) when the birth and death parameters are,
respectively, A and Au, has been shown to be

(7.1) u(o, p) = E(exp {-ciT'(u) - flW'(u)})
()2 Ju+2(2(f)L)-1)I ' Re c, p _ 0,

where v = (a + A + p)f31. From (7.1), it is possible to find the expectation of
W'(u), as well as the regression of W'(u) on T'(u).
A similar approach is applicable to the discrete time random walk imbedded

in a birth and death process. This is the random walk starting from ZO = u with
i.i.d. inputs {X,},' 1 of size + 1 arriving at times t - 0, such that its state at
times t = 1, 2, T(u) is

(7.2) Zt = (Zt-l + Xt),
with ZT(U) = 0 for the first time. The probabilities that X, = + 1 and -1 are,
respectively, p = A/(2 + i) and q = p/(2 + p). If Fu(6, A) = E(6T(u)qW(u)) is
the joint p.g.f. of (T(u), W(u)), it is readily seen for u > 1, considering the input
X, = +1 during (0,1), that

(7.3) Fu(0, 9() = 0(pu{pFu+i(0, 9) + qPu (0, A))},

where FO0(, ) is put equal to 1 for convenience.
We can solve these difference equations by setting

(7-4) F (6,(0 = (06, (P), u =1, 2,

whence

(7.5) u(6, (p) 1-=p'
= (112 (qp) 11209u

VPJ 1 _(qp)1/20"(pu p 4 (0 (p)

The function cu(6, 9p) may be identified as the ratio of two Bessel functions of
integer order, of the first kind, so that

(7.6) X(, (p) - ( J)J1(2u(qp) 120u)
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Hence,

Un u/2 u=J)nk(2k(qp) 110(p)(7.7) F.(O, = 1u j(()U2 1 4,_(21(qp) 1120(pk)
j=11~

a rather complicated explicit expression, somewhat reminiscent of (7.1).
The analogy between this random walk and the continuous time birth and

death process suggests that the asymptotic normality proved for (T'(u), W'(u))
in [10] will extend not only to the imbedded random walk, but also to the
general random walk (1.1) with regular unit output previously considered. In
fact, this is the case, as is proved in detail in a recent note by Gani and Lehoczky
[9]. Briefly, one begins by showing that for i.i.d. inputs contributing to the
stochastic integral

(7.8) W(u)= WV+ (j-l )Tj.
j= 1

the normalized sum u - 3/2 E'= IWj tends to zero almost surely. It is then proved
that, as u - o, the normalized random variables

{ W(u)-u(u- 1)} {T(U) - u}

where pu = E(Tj) and U2 = Var (j), are jointly normally distributed with cor-
relation coefficient p = 3/2. For large u, this means the asymptotic regression
of W(u) on T(u) will be known. I would conjecture that it might be possible to
obtain sharper asymptotic results for the stochastic integral W(u).
No account of the wide field I have tried to cover could hope to be entirely

complete; despite its condensed form, I hope this brief sketch of unanswered
problems in the area may encourage applied probabilists to work on them and
find their solutions.
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